University of Sussex
Browse

File(s) not publicly available

How (not) to model autonomous behaviour

journal contribution
posted on 2023-06-08, 05:55 authored by Ezequiel Di Paolo, Hiroyuki Iizuka
Autonomous systems are the result of self-sustaining processes of constitution of an identity under precarious circumstances. They may transit through different modes of dynamical engagement with their environment, from committed ongoing coping to open susceptibility to external demands. This paper discusses these two statements and presents examples of models of autonomous behaviour using methods in evolutionary robotics. A model of an agent capable of issuing self-instructions demonstrates the fragility of modelling autonomy as a function rather than as a property of a system's organization. An alternative model of behavioural preference based on homeostatic adaptation avoids this problem by establishing a mutual constraining between lower-level processes (neural dynamics and sensorimotor interaction) and higher-level metadynamics (experience-dependent, homeostatic triggering of local plasticity and re-organization). The results of these models are lessons about how strong autonomy should be approached: neither as a function, nor as a matter of external vs. internal determination.

History

Publication status

  • Published

Journal

BioSystems

ISSN

03032647

Publisher

Elsevier

Issue

2

Volume

91

Page range

409-423

Department affiliated with

  • Informatics Publications

Full text available

  • No

Peer reviewed?

  • Yes

Legacy Posted Date

2012-02-06

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC