A spatio-temporal analysis of trends in rainfall from long term satellite rainfall products in the Sudano Sahelian zone of Nigeria

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/98252/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
A spatio-temporal analysis of trends in rainfall from long term satellite rainfall products in the Sudano Sahelian zone of Nigeria

Muhammad Usman¹, Janet E. Nichol¹*, Asma T. Ibrahim², Luka F. Buba³

Janet E. Nichol (Corresponding author), Muhammad Usman

The Hong Kong Polytechnic University, Kowloon, Hong Kong.

email: janet.nichol@polyu.edu.hk;

Tel.: +852-2766-5952; Fax: +852-2330-2994.

Asma T. Ibrahim

Climate Change and Modelling Division, Department of Strategic Space Applications, National Space Research and Development Agency, Abuja, Nigeria.

Luka F. Buba

Department of Environmental Management, Bayero University, Kano - Nigeria.
Abstract

Rainfall and its variability drive the rural economies across the Sudano-Sahelian zone of northern Nigeria, where drought strategies largely determine crop yields. The increasing scarcity of rain gauges in West Africa generally limits assessments of the degree and spatial extent of hardship arising from rainfall deficiency. However, the improved availability and robustness of satellite-based rainfall products since the early 1980s, offers an alternative source of rainfall data which is spatially, and often temporally, more complete than rain gauges. This research evaluates four satellite-based rainfall products for their ability to represent both long term rainfall trends such as recovery from decadal droughts, and trends in seasonal rainfall variables relevant to crop yield prediction. The Climate Hazards group Infrared Precipitation with Stations (CHIRPS) rainfall product at 5 km resolution, was observed to be consistently most representative of ground station rainfall across northern Nigeria over a 35-year period 1981 to 2015, followed by TARCAT. CHIRPS was found to give a good overall prediction of rainfall amounts at dekadal, monthly and seasonal time scales, and was therefore used in the study to represent the typical performance of satellite rainfall datasets. The CHIRPS-observed increase in growing season length since the 1970s and 80s drought decades, was accompanied by significant rainfall increases in the later part of the growing season, especially marked in northern and northeastern states. This is especially important for the main subsistence crops sorghum and millet as the risk of late drought impedes swelling of the grain, affecting dry weight production. The CHIRPS data also indicate a significant decrease in dry spells in the northwest and southern parts of the study area, which would have favourable outcomes for crop production in the densely populated rural hinterlands of the cities of Sokoto, Jos and Abuja. In view of the continued intra-and inter-annual rainfall variability across northern Nigeria, and amid rapid rural population growth recently, a return to the rainfall levels of the
drought decades, would require informed response. The study suggests that satellite rainfall estimates can offer such information, especially since we observed high spatial variability in rainfall distributions and trends.

Keyword: Northern Nigeria, Rainfall recovery, Satellite rainfall products, Season rainfall variables, Spatial-temporal analysis, Sudano-Sahelian.
1. Introduction

The Sudano-Sahelian ecological zone of Sub-Saharan Africa at Latitude (12°-20° N), is well known for its variable climate, where rainfall variability in the last three decades of the 20th century exceeded that in others parts of the world (Sanogo et al., 2015). The period 1931-1960 was considered to have above average rainfall, but an abrupt change occurred in the late 1960s, with up to 30% decline in average rainfall between 1961 and 1990 (Hulme, 1992; Fink et al., 2010). Severe droughts occurred during the 1970-1990 period (Nicholson, 2000), and those of 1972-1974 and 1983-1985 entailed severe food shortages, and loss of human life and livestock (Mortimore, 2000).

Northern Nigeria’s climate is semi-arid, and rural livelihoods depend mainly on rain-fed agriculture (Hess et al., 1995; Tarhule and Woo, 1998), thus rainfall variability, which increases northwards, and changes in rainfall threaten the livelihoods of local people (Mortimore, 2000, Zhang et al., 2017).Timing of rainy season onset is important, as farmers make decisions about cropping and livestock movement which affect productivity, based on the first rains (Ingram et al., 2002). The major determinant of crop production is soil moisture, but the region’s variable rainfall makes prediction of drought stress difficult. Drought stress during the seedling stage of the main cereal staples millet and sorghum results in reduced grain yield. For millet, drought just before the flowering period may reduce yields by up to 70% (Seetharama et al, 1984). Sorghum in particular is sensitive to late season rainfall, as sorghum does not enter the high water use period during its life cycle until August. Thus in addition to total seasonal rainfall and timing of rainy season onset, other important rainfall variables include the number, timing and length of dry spells, and seasonal distribution of rainfall is also an important variable.
There are many accounts of rainfall trends in northern Nigeria (Buba, 2010; Hess et al., 1995; Olaniran, 1991, 1988; Mortimore, 2000; Tarhule and Woo, 1998; Tomlinson, 2010), mainly observing severe declines in the last decades of the 20th century, followed by a return to normal (Buba, 2010; Mortimore, 2000; Tomlinson, 2010). However, none provide a detailed study of the last 2 decades for different rainfall variables specific to crop production and rural livelihoods. For this, accurate rainfall data with high temporal, as well as spatial resolution is required.

Most of the rainfall in Africa is formed by convective clouds, thus rainfall amount can vary over a few tens of km (Nicholson, 2000). However, the spatial distribution of rain gauge stations in West Africa is very sparse and these were significantly reduced over the last 3-4 decades (Sanogo et al., 2015). For example the number of gauges returning rainfall records in northern Kaduna state (now Katsina state) diminished from about 50 in 1941-70 to only 12 by 1999 (Tomlinson, 2010).

Satellite based precipitation estimates provide an alternative to sparse, traditional gauge-based rainfall measurements. They are at continental and global scale and have high spatial and -temporal resolution. Thus they provide timely, repetitive and cost effective information about rainfall at different time scales from daily to annual. It is therefore necessary to assess the accuracy of different satellite based rainfall products compared to gauge rainfall, before they can be considered operational for local crop production forecasting and rural productivity assessments. A few previous studies have evaluated satellite-based rainfall products at continental scale: for West Africa (Sanogo et al., 2015), and for three different river basins in Africa (Thiemig et al., 2012). Also there are some studies at country level including Burkina Faso (Dembélé and Zwart, 2016), Ethiopia (Bayissa et al., 2017) and Mozambique (Toté et al., 2015).

However, evaluations of satellite based rainfall products show large differences in algorithm performance depending on location, local climate, season and topography (Maidment et al., 2013;
Also choice of the best rainfall product depends on the specific application. For drought monitoring studies, accuracy of low rainfall is the main requirement, and for hydrological and flood forecasting application, accuracy of high rainfall events is crucial (Toté et al., 2015). Almost all studies of rainfall in northern Nigeria report great spatial variation in rainfall amounts and trends, with large differences in nearby areas, and many conflict with other studies (Buba, 2010; Mortimore, 2000; Tomlinson, 2010) for the same regions. Additionally, previous studies have been confined to data from a few climate stations, and are therefore spatially incomplete. In many cases satellite-based observations appear to conflict with farmers’ perceptions of rainfall trends and its effects on their lives (West et al., 2008). This study aims to evaluate the available sources of both spatial and temporal rainfall data over recent decades in northern Nigeria, and to assess impacts on the rural landscape and agricultural economy.

The specific objectives of this study are: 1) to compare temporal trends in rainfall data from ground stations at daily, dekadal, monthly and annual time scales, with satellite-based estimates which use a combination of thermal infra-red and radar images, and ground station data, as satellite rainfall estimates can increase the spatial coverage if proved to be reliable; 2) to evaluate satellite rainfall products for retrieval of seasonal rainfall variables; 3) to analyse inter-annual variability and temporal trends over a 30-year period (1984-2013) from gauge-based rainfall variables; and 4) to analyse both spatial and temporal variability over the same 30-year period (1984-2013) using satellite derived rainfall variables.

2. Study area

The study area covers the Sudano-Sahelian savanna ecological zone of northern Nigeria between latitude 8°-16° N and longitude 1°-17° E. This zone covers the northern states and the Federal
Capital Territory Abuja (Figure 1). The landscape comprises rolling or gently undulating plains often referred to as the “High Plains of Hausaland” (Mortimore, 1965). Most rainfall in Nigeria comes from southwesterly winds from the tropical Atlantic Ocean, thus the annual rainfall amount and duration of rainy season decreases from south to north, with greater variability northward (Anyadike, 1993; Hess et al., 1995). The more southerly Sudan zone receives more than 650 mm average annual rainfall falling to 400 mm in the Sahel zone. In the northern states of Nigeria, over 80 % of the land is cultivated in the April to September rainy season. Over the 35 years of this study, northern Nigeria has seen large increase in rural population densities (Tiffen, 2001; National Population Commission, 2006), accompanied by intensification of agriculture. Kano’s rural population density was reported as 308 persons per km² in 2006 (National Population Commission, 2006). However as nutritional status across northern Nigeria is low, with 20 to 50 % of children showing some degree of stunting and/or underweight (Hall and Bohen, 2009), return to the drought conditions of the 1970s and 80s, could be disastrous for farming families.
3. Datasets

3.1 In-situ gauge rainfall data

Daily rainfall data were obtained for 10 weather stations, including six (Bauchi, Gombe, Ibi, Nguru, Maiduguri, and Yola) from the Nigerian Meteorological Agency (NIMET) and four (Kadawa, Minjibir, IAR Kano, Zaria) from the Institute of Agricultural Research (IAR) (Figure 1 and Table 1). Only stations with above 80% data availability were considered for comparison with satellite based rainfall estimates. Daily rainfall data were accumulated to form dekadal (10 days), monthly and seasonal (Apr-Oct) rainfall for comparison with satellite based rainfall estimates.
Another 8 stations (Bida, Daura, Gusau, Kaduna, Katsina, Potiskum, Sokoto and Yelwa) having only monthly rainfall data were acquired from NIMET. However, the temporal coverage of weather stations varies from station to station.

3.2 Satellite based rainfall products

Satellite-based rainfall products typically exploit a combination of data from thermal infrared (TIR), passive microwave (PMW), and ground-based gauge observations, and these datatypes are often combined to create an optimal product. A variety of rainfall datasets has been produced using convective cloud top temperature by applying the cold cloud duration (CCD) technique (Maidment et al., 2014). In this study, four satellite-based rainfall products (Table 2), were selected for evaluation against rainfall gauge data, because of their long time series, near-real time data availability and free access.

Table 1. Overview of rain gauge stations.

<table>
<thead>
<tr>
<th>No.</th>
<th>Weather station</th>
<th>Data availability</th>
<th>Temporal coverage</th>
<th>Latitude (° N)</th>
<th>Longitude (° E)</th>
<th>Elevation (m a.s.l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bauchi</td>
<td>Daily</td>
<td>1984-2013</td>
<td>10.27</td>
<td>9.82</td>
<td>584</td>
</tr>
<tr>
<td>2</td>
<td>Maiduguri</td>
<td>Daily</td>
<td>1984-2013</td>
<td>11.85</td>
<td>13.10</td>
<td>337</td>
</tr>
<tr>
<td>3</td>
<td>Nguru</td>
<td>Daily</td>
<td>1984-2013</td>
<td>12.96</td>
<td>10.46</td>
<td>343</td>
</tr>
<tr>
<td>4</td>
<td>Minjibir</td>
<td>Daily</td>
<td>1973-2015</td>
<td>12.12</td>
<td>8.70</td>
<td>429</td>
</tr>
<tr>
<td>5</td>
<td>IAR Kano</td>
<td>Daily</td>
<td>1998-2010</td>
<td>11.98</td>
<td>8.55</td>
<td>484</td>
</tr>
<tr>
<td>6</td>
<td>Kadawa</td>
<td>Daily</td>
<td>1984-2007</td>
<td>11.67</td>
<td>8.42</td>
<td>489</td>
</tr>
<tr>
<td>7</td>
<td>Zaria</td>
<td>Daily</td>
<td>1965-2015</td>
<td>11.14</td>
<td>7.67</td>
<td>660</td>
</tr>
<tr>
<td>8</td>
<td>Gombe</td>
<td>Daily</td>
<td>1984-2013</td>
<td>10.46</td>
<td>11.25</td>
<td>407</td>
</tr>
<tr>
<td>9</td>
<td>Yola</td>
<td>Daily</td>
<td>1984-2013</td>
<td>9.22</td>
<td>12.46</td>
<td>156</td>
</tr>
<tr>
<td>10</td>
<td>Ibi</td>
<td>Daily</td>
<td>1984-2013</td>
<td>8.17</td>
<td>9.74</td>
<td>107</td>
</tr>
<tr>
<td>11</td>
<td>Daura</td>
<td>Monthly</td>
<td>1951-2002</td>
<td>12.97</td>
<td>8.30</td>
<td>476</td>
</tr>
<tr>
<td>12</td>
<td>Bida</td>
<td>Monthly</td>
<td>1981-2015</td>
<td>9.10</td>
<td>5.63</td>
<td>190</td>
</tr>
<tr>
<td>13</td>
<td>Kaduna</td>
<td>Monthly</td>
<td>1981-2015</td>
<td>10.58</td>
<td>7.43</td>
<td>621</td>
</tr>
<tr>
<td>15</td>
<td>Sokoto</td>
<td>Monthly</td>
<td>1981-2015</td>
<td>12.91</td>
<td>5.20</td>
<td>307</td>
</tr>
</tbody>
</table>
TAMSAT African Rainfall Climatology and Time series (TARCAT)

The TARCAT v2.0, TIR based precipitation dataset at a spatial resolution of 4 km is based on the TAMSAT (Tropical Applications of Meteorology using Satellite and ground-based observations) rainfall estimation algorithm, which was constructed from archived Meteosat TIR imagery CCD, and locally calibrated against rain gauge records. It was developed by the University of Reading, UK, for Africa only, and is available from 1983 onwards at daily, dekadal, monthly and yearly scales (Maidment et al., 2014; Tarnavsky et al., 2014).

African Rainfall Climatology Version 2 (ARC2)

The ARC v2.0 (African Rainfall Climatology Version 2) satellite based daily gridded precipitation dataset centered over Africa at a spatial resolution of 10 km is also available from 1983 onwards, and uses inputs from three sources: 1) 3-hourly geostationary thermal infrared (TIR) data from the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), 2) data from TRMM’s microwave sensors and 3) quality controlled Global Telecommunication System (GTS) gauge observations reporting 24-h rainfall accumulations over Africa (Novella and Thiaw, 2013).

Tropical Rainfall Measuring Mission (TRMM)

The Tropical Rainfall Measuring Mission (TRMM) is a joint mission between the National Aeronautics and Space Administration (NASA) and the Japan Aerospace Exploration Agency.
(JAXA) aimed at improving observations of precipitation across the globe between 45° N and 45° S. The most widely used outputs are the TRMM Multi-satellite Precipitation Analysis (TMPA) 3-hourly (3B42) product accumulated to daily and monthly (3B43) products, which are available from 1998 to 2014 at spatial resolution of 25 km (Huffman et al., 2007; Maidment et al., 2014). The TMPA product depends on input from a combination of optical, thermal and microwave sensors, as well as gauge data (Dembélé and Zwart, 2016). Daily TRMM 3B42 V7 and monthly 3B43 V7 products were used in this study.

Climate Hazards group Infrared Precipitation with Stations (CHIRPS)

The CHIRPS Version 2.0 rainfall dataset was developed by US Geological Survey (USGS) and Climate Hazard Group at the University of California, Santa Barbara. It is available from 1981 onwards at spatial resolution of 5 km.

The CHIRPS algorithm i) incorporates satellite thermal IR data to represent sparsely gauged locations, ii) blends station data to produce a preliminary information product with a latency of about 2 days and a final product with an average latency of about 3 weeks, and iii) uses a novel blending procedure incorporating the spatial correlation structure of CCD-estimates to assign interpolation weights. CHIRPS also uses the TRMM’s TMPA product, which includes several microwave sources, to calibrate global Cold Cloud Duration (CCD) rainfall estimates (Funk et al., 2015).

Table 2. Summary of satellite products used in this study.

<table>
<thead>
<tr>
<th>No.</th>
<th>Satellite rainfall products</th>
<th>Temporal coverage</th>
<th>Data Input</th>
<th>Spatial Coverage</th>
<th>Spatial resolution</th>
<th>Temporal resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TARCAT Version 2.02</td>
<td>1983-2015</td>
<td>TIR, gauge</td>
<td>Africa</td>
<td>0.0375° (~4 km)</td>
<td>Daily</td>
</tr>
<tr>
<td>2</td>
<td>CHIRPS Version 2.01</td>
<td>1981-2015</td>
<td>TIR, gauge</td>
<td>Global</td>
<td>0.05° (~5 km)</td>
<td>Daily</td>
</tr>
</tbody>
</table>
4. Methods

4.1 Evaluation of satellite based rainfall products

Previous studies have found only weak relationships between satellites and gauge data for daily rainfall comparisons (Dembélé and Zwart, 2016; Sanogo et al., 2015). In this study we compare gauge rainfall against satellite data on daily, dekadal, monthly and seasonal time scales, for four different satellite-based rainfall products (ARC, CHIRPS, TAMSAT and TRMM). The period 1998 to 2014 was examined as TRMM data were only available for this period. Eighteen weather stations (Figure 1) were used, except for daily and dekadal (10 days) comparisons which were conducted for only ten weather stations which have daily rainfall data for this period (Table 1).

Pixel values at gauge locations were extracted for comparison of gauge data with satellite rainfall estimates and accumulated into dekadal, monthly and seasonal values. For every month, the first two dekads comprise ten days, while the last dekad comprises 8-11 days depending on the month. Satellite rainfall estimates were compared with gauge rainfall using the pairwise comparison statistical measures, Pearson product-moment coefficient of correlation (R), Bias, Mean Error (ME) and Root Mean Square Error (RMSE).

Pearson correlation coefficient (R) measures the strength of linear relationship between satellite and gauge rainfall. Values of ‘R’ close to 1 indicate a perfect relationship between satellite and gauge rainfall estimates. The statistical significance of correlation (R) is represented by asterisks (** = p < 0.01 and * = p <0.05)
\[
R = \frac{\sum(G - \bar{G})(S - \bar{S})}{\sqrt{\sum(G - \bar{G})^2} \sqrt{\sum(S - \bar{S})^2}}
\]
(1)

Where \(G \) = gauge rainfall amount, \(\bar{G} \) = average gauge rainfall amount, \(S \) = satellite rainfall estimates, \(\bar{S} \) = average satellite rainfall estimates, \(n \) = total number of data.

Bias indicates how well the average of satellite rainfall estimates corresponds with average of gauge rainfall. Values close to 1 show that cumulative satellite rainfall estimates are close to cumulative gauge rainfall measures. A Bias greater than 1 indicates satellite overestimates, while less than 1 indicate satellite underestimates.

\[
\text{Bias} = \frac{\sum S}{\sum G}
\]
(2)

Mean error (ME) is the measure of average difference between satellite and gauge rainfall amounts. A positive value reflects an overestimation of satellite rainfall whereas negative indicates underestimation of satellite rainfall.

\[
ME = \frac{1}{n} \sum_{i=1}^{n} (S - G)
\]
(3)

Root mean square error (RMSE) is the standard deviation of the difference between satellite rainfall estimates and gauge rainfall. A higher value of RMSE indicates large difference between satellite and gauge rainfall measures.

\[
\text{RMSE} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (S - G)^2}
\]
(4)

According to Toté et al (2015), for drought monitoring studies, overestimation of satellite rainfall (ME > 0) must be avoided and for hydrological and flood forecasting studies, underestimation of satellite rainfall estimate (ME < 0) should be avoided.

For analysis of changes in rainfall regime across northern Nigeria, seasonal rainfall variables were calculated from daily rainfall events. In this study, we used the definition of seasonal rainfall variables by Zhang et al (2017), as follows. Rainy season onset was defined as the first occurrence
of at least 20 mm cumulative rainfall within seven consecutive days after May 1, followed by at
least 20 mm rainfall in the next 20 days to avoid “false starts”. Rainy season cessation was defined
as the occurrence of less than 10 mm cumulative rainfall in 20 consecutive days after September
1. Length of rainy season was defined by the number of days between onset and cessation of rainy
season. Season rainfall amount was defined by accumulating all daily rainfall events above 1 mm
over the whole rainy season. Frequency of rainy season was defined by number of rainy days with
rainfall amount ≥ 1 mm divided by the length of rainy season. Intensity of rainfall was defined as
the total amount of rainfall during the rainy season divided by the number of rainy days with
rainfall ≥ 1 mm. The number of rainy days was calculated according to different levels of rainfall
amount with 1-10, 10-20, 20-30 and >30 mm/day separately. Seasonal distribution was defined by
the ratio of amount of rainfall in the first and second halves of the rainy season (calculated based
on onset and length of season). Dry spells within the rainy season were defined as rainfall below
1 mm in at least seven consecutive days. Dry spells were characterised by three variables, namely
the number of dry spells, cumulative and mean length of dry spells by number of days. Ten weather
stations with long term daily rainfall (Table 1) were used to derive these seasonal rainfall variables.

4.2 Temporal trend estimation from gauge based rainfall variables

To place satellite-based rainfall estimates in long term context, temporal trends in rainfall over
northern Nigeria were calculated from gauge based rainfall variables for those stations which fall
within Sanogo et al’s (2015) definition of the West African Sahel between latitudes 9° and 20° N,
in terms of rainfall variability. To estimate the magnitude and direction of changes in seasonal
rainfall variables, the Sen Slope method (Sen, 1968) was adopted. This is a linear regression model
which calculates slope using the median value of slopes from all pairs of observations in a time
series (Equation 5), and thus is free from serial autocorrelation and heteroscedasticity, and is resistant to outliers and missing data within the time series. The significance of the observed trends was assessed by, the Mann–Kendall (MK) non-parametric significance test, which accounts for the effect of serial correlation (Salmi et al., 2002; Westra et al., 2013).

\[Q = \frac{Y_j - Y_i}{t_j - t_i} \]

Q is the slope.

\(Y_j \) and \(Y_i \) are values of time series, where j is greater than i,

There will be a total of N data pairs for which j is greater than i. The Sen Slope is the median of N values of Q.

4.3 Calculation of standardized anomalies for studying inter-annual variability

To study inter-annual variability over the long term, and due to strong spatial variability and uneven spatial distribution of rain gauges in Sudano-Sahelian region, we applied the Standardized Precipitation Index (SPI) (Ali and Label, 2009), to the rainfall variables using equation 2.

\[SPI = \frac{X_i - \bar{X}}{\sigma(X)} \]

Where \(X_i \) = regional rainfall variable for year \(\text{yr} \), where region refers average value of all rain gauge stations over the region of interest,

\(\bar{X} \) = average of the inter-annual regional rainfall variable,

\(\sigma(X) \) = standard deviation of inter-annual regional rainfall variable.

4.4 Spatio-temporal trends for satellite rainfall variables

Since CHIRPS was observed to be the best overall satellite rainfall product when all variables were considered, CHIRPS was used to represent the spatio-temporal trends of rainfall variables across northern Nigeria. Trends from 1981 to 2015 were evaluated for every pixel in the study area, using Sen slope, and the Mann–Kendall (MK) significance test.
5. Results and discussion

5.1 Evaluation of satellite rainfall estimates

In this study four satellite-based rainfall products were evaluated against gauge data from the 10 weather stations having daily data (Figure 1), to identify the best rainfall product for northern Nigeria at daily, dekadal, monthly and seasonal time scales. Also satellite rainfall products were evaluated for different rainy season variables to find the best product for analyzing temporal trends in rainy season characteristics over space. For all the plots (Figures 2-7), the red line is the 1:1 line, the solid blue is linear regression line between gauge and satellite estimates and the dashed blue lines are 95% confidence intervals (CI).

5.1.1 Daily comparison

Comparison between satellite-based daily rainfall estimates from ARC, CHIRPS, TARCAT and TRMM and individual rain gauge stations for the period 1998-2014 shows only weak relationships, with correlation coefficient ‘R’ values ranging from 0.3 to 0.5. The best overall performance was observed for TARCAT (R = 0.45), followed by CHIRPS (R = 0.35), ARC (R = 0.34) and TRMM (R = 0.32), although TARCAT showed the greatest Bias (0.90). All of the satellite products show substantial overestimation of low rainfall events and underestimation of high rainfall events. This accords with other studies in northern Nigeria (Sanogo et al, 2015) and Burkina Faso (Dembélé and Zwart, 2016).

5.1.2 Dekadal comparison
Dekadal (10 days) comparisons (Figure 2) show a good agreement between gauge rainfall, and CHIRPS and TARCAT satellite estimates respectively, with correlation coefficient ‘R’ values between 0.50 and 0.80 for the majority of weather stations. Correlation values for TRMM (0.49-0.73) and ARC (0.24-0.69) were somewhat lower. CHIRPS was also found to have the best Bias close to one (0.79-1.10), followed by ARC (0.74-1.12), TARCAT (0.60-1.17) and TRMM (0.73-1.21). The lowest RMSE values were found for CHIRPS (35.16 mm.dekad\(^{-1}\)), followed by TARCAT (36.37 mm.dekad\(^{-1}\)), TRMM (39.53 mm.dekad\(^{-1}\)) and ARC (42.28 mm.dekad\(^{-1}\)). The superior overall performance of CHIRPS for dekadal rainfall was also noted for Ethiopia (Bayissa et al, 2017) and Mozambique (Toté et al, 2015). All satellite products show overestimation of low, and underestimation of high dekadal rainfall amounts, for the majority of weather stations. In terms of agricultural yield prediction, such underestimation of dekadal rainfall by satellite products is not as critical as overestimation, as the major stress on the main cereals crops sorghum and millet is drought especially 15 to 20 days of no rain in mid-growing season (Seetharama et al, 1984).

5.1.3 Monthly comparison

Monthly satellite estimates show better performance than at daily or dekadal scales, with correlation values between 0.55-0.86 for all satellite products except for ARC (Figure 3).
Figure 2. Comparison of dekad (10 days) rainfall, between rain gauge and satellite rainfall estimates for 10 weather stations for 1998-2014.

Figure 3. Comparison of monthly rainfall between rain gauge and satellite rainfall estimates for 18 weather stations for 1998-2014.
This improvement is because aggregation of daily or dekadal data into monthly values cancels out errors at daily or dekadal scales (Dembélé and Zwart, 2016). The monthly satellite estimates for all 18 weather stations for the period 1998-2014 in mm/month, compare well with gauge rainfall. Overall CHIRPS gives the best results with the highest correlation value of 0.81 and lowest RMSE value of 63.47 mm/month, and for CHIRPS, the blue trend line is closest to the red 1:1 line. Lower correlation values were observed for TARCAT, TRMM and ARC of 0.77, 0.75 and 0.64 respectively. These findings are in agreement with Bayissa et al (2017) in Ethiopia and Toté et al (2015) in Mozambique, who reported that CHIRPS performed better than other satellite estimates at monthly scale.

5.1.4 Yearly comparison

Monthly rainfall data from April to October were accumulated for both satellites and gauges, to produce seasonal (yearly) rainfall totals, for the 16 years, 1998 to 2014 for the 18 weather stations. A good agreement was observed between satellite and gauge rainfall data with correlation values ranging between 0.62-0.79 (Table 3). Highest correlation values were observed for CHIRPS (0.79) and lowest for ARC (0.62), and a Bias close to 1 was found both for CHIRPS and TRMM (0.97), followed by ARC (0.93) and TARCAT (0.84) respectively. The observed negative values of ME (Table 3) indicate that all satellite datasets underestimate seasonal rainfall compared to gauge measurements. The lowest value of mean error was observed for CHIRPS (-27.38 mm/season) followed by TRMM (-29.7 mm/season), ARC (-58.7 mm/season) and TARCAT (-141.3 mm/season) respectively. Similarly the lowest value of RMSE was found for CHIRPS (196.6 mm/season), followed by TRMM (214.3mm/season), ARC (264.4 mm/season) and TARCAT (274.3 mm/season) respectively. These findings accord with those of Bayissa et al (2017), who observed best correspondence of CHIRPS with gauge data at seasonal time scale in Ethiopia, but
disagree with Dembélé and Zwarts (2016), whose seasonal satellite data indicate overestimation of annual rainfall in Burkina Faso, as our data indicate underestimation.

Table 3. Yearly comparison of satellite rainfall products.

<table>
<thead>
<tr>
<th></th>
<th>TRMM</th>
<th>TARCAT</th>
<th>CHIRPS</th>
<th>ARC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation (R)</td>
<td>0.75**</td>
<td>0.69**</td>
<td>0.7**9</td>
<td>0.62**</td>
</tr>
<tr>
<td>Bias (no units)</td>
<td>0.97</td>
<td>0.84</td>
<td>0.97</td>
<td>0.93</td>
</tr>
<tr>
<td>Mean Error (mm/season)</td>
<td>-29.7</td>
<td>-141.3</td>
<td>-27.3</td>
<td>-58.7</td>
</tr>
<tr>
<td>RMSE (mm/season)</td>
<td>214.3</td>
<td>273.9</td>
<td>196.6</td>
<td>264.4</td>
</tr>
</tbody>
</table>

** Statistical significance at 0.01 level.

5.1.5 Seasonal rainfall variables

A spatial correlation between three satellite datasets (TARCAT, CHIRPS and ARC) and gauge based rainfall variables for 10 weather stations was undertaken for the period 1984-2013. TRMM data are not included as they are not available for the earlier years 1984-1997, and we observed the TRMM data quality to be consistently inferior to CHIRPS and TARCAT. For the onset and cessation of rainy season, satellite estimates compare fairly well with the gauge-based data, with correlation coefficient R values between 0.53 and 0.65 for onset, and 0.59 and 0.70 for cessation, with ARC showing the lowest values (Figure 4). Similarly for length of season and amount of rainfall, a linear relationship between satellite and gauge based rainfall measures is observed with R values between 0.63 and 0.74 for season length, and 0.57 and 0.78 for rainfall amount. Again ARC indicates lower values of R (0.63, 0.57) for length and seasonal amount of rainfall compared to CHIRPS (0.71 and 0.78) and TARCAT (0.74 and 0.61) (Figure 5 scatterplots). For the total number of rainy days per season, a high value of R = 0.79 was observed for CHIRPS compared to ARC (0.74) and TARCAT (0.72) (Figure 6a-c). Thus in summary, for onset, cessation and length
of season, although CHIRPS showed the best overall performance, if confidence intervals (blue dashed lines on Figures 4 a-f and 5 a-c) are considered, TARCAT should be deemed equally robust.

However, a marked discrepancy existed between satellite and station data, for rainy days with given stepped intervals of rainfall (Figure 6d-o). For rainy days with low rainfall amounts of 1-10 and 10-20 mm/day, a higher number of rainy days were observed for satellite products compared to gauge measurements (Figure 6d-i), and this is in agreement with Zhang et al (2017) who also report a higher number of small rainfall events estimated by satellite compared to gauge data. On the contrary, satellites observe a lower frequency of high rainfall events > 30 mm/day, than ground stations (Figure 6 m-o), and this is in line with the findings of Toté et al (2015), who reported large underestimation of high rainfall events by the satellite product. In this study, CHIRPS outperformed ARC and TARCAT for all stepped intervals of rainfall events (Figure 6 a-o) except for the lowest class 1-10mm/day (Figure 6d-f), when TARCAT obtained the lowest error.
Figure 4. Comparison between gauge and satellite, for onset of rainy season (day of year) (a-c) and cessation of rainy season (day of year) (d-f) for all weather stations (1984-2013).

