University of Sussex
Browse

File(s) not publicly available

Time-stepping schemes for moving grid finite elements applied to reaction-diffusion systems on fixed and growing domains

journal contribution
posted on 2023-06-08, 07:30 authored by Anotida MadzvamuseAnotida Madzvamuse
In this paper, we illustrate the application of time-stepping schemes to reaction-diffusion systems on fixed and continuously growing domains by use of finite element and moving grid finite element methods. We present two schemes for our studies, namely a first-order backward Euler finite differentiation formula coupled with a special form of linearisation of the nonlinear reaction terms (1-SBEM) and a second-order semi-implicit backward finite differentiation formula (2-SBDF) with no linearisation of the reaction terms. Our results conclude that for the type of reaction-diffusion systems considered in this paper, the 1-SBEM is more stable than the 2-SBDF scheme and that the 1-SBEM scheme has a larger region of stability (at least by a factor of 10) than that of the 2-SBDF scheme. As a result, the 1-SBEM scheme becomes a natural choice when solving reaction-diffusion problems on continuously deforming domains.

History

Publication status

  • Published

Journal

Journal of Computational Physics

ISSN

0021-9991

Publisher

Elsevier

Issue

1

Volume

214

Page range

239 - 263

Pages

25.0

Department affiliated with

  • Mathematics Publications

Full text available

  • No

Peer reviewed?

  • Yes

Legacy Posted Date

2012-02-06

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC