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Abstract 20 

There are well known phenotypic differences in sweet-liking across individuals, but it 21 

remains unknown whether these are related to broader underlying differences in 22 

interoceptive abilities (abilities to sense the internal state of the body). Here, healthy 23 

women (N = 64) classified as sweet likers (SLs) or sweet dislikers (SDs) completed a 24 

bimodal interoception protocol. A heartbeat tracking and a heartbeat discrimination 25 

task determined cardiac interoception; both were accompanied by confidence ratings. 26 

A water load task, where participants consumed water to satiation and then to 27 

maximum fullness was used to assess gastric interoceptive abilities. Motivational 28 

state, psychometric characteristics and eating behaviour were also assessed. SLs 29 

performed significantly better than SDs on both heartbeat tasks, independently of 30 

impulsivity, anxiety, depression, and alexithymia. No differences in metacognitive 31 

awareness and subjective interoceptive measures were found. With gastric 32 

interoception, SLs were more sensitive to stomach distention, and they ingested less 33 

water than SDs to reach satiety when accounting for stomach capacity. SLs also scored 34 

higher on mindful and intuitive eating scales and on emotional eating particularly in 35 

response to negative stimuli; emotional overeating was fully mediated via 36 

interoceptive performance. Overall, our data suggest the SL phenotype may reflect 37 

enhanced responsiveness to internal cues more broadly.  38 

 39 

  40 
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Abbreviations: BMI, Body Mass Index; BPQ, Body Perception Questionnaire; DEBQ, 41 

Dutch Eating Behaviour Questionnaire; EMAQ, Emotional Appetite Questionnaire; 42 

gLMS, generalized Labelled Magnitude Scale; IAcHDi, Interoception Accuracy from the 43 

Heartbeat Discrimination task; IAcHTr, Interoception Accuracy from the Heartbeat 44 

Tracking task; IAw, Interoceptive Awareness; IAwHDi, Interoceptive Awareness from 45 

the Heartbeat Discrimination task; IAwHTr, Interoceptive Awareness from the 46 

Heartbeat Tracking task;I S_HDi, Interoceptive Sensibility from the Heartbeat 47 

Discrimination task; IES, Intuitive Eating Scale; IS_HTr, Interoceptive Sensibility from 48 

the Heartbeat Tracking task; ITPE, Trait Prediction Error; MEQ, Mindful Eating 49 

Questionnaire; ROC, Receiver Operating Characteristic; SD, Sweet Disliker; SL, Sweet 50 

Liker; VAS, Visual Analogue Scale; WLT, Water Load Test. 51 

 52 

1. Introduction 53 

Food choice and intake typically occur in response to need for energy and pleasure 54 

seeking (Berthoud et al., 2017). It should be noted that, while some have argued that 55 

the obesity epidemic has occurred among increased availability of highly palatable 56 

foods in Western and Westernising societies, suggesting an increasing role for hedonic 57 

drive in the control of food intake (Yeomans et al., 2004), need-state still remains a 58 

critical aspect of human feeding behaviour (Berthoud et al., 2017). Moreover, the 59 

obesogenic environment puts pressure on the homoeostatic regulatory system: we 60 

misinterpret or confound internally generated nutritional and metabolic signals being 61 

unable to monitor food choice and intake in accordance to need state (Bilman et al., 62 

2017; Sample et al., 2016). However, some individuals appear to be less responsive to 63 
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influences of the modern environment. Some researchers have focused on 64 

understanding individual differences in the susceptibility to the maladaptive effects of 65 

obesogenic environment on mechanisms involved in decision-making around food. 66 

Interpersonal variation in interoceptive ability, which is defined as one’s ability to 67 

perceive their internal bodily state (Craig, 2002), may be especially relevant.   68 

Historically, interoception has referred to sensing the state of various inner systems 69 

such as the viscera, skin, chemical/osmotic homeostatic systems, and emotions 70 

(Schleip & Jäger, 2012). Here, we focus more narrowly on the cardiac and gastric 71 

modes of interoception. Gastric interoception is believed to reflect aspects of the gut-72 

brain communication (Stevenson et al., 2015), and, therefore, it may be involved in 73 

the decision-making around food: ingested food causes stomach distention which 74 

activates vagal afferent neurons that pass the information about the change in 75 

stomach volume to the brain (Ritter, 2004). Regarding cardiac interoception, while it 76 

is often considered as an indicator of ‘general’ interoceptive abilities (Tsakiris & 77 

Critchley, 2016), some evidence supports its link with experienced hunger (Herbert et 78 

al., 2012) and homeostatically-driven eating styles (Herbert et al., 2013; Richard et al., 79 

2019), as well. 80 

Although putative relationships between reduced sensitivity to homeostatic signals 81 

and energy intake have been suggested for decades (Berthoud et al., 2017), only 82 

recently have researchers begun exploring whether variation in the ability to sense 83 

the state of the internal body – that is, interoception – might be associated with eating 84 

behaviour. To date, two eating patterns that encompass the principles of 85 

homeostatically-driven eating have been sufficiently documented: intuitive and 86 
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mindful eating. The reports directly examining the relationship between cardioceptive 87 

accuracy and intuitive eating have shown positive correlations (Herbert et al., 2013; 88 

Richard et al., 2019); evidence of a relationship between objectively measured 89 

interoceptive accuracy and compliance to the principles of mindful eating is, however, 90 

lacking. Nonetheless, the mechanisms related to interoception have been proposed 91 

to explain the benefits of practising mindful eating vis-à-vis weight control (Warren et 92 

al., 2017).  A review by Quadt and colleagues (2018) proposing altered interoception 93 

in those with eating and feeding disorders further supports this rationale. Regarding 94 

the other element of interoception, that of its relation to emotions (Critchley & 95 

Garfinkel, 2017), some preliminary evidence has suggested that high interoceptive 96 

performers could be more prone to emotional eating (Koch & Pollatos, 2014; Young 97 

et al., 2017).  The possible  dissociable effect of positive versus negative emotions on 98 

gustatory decision making (Macht, 2008) has still to be elucidated.  99 

Brain areas known to mediate interoceptive processes also receive afferents from the 100 

gustatory system (Avery et al., 2015; Kurth et al., 2010), whilst homeostatic signals 101 

that serve the gut-brain communication also project to regions where interoception 102 

and gustation appear to be co-located (Simmons & DeVille, 2017). Can, then, 103 

individual differences in interoceptive abilities and variation in taste responses be 104 

linked as this shared neural representation of interoception and gustation suggests?  105 

Alliesthesia, a classical phenomenon whereby experienced pleasure for a given 106 

sensory stimulus changes depending on the internal state of the body (Cabanac, 107 

1979), may provide some support for the hypothesized convergence of interoceptive 108 

and gustatory information. Taste is classically considered an exteroceptive sense, and 109 
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taste hedonics are also key features in food choice and intake (Boesveldt & de Graaf, 110 

2017; Hayes, 2020). 111 

From a public health perspective, sweetness appears to be the taste modality of most 112 

interest. By signifying nutritious and safe food sources (Drewnowski et al., 2012) and 113 

activating reward circuits in the brain (Wiss et al., 2018), sweetness uniquely forms 114 

food preferences. Moreover, high-sugar consumption has been a common target of 115 

healthy eating campaigns (WHO, 2015) due to its contribution to obesity (Hu, 2013) 116 

and modern diseases (Stanhope, 2016). While studies reporting distinct hedonic 117 

responses to sweetness (sweet taste phenotypes) date back a half century, recent 118 

data have emphasized the importance of accounting for individual variation in sweet-119 

liking (Iatridi et al., 2019b; Tan & Tucker, 2019). Despite some inconsistencies in 120 

methods used to identify distinct sweet taste phenotypes, when effects of these 121 

phenotypes on weight status were examined, some researchers (Grinker, 1977; 122 

Grinker & Hirsch, 1972; Johnson et al., 1979; Malcolm et al., 1980; Thai et al., 2011) 123 

have reported those liking ever-higher sweetness (i.e. sweet likers; SLs), were more 124 

often of normal weight compared to sweet dislikers (i.e. individuals expressing 125 

aversive responses to high sweetness; SDs). In a multi-country study, we recently 126 

found that SLs had either lower fat mass or greater fat free mass than SDs (Iatridi, 127 

Armitage, et al., 2020). We concluded that, for SLs, hedonic response to sweetness 128 

matched their bodily needs, either in respect to energy stores or energy requirements. 129 

Conversely, SDs seemed to be less responsive to the internal state of their body, 130 

especially for the subgroup of SDs who were more exposed to an obesogenic 131 

environment. This aligns with a model arguing that the human body has drifted 132 
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evolutionary in its responsiveness to positive feedback loops that relate to surplus in 133 

internal energy stores, i.e. it is less effective in resisting to weight increases (Speakman 134 

et al., 2011). Conversely, human body primarily defends undersupply in order to 135 

prevent or reverse body mass loss (Speakman et al., 2011). Further, SLs also exhibited 136 

behavioural characteristics analogous to those of high interoceptive performers, such 137 

as enhanced trait-hunger, intensity seeking, and reward sensitivity (Iatridi, Armitage, 138 

et al., 2020). Collectively then, interoception appears to be a good candidate to explain 139 

the observed effects of sweet taste phenotype on body composition and psychometric 140 

profiles. 141 

To date, most research on interoceptive processes has focused on sensitivity to 142 

cardiac signals. Whether interoceptive abilities measured using cardiac or gastric 143 

interoception tasks can be considered to be equivalent entities has not been resolved 144 

thus far. Still, experimental data from objective interoceptive measures suggests some 145 

degree of overlap in perceiving these discrete visceral events. For example, Whitehead 146 

and Drescher showed accuracy in detecting stomach contractions and heartbeats 147 

were significantly correlated (Whitehead & Drescher, 1980). Using more modern 148 

techniques, other groups have confirmed this association, with cardiac accuracy 149 

predicting the amount of water volume required for fullness to be sensed (Garfinkel, 150 

Manassei, et al., 2017; Herbert et al., 2012). However, Herbert and colleagues also 151 

noted there were no differences in subjective fullness ratings between high and low 152 

cardiac perceivers (Herbert et al., 2012). Discrepancies in interoceptive accuracy 153 

across senses have also been reported (Ferentzi et al., 2018) including a study where, 154 

unlike in previous investigations, a water load task accounting for individual 155 
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differences in stomach capacity was used (van Dyck et al., 2016). To the best of our 156 

knowledge, no subsequent study has tested putative associations between the ability 157 

to sense gastric and cardiac signals while accounting for stomach capacity; we address 158 

this knowledge gap here. Given that the primary aim of the present study was to 159 

investigate the phenotype-specific differences in interoceptive abilities within an 160 

ingestive behaviour context, inclusion of a bimodal interoception task was deemed 161 

essential.  162 

In summary, except for one study on multimodal interoception that found no 163 

correlation between bitterness liking and interoceptive accuracy operationalized via 164 

cardiac and gastric measures (Ferentzi et al., 2018), this is the first systematic attempt 165 

to link interoceptive abilities and distinct gustatory hedonic patterns for sweetness. 166 

To do so, we contrasted two extreme hedonic patterns for sweet taste: SL and SD 167 

phenotypes using a bimodal interoception protocol which incorporated state of the 168 

art cardiac (Garfinkel et al., 2015) and gastric (van Dyck et al., 2016) interoception 169 

tasks. Based on previous work from our research group (Iatridi, Armitage, et al., 2020), 170 

we hypothesised SLs would exhibit better interoceptive performance than SDs. 171 

Likewise, the predictive utility of sweet taste phenotype for eating behaviours 172 

believed to relate to homeostatic or hedonic eating was also tested: we predicted that 173 

there would be a mediating effect of interoceptive performance in the phenotype-174 

specific differences in intuitive, mindful, and emotional eating. To help address 175 

inconsistencies in the existing literature, we also adopted the following definitions to 176 

quantify distinct dimensions in interoception: interoceptive accuracy (i.e. 177 

interoceptive performance), which is an objective index of interoceptive ability and 178 
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assessed using tests such as the heartbeat detection (Garfinkel et al., 2015; Garfinkel 179 

& Critchley, 2013) and voluntary water ingestion (i.e., water load: van Dyck et al., 180 

2016) tasks; (2) interoceptive sensibility, which is a subjective measure of interoceptive 181 

ability as it represents the self-reported tendency to focus on signals of the inner body, 182 

assessed using confidence ratings or questionnaires for a range of sensations 183 

(Garfinkel et al., 2015; Garfinkel & Critchley, 2013); (3) interoceptive awareness that 184 

reflects the metacognitive awareness of interoceptive accuracy and calculated by 185 

combining the mathematical results of accuracy and sensibility (confidence ratings) 186 

measures (Garfinkel et al., 2015; Garfinkel & Critchley, 2013); and (4) trait prediction 187 

error, which quantifies the discrepancy between objective assessments of 188 

interoceptive accuracy and interoceptive sensibility (questionnaires) for a range of 189 

sensations (Garfinkel et al., 2016). 190 

 191 

2. Methods  192 

2.1 Participants 193 

Sixty-four women aged 18-34 years old were recruited from students and staff at the 194 

University of Sussex. Sample size was determined from earlier studies in women 195 

where associations between interoceptive abilities and eating habits and behaviours 196 

such as intuitive eating (Richard et al., 2019) and emotional eating (Young et al., 2017), 197 

as well as the association between interoceptive performance across senses had been 198 

considered (Herbert et al., 2012). Given that men and women differ in both objective 199 

and subjective measures of interoception (Grabauskaitė et al., 2017) and in many 200 
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eating behaviours (Rolls et al., 1991), as well as sex influencing food-related activation 201 

of brain areas closely related to interoceptive processes (Chao et al., 2017), a decision 202 

was made to only recruit women for the study. As part of the recruitment process, 203 

potential participants were screened for their sweet taste phenotype: only those 204 

classified as SLs or SDs were invited back to complete the interoception tasks and 205 

behavioural questionnaires (see 2.2. for details). During screening, all but four 206 

participants (one SL and three SDs) attended a separate early morning session to 207 

obtain anthropometry; BMI and body composition were measured using bio-208 

impedance (MC-780MA P, TANITA, UK). Before anthropometry, participants were 209 

asked to abstain from food and water for 8 hours, to not exercise for 12 hours, and to 210 

avoid consuming alcohol for 24 hours (Kyle et al., 2004); compliance was confirmed 211 

verbally upon arrival to the laboratory. 212 

In addition to exclusion criteria related to the taste test (i.e., diabetes, prescription 213 

medication other than oral contraception, irregular menstrual cycle, smoking 5+ 214 

cigarettes per week, being on a weight loss regimen and/or on a special diet for 215 

medical reasons, current respiratory illness, history of a dental procedure within the 216 

past two weeks), potential participants were also screened for a current diagnosis of 217 

mental and psychiatric disorders, past or current diagnosis of gastro-oesophageal 218 

reflux disease and/or hiatal hernia, a current diagnosis of diabetes insipidus, and a 219 

current or past diagnosis of cardiac arrhythmias and/or any other cardiovascular 220 

and/or heart disease. All study procedures (Figure 1) were carried out in accordance 221 

with the Declaration of Helsinki, and written informed consent was obtained at 222 
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enrolment. The protocol was approved by the Science and Technology Cross-Schools 223 

Research Ethics Committee of the University of Sussex (ER/VI40/2).  224 

 225 

2.2 Sweet taste test  226 

Participants rated liking for a 1 M sucrose solution on a visual analogue scale (VAS) 227 

ranging from -50 to +50; liking scores above +15 and below -15 were used to define 228 

participants as SL or SD, respectively. These criteria were recently proposed by our lab 229 

(Iatridi et al., 2019a) and further validated in a multi-country study (Iatridi, Hayes, et 230 

al., 2020). During screening, potential participants rated two series of 0 M and 1 M 231 

sucrose solutions presented using a ‘sip and spit’ protocol with a rinsing step between 232 

the stimuli and a 2-minute break between the two sets of stimuli. Participants were 233 

asked to refrain from consuming foods and flavored drinks, smoking, chewing gum, 234 

and tooth brushing for the two hours prior screening; compliance was confirmed 235 

verbally upon arrival to the laboratory. Sucrose solutions were prepared weekly at 236 

room temperature (22 °C) by dissolving food-grade sugar in mineral water. All taste 237 

stimuli were stored at 4 °C and brought back to room temperature before tasting. 238 

Perceived liking (‘How much did you like Sample X?’) and intensity (‘How sweet was 239 

Sample X?’) were recorded on a visual analogue scale (VAS) anchored as ’Dislike 240 

Extremely’ (-50) and ‘Like Extremely’ (+50) and a generalized labelled magnitude scale 241 

(gLMS) ranging from ‘No Sensation’ (0) to ‘Strongest Sensation of any Kind’ (100), 242 

respectively; training for scales was provided, presented using Sussex Ingestion 243 

Pattern Monitor (SIPM, University of Sussex, UK). Both 1 M replicates had to be rated 244 
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higher than +15 or below -15 for the classification into the SL and SD phenotype, 245 

respectively (Mobini et al., 2007). 246 

 247 

2.3 Interoception (objective measures) – Interoceptive accuracy 248 

2.3.1 Cardiac interoception  249 

To determine interoceptive accuracy, two cardiac detection tasks were utilized: a 250 

heartbeat tracking (Schandry, 1981) and a heartbeat discrimination task (Whitehead 251 

et al., 1977) using electrocardiography were employed; they were programmed in 252 

Psychtoolbox-3 for MATLAB (MathWorks Inc., Natick, MA) executed on a laptop 253 

computer running Microsoft Windows. The same researcher who was present during 254 

both tasks tested all participants. The researcher was blind to each trial’s 255 

characteristics and accuracy of recorded responses (i.e. duration of each heartbeat 256 

tracking trial, synchronicity between played tones and heartbeats, and score earned 257 

per trial – see 2.3.1.1 and 2.3.1.2 for details). The researcher provided instructions, 258 

coordinated tasks, and made electronic records of participants’ responses 259 

immediately after the end of each trial. A soft pulse oximeter (Xpod, Nonin, Medical 260 

Inc.) connected through a USB port to the laptop was attached to the participants’ 261 

non-dominant index finger to record their actual heart rate. As opposed to hard-clip 262 

oximeters, soft pulse oximeters provide similar accuracy to an electrocardiogram 263 

(Murphy et al., 2019). During both cardiac tasks, participants remained seated, 264 

relatively still, and with their arm comfortably rested on a pillow placed on a flat 265 

surface in front of them. They were also instructed to breathe at a regular pace.  266 
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Upon completion of the heartbeat tasks, participants completed a series of mood 267 

questionnaires to assess known confounders of interoceptive performance. 268 

Specifically, anxiety (Domschke et al., 2010), depression (Paulus & Stein, 2010), 269 

alexithymia (Brewer et al., 2016), and impulsivity (Chen et al., 2018) have all been 270 

associated with altered interoception, so the General Anxiety Disorder-7 (Spitzer et 271 

al., 2006), Patient Health Questionnaire-9 (Spitzer et al., 1999), Toronto Alexithymia 272 

Scale (Bagby et al., 1994), and Barratt Impulsiveness Scale (Patton et al., 1995) were 273 

administered. Participants’ beliefs about heart rate (‘Do you know what a heart rate 274 

is?’, ‘Do you know what your heart is?’) were also obtained (Murphy, Millgate, et al., 275 

2018). 276 

 277 

2.3.1.1 Heartbeat tracking task  278 

For the heartbeat tracking task (Schandry, 1981), participants were asked to internally 279 

count their heartbeats across six trials varying in duration (25, 30, 35, 40, 40, 45 and 280 

50 seconds in a randomized order). The start and end of each interval was signaled by 281 

an auditory cue (“start” and “stop”) delivered via software. The instructions were: 282 

“Without manually taking your pulse, please count each heartbeat you feel from the 283 

time you hear “start” to when you hear “stop’’ as it will be prompted by the 284 

computer.”  285 

Heartbeat tracking accuracy score (IAcHTr; Interoception Accuracy from the Heartbeat 286 

Tracking task) was calculated by averaging relevant accuracy scores across the six 287 

trials. The latter was computed from the following formula:  288 



14 
 

1 −
|𝑛beatsreal − 𝑛beatsreported|

(𝑛beatsreal + 𝑛beatsreported)/2 
 per trial (Hart et al., 2013). 289 

 290 

2.3.1.2 Heartbeat discrimination task  291 

The heartbeat discrimination task comprised of 26 blocks of auditory tones played for 292 

100 milliseconds at 440 Hz; half of the blocks were synchronized with the participant’s 293 

heartbeat and half were presented with a 300 milliseconds delay in a randomized 294 

order (Garfinkel et al., 2015). Participants were asked to indicate synchronicity 295 

between the auditory stimuli and their own heartbeats. The specific instructions were: 296 

“The computer will play your heartbeat back to you in real time. Whenever the 297 

computer detects a heartbeat, it will play a tone. Without manually taking your pulse, 298 

you have to decide whether the tones you hear are synchronous or asynchronous with 299 

your heartbeat.”. 300 

A heartbeat discrimination accuracy score (IAcHDi; Interoception Accuracy from the 301 

Heartbeat Discrimination task) was calculated as the percentage of correct answers 302 

(i.e., affirmative responses under synchronous conditions or negative responses under 303 

asynchronous conditions) across the total number of trials.  304 

 305 

2.3.1.3 Time tracking task  306 

To control for guessing of the number of heartbeats and monitor participants’ 307 

engagement, a time tracking task analogous to the ‘heartbeat counting paradigm’ was 308 

introduced between the two cardiac interoception tasks: participants were instructed 309 
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to count number of seconds over six predetermined time-windows without using any 310 

help or receiving any feedback upon completion of each trial. 311 

 312 

2.3.2 Gastric interoception 313 

The gastric channel of interoception was tested by performing a modified water load 314 

test (WLT) protocol developed by van Dyck and colleagues (2016). To eliminate carry-315 

over effects of a possible discomfort associated with ingestion of large amounts of 316 

water and to ensure a relatively empty stomach, the gastric interoception task was 317 

performed last and after approximately a 3-hour abstinence from eating and drinking 318 

(water included). As the researcher was not allowed into the testing room other than 319 

to serve the water, written instructions guided participants through the steps, 320 

including advice to discontinue water ingestion if they felt unwell. Over two successive 321 

5-minute periods, participants drank from a hidden 5 L flask containing 1.5 L of 322 

commercial table water (ASDA, UK), served at room temperature, with an integrated 323 

tubing system which ended in a long (30 mm) wide (8 mm) flexible straw; the flask was 324 

weighed between the two periods and refilled. During the first period, ad libitum 325 

water ingestion was required until the point of perceived satiation, which was 326 

explained as ‘the comfortable sensation you perceive when you have eaten a meal 327 

and you have eaten enough, but not too much’. Participants were then asked to 328 

continue ingesting water until fullness, i.e. ‘sensation of stomach being entirely filled 329 

with water’ was reached. Appetite ratings (hunger, satiety, fullness, thirst) and ratings 330 

about abdominal feelings (stomach tension, immobility, discomfort, guilt, 331 

sluggishness, nausea, arousal) were obtained before the first and after both the first 332 
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and the second drinking tasks on computerized visual analogue scales (van Dyck et al., 333 

2016). Participants remained seated in a half-supine position (i.e., leaning back at a 45 334 

degree angle) during the entire test. 335 

By weighing the flasks before and after each ingestion period, the water volume 336 

needed for satiation the additional volume required for fullness and the total stomach 337 

capacity (i.e., total volume ingested) were estimated. Gastric interoception was 338 

defined as the volume needed for satiation expressed as a percentage of total stomach 339 

capacity; lower values  were interpreted as better gastric interoceptive ability (van 340 

Dyck et al., 2016).  341 

 342 

2.4 Interoception (subjective measures) – Interoceptive sensibility 343 

2.4.1 Confidence ratings 344 

Using a computerized VAS anchored as ‘Total Guess/No heartbeat awareness’ (0) and 345 

‘Complete Confidence/Full perception of heartbeat’ (100), participants were asked to 346 

rate their confidence in the accuracy of their responses regarding the perceived 347 

number of heartbeats of the heartbeat tracking task (IS_HTr; Interoceptive Sensibility 348 

from the Heartbeat Tracking task) and perceived synchronicity with their heartbeats 349 

of the heartbeat discrimination task (IS_HDi; Interoceptive Sensibility from the 350 

Heartbeat Discrimination task) immediately after each trial. 351 

 352 

2.4.2 Body Perception Questionnaire  353 
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The awareness subscale of the Porges Body Perception Questionnaire (BPQ: Porges, 354 

1993) that measures one's beliefs about own sensitivity to a spectrum of bodily 355 

processes such as breathing, itching, sweating, swelling, digestion’s noises, muscle 356 

tension, was administered after completion of the cardiac interoception tasks. The 357 

original subscale consists of 45 items rated on a five-point Likert scale ranging from 358 

‘Never’ (1) to ‘Always’ (5). Here, we used the scoring protocol whereby full responses 359 

are summed to a total raw score (BPQ Manual, version 2); higher values represented 360 

higher levels of interoceptive sensibility. 361 

 362 

2.5. Metacognitive Interoceptive Awareness 363 

Metacognitive interoceptive awareness (IAw) was calculated separately for each 364 

heartbeat detection task based on the correspondence between accuracy and 365 

confidence (Garfinkel et al., 2015). As such, it illustrated how well one’s confidence 366 

matched the correctness of their responses. For the heartbeat tracking task, we 367 

correlated accuracy (continuous responses) and confidence scores (Pearson r) on a 368 

within-subject trial-by-trial basis. To determine the heartbeat discrimination task-369 

specific interoceptive awareness, the diagnostic value of the reported trial-by-trial 370 

confidence for accuracy (binary responses) was calculated from the area under the 371 

receiver operating characteristic (ROC) curve as described in Garfinkel et al. (2015). 372 

High metacognitive ability was yielded when correct trials (synchronicity or 373 

asynchrony judged correctly) were accompanied by high confidence or incorrect trials 374 

(synchronicity or asynchrony judged incorrectly) by low confidence (Garfinkel et al., 375 

2015).  376 
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 377 

2.6 Trait Prediction Error (ITPE) 378 

Interoceptive Trait Prediction Error (ITPE) quantifies the discrepancy between 379 

objectively assessed interoceptive performance measured during heartbeat detection 380 

tasks and interoceptive sensibility, i.e. one's beliefs about own sensitivity to 381 

interoceptive signals (Garfinkel et al., 2016). As described in Garfinkel et al. (2016), 382 

ITPE was computed separately for the heartbeat tracking and the heartbeat 383 

discrimination tasks as the difference between the awareness subscale of the BPQ and 384 

interoceptive accuracy. Prior to calculations, BPQ and accuracy scores were converted 385 

to standardised Z-values. Positive and negative values of ITPE indicate overestimation 386 

and underestimation of own interoceptive abilities, respectively. 387 

 388 

2.7 Self-reported eating behaviours 389 

Participants were asked to complete questionnaires on eating styles that encompass 390 

the principles of interoception, i.e. mindful eating and intuitive eating styles. Mindful 391 

eating, which is conceptualised as being aware of physical versus emotional hunger 392 

and satiety cues and of associated effects of food choices on both the body and 393 

psychological state, was assessed through the Mindful Eating Questionnaire (MEQ: 394 

Framson et al., 2009). MEQ measures five distinct eating behaviour-related factors for 395 

a total of 28 items: (1) disinhibition (e.g. ‘I stop eating when I’m full even when eating 396 

something I love’); (2) awareness (e.g.’ I notice when there are subtle flavours in the 397 

foods I eat’); (3) external cues (e.g. ‘I recognize when food advertisements make me 398 



19 
 

want to eat’); (4) emotional response (e.g. ‘When I’m sad I eat to feel better’); (5) 399 

distraction (e.g. ‘My thoughts tend to wander while I am eating’). For intuitive eating 400 

which also concentrates on internally focused eating, the 23-item Intuitive Eating 401 

Scale (IES-2: Tylka, 2006) was administered. Items targeted four facets: (1) 402 

unconditional permission to eat (e.g. ‘If I am craving a certain food, I allow myself to 403 

have it’); (2) eating for physical rather than emotional reasons (e.g. ‘I stop eating when 404 

I feel full’); (3) reliance on internal hunger and satiety cues (e.g. ‘I trust my body to tell 405 

me when to eat’); (4) body-food choice congruence (e.g. ‘I mostly eat foods that give 406 

my body energy and stamina’).  407 

Whether the differential role played by external cues versus emotions in the control 408 

of food intake was reflected in the behavioural profile of SLs and SDs was also tested. 409 

