
Protein kinase B controls Mycobacterium tuberculosis growth 
via phosphorylation of the transcriptional regulator Lsr2 at 
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SUMMARY

Mycobacterium tuberculosis (Mtb) is able to persist in the body through months of multi-drug 

therapy. Mycobacteria possess a wide range of regulatory proteins, including the protein kinase B 

(PknB) which controls peptidoglycan biosynthesis during growth. Here, we observed that 

depletion of PknB resulted in specific transcriptional changes, that are likely caused by reduced 

phosphorylation of the H-NS-like regulator Lsr2 at threonine 112. The activity of PknB towards 

this phosphosite was confirmed with purified proteins, and this site was required for adaptation of 

Mtb to hypoxic conditions, and growth on solid media. Like H-NS, Lsr2 binds DNA in sequence-

dependent and non-specific modes. PknB phosphorylation of Lsr2 reduced DNA binding, 

measured by fluorescence anisotropy and electrophoretic mobility shift assays, and our NMR 

structure of phosphomimetic T112D Lsr2 suggests that this may be due to increased dynamics of 

the DNA binding domain. Conversely, the phosphoablative T112A Lsr2 had increased binding to 

certain DNA sites in ChIP-sequencing, and Mtb containing this variant showed transcriptional 

changes that correspond with the change in DNA binding. In summary, PknB controls Mtb growth 

and adaptations to the changing host environment by phosphorylating the global transcriptional 

regulator Lsr2.

KEYWORDS: Mycobacterium tuberculosis, Protein kinase B, DNA binding, phosphorylation, 

Lsr2, transcriptomics, proteomics

INTRODUCTION

Mycobacterium tuberculosis (Mtb) is a slow-growing bacterium that can replicate in humans and 

cause tuberculosis. The pathogen is able to rapidly shut-down its growth to persist in non-

replicating states in infected individuals, which can be modelled in the laboratory (Wayne and 

Sohaskey, 2001). Mtb adaptation to non-permissive conditions is accompanied by dramatic 

changes in global protein phosphorylation but the importance of these modifications is poorly 

defined (Prisic et al., 2010). Mtb has eleven serine/threonine protein kinases and they play 

significant roles in growth, virulence and metabolism (Richard-Greenblatt and Av-Gay, 2017). In 

particular, protein kinase B (PknB) is reported to be essential for Mtb growth (Fernandez et al., 

2006; Forti et al., 2009) due to its critical function in the regulation of peptidoglycan biosynthesis 

(Boutte et al., 2016; Gee et al., 2012; Turapov et al., 2018). It is also important for Mtb survival in 

hypoxic conditions and resuscitation during reaeration (Ortega et al., 2014). However, the 

molecular mechanism for PknB-mediated adaptation to hypoxia is unknown.

We have recently shown that PknB-depleted Mtb can grow in osmoprotective sucrose 

magnesium medium (SMM) (Turapov et al., 2018). Comparative phosphoproteomic analysis of 

PknB-producing against PknB-depleted mycobacteria revealed substantial changes. Specifically, A
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the transcriptional regulator Lsr2 showed increased phosphorylation in PknB-producing 

mycobacteria, indicating that this protein may be a PknB substrate. 

Lsr2 is a DNA binding protein that combines the properties of a nucleoid associated protein 

(Kriel et al., 2018) and a global transcriptional regulator (Bartek et al., 2014). Lsr2 has over 1000 

binding sites in Mtb (Gordon et al., 2010; Minch et al., 2015). The precise role of Lsr2 in 

mycobacterial biology remains unclear, nevertheless parallels may be drawn with similar proteins 

from other bacteria. Lsr2 represents the first example of an H-NS-like protein identified outside 

Gram-negative bacteria, moreover lsr2 was able to complement an hns mutant in Escherichia coli 

(Gordon et al., 2008). Similar to the H-NS proteins, Lsr2 has been proposed to bind to the minor 

groove of DNA (Gordon et al., 2011) and to possess DNA bridging properties (Chen et al., 2008). 

Additionally, Lsr2 has been shown to protect DNA from reactive oxygen species, and over-

expression of Lsr2 improved survival of mycobacteria treated with hydrogen peroxide (Colangeli 

et al., 2009). Deletion of lsr2 in Mtb resulted in severe growth impairment on solid media, defects 

in persistence, and adaptation to changing oxygen levels, all of which were accompanied by 

differential expression of genes involved in cell wall remodelling, respiration, and lipid 

biosynthesis (Bartek et al., 2014).

Here we profiled the transcriptional changes that resulted from PknB depletion, and 

investigated the role of Lsr2 in coordinating these changes, as suggested by reduced 

phosphorylation of Lsr2 at T112 during PknB depletion (Turapov et al., 2018). We probed the role 

of phosphorylation at this site in regulation of the structure and DNA binding properties of Lsr2 

and in governing growth and survival of Mtb in different conditions. Based on our data, we 

propose that PknB-mediated phosphorylation controls Lsr2 binding to DNA in Mtb, providing a 

functional link between serine/threonine protein kinase signalling in replicating bacilli and 

regulatory networks that enable Mtb to survive dynamic environments during infection.

RESULTS

Transcriptome profiling of PknB-depleted Mtb revealed an Lsr2-regulated gene expression 

signature

PknB is essential for growth in standard conditions, however we have recently developed an 

osmoprotective medium (SMM) that supported growth of PknB-depleted Mtb and allowed us to 

identify PknB substrates (Turapov et al., 2018). Using the same system, we compared the 

transcriptional profile of PknB-depleted versus PknB-producing Mtb (Fig. 1A, Tables 1 and S1). 

PknB-depletion led to specific and significant changes in gene expression: 65 genes were 

induced and 34 repressed (Fig. 1B, Table S1). Two functional classes were overrepresented 

amongst the induced genes compared to the genome as a whole: regulatory proteins and A
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proteins involved in lipid metabolism. The induced genes annotated as transcriptional regulators 

were csoR, rv1129c, rv1460, rv2017, rv2250c, rv3334, sigB, whiB3 and whiB6 (Table S1). These 

transcription factors regulate copper homeostasis (CsoR) (Marcus et al., 2016), iron-sulphur 

cluster biogenesis (Rv1460) (Willemse et al., 2018), cholesterol catabolism (Rv1129c/PrpR) 

(Masiewicz et al., 2012), the enduring hypoxic response (Rv3334) (Rustad et al., 2008), multiple 

stress responses (SigB) (Lee et al., 2008), redox stress and complex lipid biosynthesis (WhiB3) 

(Mehta and Singh, 2018) and virulence factor expression (WhiB6) (Bosserman et al., 2017). 

The transcriptional signature of PknB-depletion resembled features of intracellular growth 

(Table S1), with significant overlap with RNA profiles from several studies of Mtb in macrophages 

as reflected by hypergeometric probability values: 6.7x10-23 (Tailleux et al., 2008), 7.34x10-18 

(Schnappinger et al., 2003) and 3.57x10-17 (Rohde et al., 2007). For example, there was induction 

of pathways involved in mycobactin synthesis (mbtB/C/D), complex lipid phthiocerol 

dimycocerosate (PDIM) biosynthesis (fadD26, ppsA/B/C/D), metabolism of alternative lipid 

carbon sources, the glyoxylate shunt (icl), the methylcitrate cycle (prpD/C, prpR) and 

triacylglycerol synthase (tgs1). The isoniazid inducible genes (iniB/A/C) that respond to cell wall 

stress (Colangeli et al., 2007), and four of the nine genes coding for alternative ribosomal 

proteins, rpmB1, rpmB2, rpmG1, rpsN2 (Prisic et al., 2015) were also induced.

The 34 genes that were significantly repressed in PknB-depleted bacteria included pknB itself 

(6-fold change, whereas no other protein kinases were significantly changed Table 1); nuoA/B/C, 

encoding subunits of NADH dehydrogenase I, which is part of the aerobic respiratory chain, and 

several genes involved in intermediary metabolism (Table S1). Comparison of gene expression 

and protein abundance of selected targets showed good agreement (Fig. 1C). Overall the number 

of differentially expressed genes was comparable to the number with differential expression when 

other regulators were similarly disrupted, for example DosR (Park et al., 2003). This is in contrast 

to the large-scale changes in gene expression after treatment with an inhibitor of PknB and PknA 

(Carette et al., 2018), which would likely impact Mtb viability. In summary, PknB depletion in 

replicating bacteria resulted in co-ordinated changes to the transcriptome with similarities to 

intracellular adaptations, suggesting that PknB may control the induction of alternative gene 

regulatory pathways.

