Prospects for beyond the Standard Model physics searches at the Deep Underground Neutrino Experiment

Abi, B, Acciarri, R, Acero, M A, Adamov, G, Adams, D, Adinolf, M, Ahmad, Z, Alion, T, Booth, A, Borkum, A, De Icaza Astiz, I L, Griffith, W C, Hartnell, J, Lasorak, P, Peeters, S J M, DUNE Collaboration, and others, (2021) Prospects for beyond the Standard Model physics searches at the Deep Underground Neutrino Experiment. European Physical Journal C, 81 (4). a322 1-322 51. ISSN 1434-6044

[img] PDF - Published Version
Available under License Creative Commons Attribution.

Download (5MB)

Abstract

The Deep Underground Neutrino Experiment (DUNE) will be a powerful tool for a variety of physics topics. The high-intensity proton beams provide a large neutrino flux, sampled by a near detector system consisting of a combination of capable precision detectors, and by the massive far detector system located deep underground. This configuration sets up DUNE as a machine for discovery, as it enables opportunities not only to perform precision neutrino measurements that may uncover deviations from the present three-flavor mixing paradigm, but also to discover new particles and unveil new interactions and symmetries beyond those predicted in the Standard Model (SM). Of the many potential beyond the Standard Model (BSM) topics DUNE will probe, this paper presents a selection of studies quantifying DUNE’s sensitivities to sterile neutrino mixing, heavy neutral leptons, non-standard interactions, CPT symmetry violation, Lorentz invariance violation, neutrino trident production, dark matter from both beam induced and cosmogenic sources, baryon number violation, and other new physics topics that complement those at high-energy colliders and significantly extend the present reach.

Item Type: Article
Keywords: neutrino, beyond the standard model, DUNE
Schools and Departments: School of Mathematical and Physical Sciences > Physics and Astronomy
SWORD Depositor: Mx Elements Account
Depositing User: Mx Elements Account
Date Deposited: 22 Apr 2021 07:07
Last Modified: 09 Jul 2021 08:19
URI: http://sro.sussex.ac.uk/id/eprint/98498

View download statistics for this item

📧 Request an update