Susceptibility to external food cues was quantified through the external eating 410 

subscale of the Dutch Eating Behaviour Questionnaire (DEBQ: Strien et al., 1986). The 411 

DEBQ restraint eating subscale was also analysed. For emotional eating, the relevant 412 

subscale of DEBQ was analysed alongside the Emotional Appetite Questionnaire 413 

(EMAQ: Geliebter & Aversa, 2003) which explicitly separates effects of positive (e.g. 414 

confident, relaxed, falling in love) from effects of negative (e.g. sad, angry, when under 415 

pressure) emotions and emotional situations on eating behaviour, as well as 416 

considering the direction of disrupted food intake: that is whether a given emotion or 417 

emotional situation drives intake up or down. The effect of each emotion or emotional 418 

situation was rated on a 9-point Likert scale (‘As compared to usual, do you eat…’) 419 

ranging from ‘much less’ to ‘much more’ including a middle point labelled ‘the same’, 420 
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as well as a ‘not applicable’ and ‘don’t know’ options. If any of the two latter options 421 

was selected, then this response was omitted from the analysis. 422 

Finally, participants answered questions related to their dieting and body weight 423 

history. Behaviours akin to dietary restraint and overeating which are considered to 424 

underlie repetitive dieting and/or significant changes in body weight across the 425 

lifespan may also reflect attenuated interoceptive abilities (Bryant et al., 2019; 426 

Speakman et al., 2011). Indeed, higher neural density in the insula for the obesity 427 

resistant phenotype as opposed to individuals prone to obesity has been reported 428 

(Smucny et al., 2012). Here, participants were prompted to make a series of choice 429 

from the following list of dichotomous responses, characteristic of an obesity resistant 430 

versus an obesity prone phenotype (Schmidt et al., 2012): (1) ‘I am constitutionally 431 

thin, i.e. I believe it is difficult for me to gain weight and/or I expend little effort to 432 

maintain my weight’ vs. ‘I am chronically struggling with body weight control’; (2) ‘I 433 

experience weight stability despite few to no attempts to lose weight’ vs. ‘I have a 434 

history of weight fluctuations despite putting effort into not gaining weight’; (3) ‘I do 435 

not have any first degree relative (parents or siblings) who is obese’ vs. ‘I have at least 436 

one first degree relative (parents or siblings) who is obese’; (4) ‘I have never been 437 

overweight or obese’ vs. ‘I have been at least one time or I am currently overweight 438 

or obese’. Responses for an obesity resistant phenotype were scored as 0 versus 1 for 439 

the alternatives, so the lower the total score, the more resistant they were to obesity. 440 
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 441 

Fig. 1. Schematic representation of the study’s testing procedures. The taste test and 442 

the analysis of participants’ body composition took place a few days before the 443 

interoception tasks. 444 

 445 

2.9 Statistical analysis 446 

First, basic descriptive statistics (i.e., percentages and means and standard errors of 447 

the means) were computed. Group differences (SLs versus SDs) in continuous and 448 

categorical variables were tested with independent t- and χ2-tests, as appropriate. 449 

Regression analyses entering all confounders simultaneously were conducted to test 450 

the predictive utility of phenotype for each interoceptive accuracy score (heartbeat 451 

tracking, heartbeat discriminating, gastric) accounting for known confounders. To 452 

explore whether interoceptive accuracy in either heartbeat tasks related to gastric 453 

interoception independent of the sweet taste phenotype, additional regression 454 

models were employed. Pearson correlations of scores on emotional eating scales 455 

with interoceptive abilities and of cardiac with gastric interoception measures were 456 

also calculated.  457 

The extent to which phenotypic differences in participants’ characteristics were 458 

mediated by individual variation in interoception was tested using Hayes PROCESS 459 

macro v3.4 (Model 4: Hayes, 2013) with 5000 bootstrapped bias corrected resamples. 460 

Direct and indirect effects of sweet taste phenotype separately on each participants’ 461 

characteristic of interest were estimated with interoceptive measures found to differ 462 
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significantly by phenotype as the mediating variable; separate mediation analysis was 463 

carried out for each objective measure of interoception (i.e., interoceptive accuracy 464 

derived from the heartbeat tracking task, the heartbeat discrimination task, and water 465 

load test). As illustrated on Figure 2, the direct effect, path cʹ, represents the effect of 466 

the predictor (i.e., sweet taste phenotype) on the outcome (i.e., participant 467 

characteristics) while accounting for the effect of the mediator (i.e., interoceptive 468 

performance). Path a shows the strength of the influence of predictor on the mediator 469 

and path b denotes the effect of mediator on the outcome when the predictor is 470 

statistically controlled. This type of mediation analysis determines whether the effect 471 

of the predictor on the outcome is fully explained by the mediator. For significant 472 

results 95% bias corrected confidence interval (CI) should not have included the zero 473 

value. 474 

 475 

Fig. 2. The path model for mediation analysis (Hayes, 2013)  476 

 477 

Cohen's d and f squared (f2) were used as the effect size measures for pairwise 478 

comparisons and analyses of variance, respectively. Cohen’s d was considered small 479 

when equal to 0.20, medium when equal to 0.50 and large when equal to 0.80. For f2, 480 
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0.2, 0.15, and 0.35 were the thresholds for a small, medium and large effect size. 481 

(Cohen, 2013). The level of significance was set to α = .05. Data were analysed using 482 

SPSS v25.0 and the MATLAB (R2019b) software package. All tested hypotheses and 483 

the main analysis plan were specified prior to data collection. 484 

 485 

3. Results 486 

The study sample comprised of 64 women, 31 SLs and 33 SDs with an age and BMI 487 

range of 18.8 to 33.8 years and 17.19 to 32.23 kg/m2, respectively. 67.2% were self-488 

identified as Caucasians and 21.9% were of Asian ancestry. As expected from similar 489 

datasets (e.g., in Armitage et al., 2020; Garneau et al., 2018), SDs were older than SLs 490 

(24.3±0.08 SEM vs. 22.4±0.05 SEM; t(55.207)= -2.083, p = .042); further, individuals of 491 

Asian ancestry were classified into the SD phenotype (92.9%) more often than 492 

participants of Caucasian ancestry (39.5%) or participants from other ethnicities 493 

(42.9%; χ2(1,N=64) = 12.262, p = .002). Conversely, comparisons of sweet liker 494 

phenotypes by BMI (SLs: M = 22.03, SEM = .42; SDs: M = 22.87, SEM = .60), total body 495 

fat (SLs: M = 25.2, SEM = 1.1; SDs: M = 26.1, SEM = 1.2), and fat free mass (SLs: M = 496 

45.3, SEM = .7; SDs: M = 44.9, SEM = 1.4) were not significant (all ps > .05). 497 

Regarding interoception-specific measures, due to technical problems, cardiac and 498 

gastric interoception data were missing from two and one participant, respectively. 499 

Across participants, cardioceptive performance in the heartbeat tracking (M = .600, 500 

SEM = .035) and the heartbeat discriminating (M = .576, SEM = .017) tasks were 501 

comparable to recent work in non-clinical subgroups (Critchley et al., 2019). For the 502 
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water load test, mean gastric interoceptive performance was .588 (SEM = .018), 503 

similar to values from van Dyck et al. (2016). 504 

 505 

3.1 Interoceptive abilities by sweet taste phenotype 506 

The different interoception constructs (i.e., accuracy, awareness, sensibility) across 507 

interoception modalities (i.e., cardiac, gastric) by sweet taste phenotype are shown in 508 

Figure 3. SLs obtained higher accuracy scores than SDs in the heartbeat tracking (t(61) 509 

= 2.538, p = .014, d = .64) and the heartbeat discrimination (t(60) = 2.785, p = .007, d 510 

= .71) tasks (Figure 3, panels a and b). Notably, the observed patterns persisted even 511 

after accounting for known confounders of interoceptive performance (Table 1) that 512 

is alexithymia, anxiety, depression, and impulsivity (IAcHTr: β = - .286 95%CI (-.150, -513 

.006), t = -2.157, p = .035, f2 = .12; IAcHDi: β = - .404 95%CI (-.091, -.019), t = -3.086, p 514 

= .006, f2 = .19). Analysis of participants’ performance in the time tracking task showed 515 

no differences between SLs (M = .784, SEM = .026) and SDs (M = .769, SEM = .030) in 516 

their overall engagement in the experimental procedures (t(62) = .370, p = .713; d = 517 

.09). SLs and SDs did also not differ in their knowledge of own heartbeats (41.9% SLs 518 

vs. 27.3% SDs reported knowledge of own heartbeat; χ2(1,N=64) = 1.523, p = .217, V = 519 

.02).  520 

 521 

Table 1. Trait mood and behaviour characteristics by sweet taste phenotype 

 Sweet Likers 

(n = 31) 

Sweet Dislikers 

(n = 33) 

 Mean (SEM) 



25 
 

GAD-7 (anxiety) 8.4 (0.9) 8.8 (1.0) 

PHQ-9 (depression) 7.2 (0.8) 9.0 (1.1) 

TAS-20 (alexithymia) 46.6 (2.1) 50.2 (2.1) 

BIS (impulsivity) 57.9 (1.8) 62.1 (1.6) 

BIS, Barratt Impulsiveness Scale; GAD-7, General Anxiety Disorder-7; PHQ-9, Patient 
Health Questionnaire-9; TAS, SEM, Standard Error of the Mean; Toronto Alexithymia 
Scale 

All group comparisons were non-significant (p > .05) 

 522 

SLs also exhibited enhanced gastric interoceptive abilities, as they ingested less water 523 

to sense satiety in relation to their stomach capacity when compared to SDs (t(61) = -524 

2.722, p = .008, d = .69: Figure 3c); notably, this was independent of their pre-test 525 

levels of satiety and thirst (β = .333 95%CI (.013, .082), t = 2.758, p = .008, f2 = .16). The 526 

low pre-test levels of satiety (SLs: M = 31.2, SEM = 3.8; SDs: M = 33.4, SEM = 4.0; t(61) 527 

= -.395, p = .694) and relatively high levels of thirst (SLs: M = 66.3, SEM = 4.1; SDs: M 528 

= 67.0, SEM = 4.3; t(61) = -.107, p = .916) seen here were unsurprising given the 3-hour 529 

food and water abstinence protocol. The full list of appetite ratings and abdominal 530 

sensations recorded at the different time points during the WLT can be found in the 531 

Supplementary Material (Table S1). The importance of accounting for stomach 532 

capacity in assessing gastric interoception also deserves note: if absolute ingested 533 

water volume had been used as a measure of gastric interoception, no phenotype-534 

specific difference in gastric interoception would have been observed (t(61) = .003, p 535 

= .998: Figure 3c). Likewise, adding total stomach capacity to the multivariate 536 

regression model that tested the effect of phenotype on gastric interoception 537 

improved the model’s predictive ability at a larger degree (R2 = .141), compared to 538 

using the absolute ingested water volume (R2 = .029). 539 
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Here, an effect of phenotype on objectively measured sensitivity to internal signals 540 

was not confirmed for constructs entailing subjective assessment of interoceptive 541 

abilities. Mean confidence from the heartbeat tracking task (t(61) = .558, p = .579; d = 542 

.14) and the heartbeat discrimination task (t(60) = -1.335, p = .187; d = .34) each failed 543 

in distinguishing SLs from SDs (Figure 3a-b); this failure was also seen for interoceptive 544 

awareness (IAwHTr: t(61) = .763, p = .448; d = .19; IAwHDi: t(60) = .625, p = .534; d = 545 

.16: Figure 3a-b). Although the mean scores for the SLs on the BPQ were slightly higher 546 

than for the SDs, this apparent difference was not significant (SLs: M = 75.4, SEM = 547 

3.3; SDs: M = 68.7, SEM = 2.9; t(62) = 1.547, p = .127; d = .39). Finally, while there were 548 

no phenotype-specific differences in interoceptive trait prediction error as assessed 549 

using either the heartbeat tracking task (SLs: M = -.114, SEM = .263; SDs: M = .144, 550 

SEM = .291; t(61) = -.657, p = .514; d = .17) or the heartbeat discrimination task (SLs: 551 

M = -.138, SEM = .267; SDs: M = .143, SEM = .225; t(60) = -.807, p = .323; d = .21), SLs 552 

were prone towards underestimating their interoceptive abilities as opposed to SDs 553 

who tended to overestimate their abilities to sense the internal state of their body 554 

accurately. 555 

 556 
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 557 

 558 
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 559 

Fig. 3a-c. Interoceptive dimensions by phenotype and task (a: heartbeat tracking task; 560 

b: heartbeat discrimination task; c: water load test). 561 

An asterisk (*) denotes statistically significant differences (p < .05) between the sweet taste 562 
phenotypes for each interoceptive measure. Error bars indicate standard errors of the mean. 563 
Notably, scores for the satiation measure are reversed relative to the cardioceptive accuracy 564 
scores; that is, higher values indicate lower gastric interoceptive abilities. 565 

 566 

 567 

3.2 Eating habits and behaviours by sweet liker phenotype 568 

In relation to our main hypothesis – those classified into the SL phenotype would have 569 

enhanced interoceptive abilities – eating habits and behaviours associated with 570 

responsiveness to internal signals and bodily needs were analyzed by phenotype 571 

(Table 2). Overall, SLs scored higher than SDs in mindful eating (t(62) = 3.060, p = .003, 572 

d = .76) and intuitive eating (t(62) = 4.321, p < .001, d = 1.09). From the different 573 

subscales under investigation, phenotype-specific differences were significant for 574 

awareness of feeding-specific internal states of the body (t(62) = 2.620, p = .011, d = 575 



29 
 

.65) and of external feeding cues (t(62) = 2.682, p = .009, d = .67) of the mindful eating 576 

questionnaire, as well as eating to meet physical rather than externally-generated 577 

needs (t(62) = 2.795, p = .007, d = .70), favoring food choices that benefit the body 578 

(t(62) = 4.286, p < .001, d = 1.08), or tending to refrain from placing external 579 

restrictions on eating (t(62) = 1.872, p = .066, d = .47) as derived from the intuitive 580 

eating questionnaire. SLs were also more likely than SDs to have an obesity resistant 581 

profile (t(62) = 2.151, p = .035, d = .54).  582 

 SLs also scored higher on the DEBQ emotional eating scale (t(62) = 2.153, p = .035, d 583 

= .54). Examining the positive and negative scales of the Emotional Appetite 584 

Questionnaire (EMAQ), SLs reported to increase their food intake at a significantly 585 

lower degree than SDs for positive emotions (t(62) = -2.245, p = .028, d = .56) but more 586 

in response to negative emotional stimuli (t(62) = 1.651, p = .104, d = .41). To note, in 587 

the total sample, positive emotional stimuli triggered significantly greater increases in 588 

food intake than negative emotions or emotional situations (t(63) = 2.968, p = .009, d 589 

= .52). In fact, only a third of our study sample (39.1%) reported eating more than 590 

usual (i.e. mean score > 5) when experiencing negative emotions compared to 51.6% 591 

who increased their food intake in response to positive emotions or emotional 592 

situations. Emotional eating in response to positive stimuli was also negatively 593 

associated with heartbeat accuracy scores across tasks (HTr: r(63) = -.294, p = .019; 594 

HDi: r(62) = -.302, p = .017), while the higher the increase in food intake in response 595 

to negative emotions, the better the measured cardioceptive performance (HTr: r(63) 596 

= -.290, p = .021; HDi: r(62) = -.262, p = .040). When the link between interoceptive 597 

abilities and emotional eating captured by the more generic subscale of the DEBQ was 598 
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tested, weaker correlations emerged (IAcHTr: r(63) = .242, p = .056; IAcHDi: r(62) = 599 

.245, p = .055). No differences between phenotypes were observed for DEBQ-external 600 

eating or frequency of dieting (all ps > .05). 601 

Table 2. Eating habits and behaviours  by sweet taste phenotype 

 Sweet Likers 

(n = 31) 

Sweet Dislikers 

(n = 33) 

 Mean (SEM) 

Intuitive Eating Scale   

Total score 3.506 (.040)* 3.204 (.056) 

Unconditional eating 3.371 (.081) 3.172 (.069) 

Physical eating 3.323 (.060)* 3.030 (.084) 

Hunger-driven eating 3.586 (.119) 3.424 (.118) 

Body-food convergence 4.108 (.110)* 3.293 (.153) 

Mindful Eating Scale   

Total score 2.489 (.048)* 2.291 (.044) 

Awareness 2.805 (.082)* 2.516 (.075) 

External cues 2.955 (.093)* 2.616 (.086) 

Emotional response 1.989 (.097) 1.861 (.108) 

Distraction 2.258 (.117) 2.132 (.082) 

Dutch Eating Behavioural Questionnaire 

Restrained eating 22.9 (1.3) 24.2 (1.7) 

Emotional eating 36.8 (2.1)* 30.6 (1.9) 

External eating 31.6 (.9) 32.1 (1.2) 

Emotional Appetite Questionnaire 

Positive  5.0 (.1)* 5.4 (.1) 

Negative 4.9 (.2) 4.5 (.2) 

Resistant obesity (%) 52.4 (2.9)* 43.2 (3.1) 
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 602 

 603 

3.3 Mediation effect of interoception on phenotype-specific differences in eating 604 

habits and behaviour 605 

To test whether the observed phenotypic differences in characteristics related to 606 

eating habits and behaviour might be explained by individual differences in 607 

interoceptive abilities, mediation analyses were used. Specifically, we treated sweet 608 

taste phenotype as the categorical predictor, different eating habits and behaviours 609 

as outcomes and objective measures of interoception separately as mediators (Figure 610 

2). Table 3 shows the statistics of the simple (i.e., mediator predicted from the 611 

predictor), direct (i.e. outcome predicted from the predictor accounting for mediator 612 

and from the mediator accounting for the predictor) and indirect (moderator 613 

mediating the relationship between the predictor and the outcome) effects. 614 

Mediation (Table 3) was present only for the positive and negative scales of the 615 

Emotional Appetite Questionnaire (EMAQ): the effect of phenotype on eating in 616 

response to positive or negative emotions and emotional situations was due to the 617 

relationship of the predictor (i.e., sweet taste phenotype), and the outcome (i.e., 618 

EMAQ-scales), with the mediator (i.e., interoceptive performance –accuracy- in the 619 

heartbeat tracking task). Besides this indirect effect, interoceptive performance 620 

(accuracy) across all three tasks (heartbeat tracking and discrimination tasks and 621 

water load task) failed to independently predict all eating habits and behaviours; only 622 

SEM, Standard Error of the Mean  

An asterisk (*) denotes statistically significant differences between phenotypes. 
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the  physical eating-scale of the intuitive eating questionnaire was independently and 623 

significantly predicted by interoceptive performance (accuracy) measured during the 624 

heartbeat tracking task (Table 3). Finally, phenotype significantly predicted intuitive 625 

and mindful eating (total scores) independent of interoceptive performance 626 

(accuracy) across both heartbeat tasks and the water load task, further supporting our 627 

earlier finding about enhanced intuitive and mindful eating in SLs (Table 3). This 628 

independent relationship was also evident across all three tasks for the body-food 629 

convergence- and external cues-scales of the intuitive eating and mindful eating 630 

questionnaires, respectively (Table 3). Finally, as expected from the results of the 631 

independent t-tests for the differences between SLs and SDs (Figure 3a-c), a significant 632 

influence of sweet-liking phenotype on interoceptive accuracy was calculated across 633 

all three interoceptive tasks (Table 3). 634 

  635 
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Table 3. Results of mediation analysis for the role of interoceptive performance on the effect of sweet taste phenotype on eating habits and behaviours 

 Mediation by Heartbeat Tracking Accuracy  Mediation by Heartbeat Discriminating Accuracy  Mediation by %Water for Satiation 

 Direct 

effect b 

(SEM) 

Unstandardised 

coefficient b (SEM) 

Indirect 

effect        

(95% BSCI) 

 Direct 

effect b 

(SEM) 

Unstandardised 

coefficient b (SEM) 

Indirect 

effect      

(95% BSCI) 

 Direct 

effect b 

(SEM) 

Unstandardised 

coefficient b (SEM) 

Indirect 

effect         

(95% BSCI) 

 c’ a b a x b  c’ a b a x b  c’ a b a x b 

DEBQ-
emotional scale 

-2.410 
1.518    

p =.118 

-.084 
(.033) 

p = .014 

7.738 
(5.584) 

 p = .171 

-.650 

 (-1.91, .429) 
 

-2.263  
(1.557) 

p =.151 

-.046 
(.016) 

p = .007 

15.730 
(11.492) 

p = .176 

-.721 

(-2.224, 
.420) 

 

-3.555 
(1.497) 

p = .021 

.047 
(.017) 

p = .008 

1.568 
(10.545) 

p = .882 

.073 

(-1.041, 1.228) 

EMAQ-positive 

.153 

(.094) 

p = .109 

-.084 
(.033) 

p = .014 

-.630 
(.347)  

p = .074 

.053 

 (.001, .135) 
 

.161 
(.096) 

p = .098 

-.046 
(.016) 

p = .007 

-1.258 
(.709) 

p =.081 

.058 

 (-.005, .142) 
 

.153 
(.096) 

p = .116 

.047 
(.017) 

p = .008 

1.101 
(.674) 

p =.107 

.051 

(-.008, .157) 

EMAQ-negative 

-.121 
(.137) 

P = .381 

-.084 
(.033) 

p = .014 

.992 
(.503)   

p =.053 

-.083  

(-.206, -.002) 
 

-.128 
(.142) 

p = .369 

-.046 
(.016) 

p = .007 

1.742 
(1.045) 

p =.108 

-.080  

 (-.219, .021) 
 

-.174 
(.142) 

p =.225 

.047 
(.017) 

p = .008 

-.953 
(1.000) 

p = .344 

-.044 

 (-.182, .056) 

Intuitive eating 
(total score) 

-.132      
( .036) 

p = .001 

-.084 
(.033) 

p = .014 

.257        
(.134) 

p = .060 

-.022  

(-.070, .005) 
 

-.148 
(.038) 

p < .001 

-.046 
(.016) 

p = .007 

.237 
(.279) 

p = .398 

-.011  

 (-.040, .012) 
 

-.137 
(.037) 

p < .001 

.047 
(.017) 

p = .008 

-.410 
(.259) 

p = .119 

-.019 

 (-.061, .013) 

Intuitive eating 
(physical cues) 

-.098 
(.053) 

p =.068 

-.084 
(.033) 

p = .014 

.567 
(.194) 

p = .005 

-.048 

 (-.135, .001) 
 

-.132 
(.0576) 

p = .026 

-.046 
(.016) 

p = .007 

.2913 
(.425) 

p = .496 

-.013 

 (-.049, .017) 
 

-.127 
(.056) 

p =.026 

.047 
(.017) 

p = .008 

-.513 
(.392) 

p = .196 

-.024 

 (-.094, .018) 
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636 

Intuitive eating 
(body-food 
convergence) 

-.352 
(.097) 

p =.001 

-.084 
(.033) 

p = .014 

.671 
(.366) 

p = .072 

-.056 

 (-.155, .012) 
 

-.399  
(.104) 

p < .001 

-.046 
(.016) 

p = .007 

.446 
(.768) 

p = .564 

-.020  

 (-.107, .053) 
 

-.357 
(.101) 

p = .001 

.047 
(.017) 

p = .008 

-1.105 
(.712) 

p = .126 

-.052 

 (-.148, .017) 

Mindful eating 
(total score) 

-.087 
(.034) 

p =.014 

-.084 
(.033) 

p = .014 

.088 
(.126) 

p = .486 

-.007 

 (-.037, .009) 
 

-.091 
(.035) 

p = .013 

-.046 
(.016) 

p = .007 

.062 

(.261) 

p =.814 

-.003  

 (-.031, .024) 
 

-.094 
(.035) 

p = .009 

.047 
(.017) 

p = .008 

-.182 

(.245) 

p = .459 

-.008 

 (-.040, .016) 

Mindful eating 
(awareness) 

-.108 
(.057)     

p =.065 

-.084 
(.033) 

p = .014 

.339  
(.212) 

p = .115 

-.028  

 (-.089, .007) 
 

-.117 
(.058) 

p = .050 

-.046 
(.016) 

p = .007 

.652 
(.438) 

p = .135 

-.030 

 (-.086, .014) 
 

-.158 
(.060) 

p = .010 

.047 
(.017) 

p = .008 

.202  
(.421) 

p = .632 

.009 

 (-.033, .056) 

Mindful eating 
(external cues) 

-.196 
(.066)    

p =.004 

-.084 
(.033) 

p = .014 

-.3761  
(.245) 

p = .130 

.032  

 (-.014, .072) 
 

-.182 
(.069) 

p = .011 

-.046 
(.016) 

p = .007 

-.367 
(.512) 

p = .477 

.017 

 (-.024, .070) 
 

-.161 
(.067) 

p = .019 

.047 
(.017) 

p = .008 

-.464 
(.469) 

p = .327 

-.022 

 (-.070, .025) 

Resistant 
obesity 

-.163 
(.092)   

p =.080 

-.084 
(.033) 

p = .014 

.304 
(.338) 

p = .371 

-.026  

 (-.052, .118) 
 

-.147  
(.093) 

p =.119 

-.046 
(.016) 

p = .007 

1.010 
(.687) 

p =.147 

-.046 

 (-.009, .130) 
 

-.181 
(.091) 

p = .051 

.047 
(.017) 

p = .008 

-.466 
(.640) 

p = .469 

-.022 

(-.037, .103) 

BSCI, Bootstrapped Confidence Interval; DEBQ, Dutch Eating Behavioural Questionnaire; EMAQ, Emotional Appetite Questionnaire; SEM, Standard Error of the Mean  

Statistically significant results (p > .05) are bolded 
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3.4 Effect of sweet liker phenotype on the relationship between cardiac and gastric 637 

axes of interoception  638 

Across participants, we observed a significant inverse relationship between accuracy 639 

scores from both the heartbeat tracking and discrimination tasks, and the percentage 640 

amount of ingested water volume from the water load test (HTr: r(61) = -.298, p =.019; 641 

HDi: r(60) = -.244, p =.058), suggesting that ability to sense one’s own heartbeats was 642 

linked to sensitivity for gastric functions (Figure 4). Cardiac interoceptive performance 643 

from both heartbeat tasks was also correlated with total stomach capacity (HTr: r(62) 644 

= .410, p =.001; HDi: r(61) = .283, p =.027), but not absolute ingested water volume for 645 

satiation (HTr: r(62) = -.196, p =.126; HDi: r(61) = .110, p =.398). Regression analysis 646 

accounting for pre-test level of satiety and thirst provide similar results (all ps < .05 for 647 

stomach capacity and > .05 for absolute ingested water volume). 648 

 649 

 650 
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Fig. 4. Scatterplots depicting correlations of cross-modal interoceptive performance 651 

Cardioceptive performance as gauged from the heartbeat tracking task was negatively 652 

associated with the percentage ingested water volume that produces satiation 653 

suggesting that the higher the sensitivity to cardiac signals the better the ability for 654 

gastric distention to be perceived effectively. Interoceptive accuracy scores specific to 655 

the heartbeat discriminating task also tended to correlate with gastric interoception. 656 

 657 

Adding sweet taste phenotype as a factor to the regression model testing the 658 

relationship between heartbeat tracking performance and gastric interoception 659 

significantly improved the variance explained by the model (ΔR2 = .063, pΔF = .041). 660 

The contribution of sweet taste phenotype to the model remained significant even 661 

after controlling for known confounders of cardiac and gastric interoception, i.e. 662 

alexithymia, anxiety, depression, impulsivity and pretest levels of satiety and thirst (β 663 

= .284 95%CI (.004, .078), t = 2.197, p = .032); heartbeat tracking performance did not 664 

significantly predict gastric performance in the fully adjusted model (β = -.182 95%CI 665 

(-.229, .037), t = -1.451, p = .153). Additional regression analysis demonstrated similar 666 

results regarding the effect of sweet liker phenotype on the relationship between 667 

interoceptive accuracy scores obtained during the heartbeat discrimination task and 668 

percentage amount of ingested water volume from the water load test (phenotype: β 669 

= .316 95%CI (.006, .085), t = 2.292, p = .026; f2 = .36; IAcHDi: β = -.111 95%CI (-.393, 670 