Application of the Transcription Factor Over-Expression (TFOE) output tool (Rustad et al., 

2014) predicted Rv0081 (Galagan et al., 2013), DosR (Park et al., 2003) and Lsr2 (Bartek et al., 

2014) as potential regulators of the observed gene expression patterns (Fig. 1, Table S1). We 

next focussed on the involvement of Lsr2 in PknB-mediated transcriptional adaptation, since Lsr2 

was identified as a putative PknB substrate in our earlier phosphoproteomic work (Turapov et al., 

2018): PknB depletion decreased Lsr2 phosphorylation 2.54-fold without impacting Lsr2 protein A
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growth in vitro, they likely play a critical role in adaptations to stress and virulence (Rohde et al., 

2007; Camacho et al., 2001; Sassetti and Rubin, 2003).

Our data demonstrate that PknB phosphorylation of Lsr2 in vitro completely abolished DNA 

binding, while the phosphomimetic mutation reduced Lsr2-DNA interactions (Fig. 5). We have not 

investigated the effect of T8, T22 and T31 phosphorylations on DNA binding. Based on previously 

published data we hypothesise that phosphorylation of these sites in the oligomerisation domain 

might be important for controlling nucleoid shape and DNA bridging properties. The results of our 

study suggest that phosphorylation of T112 in the DNA binding domain controls interaction of 

Lsr2 with AT-rich DNA sequences which modifies gene expression (Fig. 4C). Our structural 

studies further confirm that phosphomimetic T112D Lsr2 variant had a shorter C-terminal helix 

and increased dynamics of the DNA binding domain, leading to impaired Lsr2-DNA binding (Fig. 

6 and Fig. S5).

Post-translational modifications are common mechanisms for the regulation of DNA binding 

both in eukaryotes (Bannister and Kouzarides, 2011) and prokaryotes (Dilweg and Dame, 2018). 

Phosphorylation or nitrosylation of transcriptional regulators abolish DNA binding (Leiba et al., 

2014; Smith et al., 2017). H-NS protein, a homologue of Lsr2 in E. coli, has been shown to be 

acetylated and phosphorylated, however the precise function of these modifications remains to be 

characterised (Dilweg and Dame, 2018). Our data show that phosphorylation of Lsr2 is important 

for Mtb growth and that this may be a key mechanism for controlling mycobacterial adaptations to 

permissive and non-permissive environments. Thus, PknB mediates two critical components of 

mycobacterial growth, peptidoglycan biosynthesis and gene expression of alternative pathways.

Based on our data we propose that PknB controls Mtb growth by phosphorylating Lsr2. Like 

other H-NS-like proteins Lsr2 plays a dual role in mycobacterial biology, it shapes and protects 

the nucleoid and it controls gene expression (Kriel et al., 2018; Bartek et al., 2014). However, 

unlike H-NS proteins in Gram-negative bacteria that mainly silence the expression of foreign DNA 

(Lucchini et al., 2006), Lsr2 regulates expression of genes that are essential for growth, virulence 

and adaptation (Bartek et al., 2014). Our study suggests that phosphorylation of T112 might be 

important for tuning gene expression during growth, and the dynamic change between 

phosphorylated and non-phosphorylated Lsr2 may help to adjust transcriptional patterns 

according to growth conditions. Reduced T112 phosphorylation, for example during starvation, 

may increase Lsr2 binding and up-regulate pathways that are critical for Mtb survival under these 

conditions. Our data suggest that PknB is the main serine/threonine kinase responsible for 

phosphorylation of Lsr2 at T112 during growth, however we cannot exclude that other kinases 

can phosphorylate Lsr2 at this or other sites under different conditions as it has previously been 

shown for other substrates (Baer et al., 2014).A
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