.159), t = -.851, p = .399; f2 = .35). 671 

 672 
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4. Discussion 673 

This is the first study to report a clear link between objectively assessed accuracy in 674 

detecting internal bodily sensations and hedonic responses to concentrated sweet 675 

stimuli. By employing two distinct heartbeat detection tasks (tracking and 676 

discrimination) alongside a gastric interoception task in the same sample of healthy 677 

adults, we also avoid limitations that arise from focusing too narrowly on individual 678 

measures of interoception. Statistically significant differences in interoceptive abilities 679 

between the two sweet taste phenotypes were observed for all accuracy-based tasks. 680 

Specifically, participants who expressed heightened liking for strong sweetness (that 681 

is, SLs), performed better than SDs in detecting their heartbeats accurately despite 682 

being similarly confident about their responses. For the gastric mode of interoception, 683 

SLs reported to feel satiated after they ingested a lower amount of water in relation 684 

to their total stomach capacity compared to SDs. The calculated medium to large 685 

effect sizes of these differences and the fact that phenotypic variation in interoceptive 686 

performance was confirmed in two distinct body systems (i.e., heart and stomach), 687 

may further strengthen the robustness of the proposed enhanced interoceptive ability 688 

in sweet likers. 689 

To our knowledge, only one research group has examined potential links between 690 

interoception and taste hedonics. In those studies, participants were asked to taste 691 

and rate a single concentration of a bitter herbal extract; neither pleasantness nor 692 

intensity ratings were correlated with accuracy scores from the heartbeat tracking 693 

task (Ferentzi et al., 2017). Subsequently, Ferentzi and colleagues extended their 694 

finding by proposing a dissociation between bitterness pleasantness and gastric 695 
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interoception, as measured by a water load test (Ferentzi et al., 2018). Interestingly, 696 

an inverse relationship between bitterness pleasantness and sensitivity to the internal 697 

sensation of pain was reported in the first study (Ferentzi et al., 2017), which might be 698 

of relevance to the current dataset as sweetness has also been proposed to have 699 

implications in mechanisms of pain (Fantino et al., 1986; Yeomans & Wright, 1991). 700 

On the other hand, given that, unlike most bitter taste stimuli, the oft-used sweet 701 

tastants contain some energy, closer links between hedonic responses to sweetness 702 

than bitterness and the homeostatic system, which is centre to feeding-related 703 

interoceptive abilities, could be expected. Indeed, additional to the role of sweetness 704 

in signposting safe sources of energy (Steiner et al., 2001), animal research recently 705 

identified taste receptors in the hypothalamus, a brain structure directly associated 706 

with body’s homeostatic control (Kohno et al., 2016). 707 

Consistent with the common neural site that monitors interoception and taste 708 

perception, Frank and colleagues, who served 1 M sucrose solution while participants 709 

were undergoing functional magnetic resonance imaging, reported a positive 710 

correlation between accuracy in identifying sweetness and activation of the insular 711 

cortex in their healthy subgroup, as well as a tendency towards a relationship between 712 

accuracy in identifying sweetness and interoceptive deficits assessed by an eating-713 

disorder questionnaire (Frank et al., 2016). Our finding of a novel link between hedonic 714 

responses to sweetness and interoception may, then, have support in insula’s 715 

connectivity with higher order brain structures including the orbitofrontal cortex,  716 

which is known to respond to taste affective valence (Small, 2010). Notably, insular 717 

activation has been related both to cardiac (Schulz, 2016) and gastric cues (e.g., 718 
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stomach distention, subjective satiety/fullness; see: Wang et al., 2008). Therefore, it 719 

seems reasonable to speculate that if a broader relationship between affective 720 

valence of external stimuli and ability to sense the internal state of the body was 721 

suggested, this may have implications in the level of pleasure one seeks from a given 722 

stimulus to match their homeostatic or emotional internal needs. Considering the 723 

vulnerable interoceptive sensitivity to insults from the obesogenic environment 724 

(Bilman et al., 2017; Sample et al., 2016), such a relationship could point to additional 725 

mechanisms underlying obesity epidemic and illustrate how attenuated interoceptive 726 

abilities may confer elevated risk of obesity susceptibility.   727 

In contrast to our observation that SLs outperformed SDs in objective interoceptive 728 

measures, when participants self-reported their beliefs about their capacity in 729 

detecting and self-focusing on internal bodily sensations, there were no phenotypic 730 

differences across either measure of interoceptive sensibility. Regarding confidence 731 

scores, they were averaged around the middle point (i.e., neither guess nor complete 732 

confidence), while relatively small variances were calculated indicating that, overall, 733 

participants did not provide guess responses neither were they familiarized with the 734 

tasks. The results from the BPQ (which provides a measure of interoceptive sensibility 735 

across a range of internal bodily sensations) further confirmed the divergence 736 

between interoceptive performance and sensibility (i.e., true ability versus confidence 737 

in one’s ability). We also examined the phenotypic differences in metacognitive 738 

interoceptive awareness derived from each of the heartbeat detection tasks, and 739 

found that SLs and SDs did not differ in their metacognitive insight into own 740 
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interoceptive abilities. That is, their ability to know when their responses did or did 741 

not correspond to their actual heartbeat data.  742 

The distinct effect of phenotype on interoceptive performance versus sensibility, 743 

metacognitive awareness, or trait prediction error is not entirely surprising given the 744 

clear dissociation between the different constructs of interoception in the framework 745 

proposed by Garfinkel and Critchley (2013). As detailed by Garfinkel et al. (2015), an 746 

individual’s belief in their own interoceptive aptitudes should not necessarily be taken 747 

as an accurate predictor of the their ability in detecting interoceptive signals; this idea 748 

is further supported by the notion that top down and bottom up processes are rather 749 

distinguishable. It has also been argued by others that – unlike with one’s broader 750 

psychological state – experiencing significant changes in emotions and perceptions 751 

requires one to be consciously aware of their internal signals (Gibson, 2019). 752 

Considering the metacognitive aspects of self-regulation (Whitebread & Pino-753 

Pasternak, 2010) and the consequences of self-dysregulation (Vainik et al., 2013) and 754 

particularly impaired emotional regulation (Fernandes et al., 2018) in eating 755 

behaviour, attenuated ability to mentally represent internal body state may leave one 756 

more vulnerable to influences of the modern affluent food environment. Recently, 757 

Willem and colleagues demonstrated a link between obesity and both interoceptive 758 

sensibility deficits and self-dysregulation (Willem et al., 2019). In similar work, 759 

enhanced awareness of internal state of the body has been theoretically (Calì et al., 760 

2015) and empirically (Willem et al., 2020) suggested to compensate for the positive 761 

association between different interoceptive facets and emotional eating. Our data 762 

showing that SLs were more prone to emotional eating than SDs supports this 763 
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premise. Notably, although acute changes in interoceptive performance have been 764 

achieved at experimental settings (Ainley et al., 2012, 2013; Filippetti & Tsakiris, 2017), 765 

interoceptive performance is regarded as a relatively stable trait (e.g. Bornemann et 766 

al., 2014; Melloni et al., 2013). Conversely, interoceptive sensibility and awareness 767 

have been reported to improve subsequent to interventions targeting the brain-to-768 

body axis such as meditation or contemplative practice (e.g. Garfinkel, Mclanachan, 769 

et al., 2017; Khalsa et al., 2008; Parkin et al., 2014).  770 

In line with their enhanced abilities to detect internal body sensations more 771 

accurately, SLs in our study were both more mindful and intuitive eaters than SDs. Our 772 

data align with previous research showing positive correlations between interoceptive 773 

accuracy scores derived from heartbeat tracking tasks and intuitive eating (Herbert et 774 

al., 2013; Richard et al., 2019). In support to the genetic basis of obesity development 775 

and either the setting or settling point theories (reviewed in Speakman et al., 2011), 776 

SLs also appeared to be better at ‘resisting to obesity’. Resistant obesity profile is 777 

assumed to reflect a weaker inherent predisposition to obesity development along 778 

with a better ability to maintain a healthy body weight more effortlessly. Smucny and 779 

colleagues (2012) have linked increased grey matter volume in the insula, which is 780 

known to be important in interoceptive processes in the brain, with this ‘obesity 781 

resistant’ profile. 782 

Regarding our mediation analyses, only the relationship between sweet liker 783 

phenotype and emotional eating in response to positive and negative stimuli was fully 784 

explained by interoceptive performance. This supports the increasingly recognized 785 

relationship between sensing the internal body and emotional experiences (Critchley 786 
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& Garfinkel, 2017). Further, it highlights a closer relevance of sweet-liking to the 787 

homeostatic aspect of interoception. By illustrating such independence from 788 

interoceptive performance of the relationship between sweet liker phenotype and 789 

eating habits and behaviours that rely on internal cues to monitor feeding behaviour, 790 

it also seems reasonable to conclude that being a SL may reflect a better attuned sense 791 

of bodily state. Following this reasoning, the present data suggests the sweet liker 792 

phenotype classification we recently put forward (Iatridi et al., 2019a) could be 793 

conceived as a means to operationally characterize a profile that links exteroceptive 794 

and interoceptive information. For instance, considering the argument that ingestion 795 

of sugars may facilitate synthesis of neurotransmitters that elicit positive emotional 796 

cues (Gibson, 2012), our preliminary evidence that SLs recruited more coping 797 

mechanisms such as increases in food intake in response to negative compared to 798 

positive emotions, may further support SLs’ enhanced sensitivity to interoceptive 799 

signals.  800 

From an evolutionary standpoint, it is believed that taste systems were initially 801 

evolved to inform us about the nutritional value or toxicity of food stimuli and 802 

therefore, we developed mechanisms that facilitated the intake of calorically dense 803 

foods to cope with food scarcity (Drewnowski et al., 2012). A classic demonstration of 804 

this phenomenon is featured by sensory experiments in human and non‐human 805 

neonates whereby sweetness, as opposed to bitter and sour tastes, elicited positive 806 

facial expressions and matching sucking responses (Desor et al., 1973; Maone et al., 807 

1990; Rosenstein & Oster, 1988; Steiner et al., 2001); both behaviors may resonate an 808 

inherent drive towards foods providing a safe and useful source of energy and 809 
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rejection of those being potentially poisonous. Such typical sensory reactions have 810 

also been linked to biological indices of growth in children and adolescents (Coldwell 811 

et al., 2009; Mennella et al., 2014). The above considered, liking for potent sweetness 812 

may constitute a physiological mechanism that contributes to the feedback loops 813 

generated as a response to the internal state of the body; such conclusion seems to 814 

be supported by the enhanced interoceptive abilities observed in SLs in the present 815 

dataset, as well. 816 

In addition to our novel finding that sweet-liking associates with interoceptive 817 

performance, we also provided evidence about a potential general body control 818 

system that monitors one’s ability to sense cardiac and gastric signals. To interpret 819 

these data, two issues require consideration. First, the observed correlations of 820 

interoceptive performance during heartbeat and gastric tasks reached significance 821 

only when the accuracy scores from the heartbeat tracking task were analysed. Taking 822 

into consideration that the pattern of correlation was the same across heartbeat tasks, 823 

that is, independent of the heartbeat task, cardioceptive accuracy was negatively 824 

associated to percentage ingested volume of water required to produce satiation, the 825 

difference in statistical significance may be attributed to characteristics inherent to 826 

the distinct heartbeat detection tasks (Garfinkel et al., 2015). Presently, there is very 827 

little information regarding correlations of heartbeat discriminating ability with gastric 828 

interoception. An early report by Whitehead and Drescher (1980) is the only one we 829 

can find that tested the  relationship between interoceptive performance in a 830 

heartbeat discrimination task and gastric sensitivity. In that study, participants were 831 

instructed to indicate possible synchronicity between a visual stimulus (i.e. flashing 832 
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light) and their gastric contractions evoked through an inflating balloon within 833 

participants’ stomach, as well as their heartbeats (Whitehead & Drescher, 1980). 834 

The second issue of note concerns the gastric interoception protocol. Although the 835 

water load tests introduced in the field eliminated methodological constraints 836 

attached to measuring gastric sensitivity by producing mechanical distention through 837 

barostats (e.g. gastric balloons filled with water: Geliebter & Hashim, 2001), a serious 838 

confounding variable remains underconsidered: individual differences in stomach 839 

capacity. As shown here, if absolute ingested water volume had been the gastric 840 

sensitivity measure of choice, we would have failed to observe phenotypic differences 841 

in interoceptive performance. Our findings agree with those of Herbert et al. (2012) 842 

where, besides controlling for substantial variations in stomach capacity by recruiting 843 

only normal weight women, they measured changes in gastric movements via 844 

electrical sensors, which further reduced potential noise from subjectivity in 845 

participants’ responses regarding sensed satiety. Following a different approach 846 

where participants ingested a predetermined water volume adjusted for their body 847 

size, Ferentzi and colleagues (2018) proposed a divergence of gastric and cardiac 848 

interoceptive axes. Critically, van Dyck and colleagues who put forward the water load 849 

protocol used here, reported a non-significant (p = .107) correlation between cardiac 850 

and gastric interoceptive abilities; the extent to which an interoception task that 851 

exclusively relies on eating-related stimuli/memory could match interoceptive 852 

performance across discrete visceral events was questioned (van Dyck et al., 2016). 853 

Further research to disentangle these issues is needed. Notably, the overlap between 854 

the two modes of interoception measured here was partially dependent on the sweet 855 
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liker phenotype, with SLs (who showed enhanced interoceptive abilities) showing a 856 

stronger cross-modal relationship. Indeed, in prior reports where the two 857 

interoceptive axes were not associated, checks for interactions of groups differing in 858 

interoceptive performance on correlations under investigation were not reported 859 

(Ferentzi et al., 2018; Keenan, 2015; van Dyck et al., 2016). Further, sex-mixed cohorts 860 

(Keenan, 2015) are expected to suffer more from limitations such as not accounting 861 

for differences in stomach capacity unless a measure of body size is considered 862 

(discussed in Monrroy et al., 2019). 863 

Our study has several strengths and weaknesses that should be noted. Strengths 864 

include the examination of interoceptive processes across constructs and senses, as 865 

well as consistent testing conditions across participants using specific wording in 866 

instructions (Desmedt et al., 2018; van Dyck et al., 2016) and the same equipment 867 

throughout (Murphy et al., 2019), as well as not providing feedback on the 868 

participants’ performance (Ring et al., 2015). Some limitations, however, call for 869 

caution. First, due to time constraints, our measurements of anxiety and depression 870 

were based on widely used but brief assessment tools (i.e., the General Anxiety 871 

Disorder-7 and Patient Health Questionnaire-9) rather than more exhaustive 872 

psychometric tests such as the State-Trait Anxiety Inventory and the Beck Depression 873 

Inventory. However, this limitation is tempered somewhat in that we recruited 874 

participants from a non-clinical population, and also excluded participants with known 875 

mental disorders from participation, so we believe use of a brief assessment tool is 876 

justified. We should also note that the participants were young, educated women of 877 

mostly normal weight, so these data may not generalize to men, older individuals, or 878 
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individuals with obesity, especially since sex (Grabauskaitė et al., 2017), age (Murphy, 879 

Geary, et al., 2018), and BMI (Herbert & Pollatos, 2014) have also shown to influence 880 

interoception measures.  881 

 882 

5. Conclusion 883 

Consistent with the literature on newborns (e.g., Steiner et al., 2001) and children in 884 

acute developmental stages (Coldwell et al., 2009; Mennella et al., 2014) where 885 

signals for strong liking for high sweetness are generated internally, our data suggest 886 

a connection between sweet-liking and interoceptive abilities in adults: individuals 887 

with  strong liking for high sweetness had enhanced interoceptive performance and 888 

were more mindful and intuitive eaters than those who exhibited aversive responses 889 

to high sweetness. We also noted interesting parallels between cardiac and gastric 890 

interoception, suggesting a possible generalized precision in sensing visceral events. 891 

Overall, we propose that measurement of individual variation in sweet-liking may 892 

prove useful to identify those predisposed to poorer interoceptive abilities and, 893 

hence, to food choices beyond internal needs and ultimately unhealthy body weights. 894 

In fact, being overweight or obese has been associated with attenuated interoceptive 895 

abilities (Herbert & Pollatos, 2014; Koch & Pollatos, 2014), while a negative correlation 896 

between BMI and adiposity and insular cortex’s grey matter volume, i.e. the primary 897 

cortical substrate involved in interoception, has also been observed (Rasmussen et al., 898 

2017; Smucny et al., 2012). Similarly, individuals who like ever higher sweetness and, 899 

therefore, are also likely to be highly interoceptive, might be benefitted by healthy 900 
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eating advice and obesity interventions that address specifically their elevated 901 

sensitivity to emotional eating. Whether these will be confirmed by clinical trials, it 902 

remains to be seen. 903 
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Supplementary Material 938 

Table S1 Appetite ratings and abdominal sensations per phenotype 

recorded before, during, and at upon completion of the water load test 

 Sweet Likers                     

(n = 30) 

Sweet Dislikers 

(n = 33) 

 Mean (SEM) 

Satiety pre-test 31.2 (3.8) 33.4 (4.0) 

satiation step 67.1 (3.2) 71.2 (3.2) 

fullness step 79.5 (3.1) 78.4 (3.4) 

Fullness  pre-test 26.5 (3.6) 28.1 (3.1) 

satiation step 54.3 (3.5)a 65.2 (3.4)a 

fullness step 79.5 (3.0) 82.1 (2.8) 

Hunger pre-test 65.4 (3.4)b 53.5 (4.5)b 

satiation step 51.2 (3.8)c 33.2 (4.1)c 

fullness step 32.3 (4.5) 23.2 (4.4) 

Thirst pre-test 66.4 (4.1) 67.0 (4.3) 

satiation step 16.5 (3.7) 13.8 (2.9) 

fullness step 7.9 (2.6) 7.9 (2.5) 

Stomach 

Tension 

pre-test 30.6 (4.8) 32.9 (4.4) 

satiation step 40.2 (5.2) 38.5 (4.4) 

fullness step 53.1 (5.2) 56.3 (4.9) 

Immobility pre-test 25.5 (4.2) 27.3 (3.7) 

satiation step 30.0 (4.6) 25.5 (4.0) 

fullness step 39.0 (5.6) 36.5 (4.7) 

Discomfort pre-test 29.9 (4.4) 29.1 (4.9) 

satiation step 30.7 (4.6) 28.1 (4.2) 
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fullness step 50.1 (5.4) 49.1 (5.1) 

Guilt pre-test 12.6 (3.1) 21.7 (4.2) 

satiation step 10.5 (2.9) 13.5 (3.3) 

fullness step 14.9 (4.1) 21.1 (4.6) 

Sluggishness pre-test 38.1 (4.5) 46.1 (4.4) 

satiation step 38.2 (4.3) 37.4 (4.3) 

fullness step 42.5 (4.9) 48.0 (4.3) 

Nausea pre-test 4.8 (1.1)d 15.7 (3.3)d 

satiation step 11.3 (3.0)e 22.0 (3.8)e 

fullness step 31.6 (4.5) 34.5 (5.0) 

Arousal pre-test 19.8 (3.8) 22.6 (3.6) 

satiation step 19.8 (3.8) 22.5 (4.0) 

fullness step 16.0 (3.3) 19.2 (4.1) 

The same letters indicate significant differences between phenotypes. 939 

SEM, Standard Error of the Mean 940 

  941 
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