Figure 5. Comparison between gauge and satellite, for length of rainy season (days) (a-c) and seasonal rainfall amount (mm year\(^{-1}\)) (d-f) for all weather stations (1984-2013).
Figure 6. Comparison between gauge and satellite, for the total number of rainy days with >1 mm day$^{-1}$ (a-c), with 1-10 mm day$^{-1}$ (d-f), with 10-20 mm day$^{-1}$ (g-i), with 20-30 mm day$^{-1}$ (j-l) and with > 30 mm day$^{-1}$ (m-o) rainfall amount for all weather stations (1984-2013).

The higher number of low rainfall events captured by satellite products affects the estimation of dry spell variables, with a lower representation of dry spells. Thus we observe a very weak correlation for number of dry spells (0.02-0.09), mean length of dry spells (0.03-0.13) and cumulative length of dry spells (-0.005-0.03) for all three satellite datasets. Toté et al (2015) also found a large error in the detection of dry spells, with RFE data (only available since 2001) showing the best performance compared to CHIRPS and TARCAT.

Due to this high representation of low rainfall events by satellite products, a higher total number of rainy days (Figure 6a-c) and higher frequency of rainfall (Figure 7 a-c) are observed for satellite products. Correspondingly a lower representation of intensity (Figure 7 d-f) of rainfall events for satellite products is observed, as Intensity is the ratio between seasonal rainfall amount and total number of rainy days per season.

Figure 7. Comparison between gauge and satellite, for frequency (a-c) and intensity of rainy season (d-f) for all weather stations (1984-2013).
The satellite rainfall variables best representing gauge data were total annual (seasonal) rainfall, the total number of rainy days, and length of rainy season. These good results for variables measured across the whole rainy season, may be partly due to positive and negative errors cancelling out. The overestimation of rainy days by satellites is due to detection of low and patchy rain within a pixel, compared to a ground point where no rain has fallen. However, this is a serious shortcoming of satellite estimates, as this could suggest adequate rainfall during a drought.

Notwithstanding, although rainfall variables based on single-day rainfall events may show bias due to difference in scale between point-based gauge and large area satellite data, the temporal trends in rainfall variables from satellite data are still expected to be valid.

5.2 Temporal trends for northern Nigeria using gauge based rainfall variables

Temporal trends over northern Nigeria were estimated over three decades, from 1984 to 2013 using the average value for every year of nine stations (excluding Ibi weather station lying in Guinea zone) having daily data (Figure 1). Clear significant and positive trends were observed for the seasonal rainfall amount, cessation and length, as well as for rainfall intensity, the total number of rainy days and rainy days with more than 30 mm rainfall (Table 4). Our findings support those of Sanogo et al (2015), who observed similar trends from 1980 to 2010, using all gauges averaged over the West African Sahel region (Latitude 9°-20° N).
Table 4. Trends from 1984 to 2013 for gauge based rainfall variables (averages over all stations) were estimated using Sen’s slope (with slope expressing changes in units per year). Positive (negative) values indicate increasing (decreasing) rainfall variable trends and statistically significant changes are denoted by asterisks (+=p≤0.1, *=p≤0.05; **=p≤0.01; ***=p≤0.001) with respect to the Mann-Kendall test accounting for temporal autocorrelation.

<table>
<thead>
<tr>
<th>Season rainfall variables</th>
<th>Gauge trends</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Onset of Rainy Season (day of year)</td>
<td>-0.18</td>
</tr>
<tr>
<td>2 Cessation of Rainy Season (day of year)</td>
<td>0.44*</td>
</tr>
<tr>
<td>3 Length of Rainy Season (days)</td>
<td>0.53*</td>
</tr>
<tr>
<td>4 Season rainfall amount (mm year⁻¹)</td>
<td>8.2**</td>
</tr>
<tr>
<td>5 Frequency</td>
<td>0</td>
</tr>
<tr>
<td>6 Intensity (mm day⁻¹)</td>
<td>0.12**</td>
</tr>
<tr>
<td>7 Number of rainy days with 1-10 mm (days)</td>
<td>0</td>
</tr>
<tr>
<td>8 Number of rainy days with 10-20 mm (days)</td>
<td>0.02</td>
</tr>
<tr>
<td>9 Number of rainy days with 20-30 mm (days)</td>
<td>0.02</td>
</tr>
<tr>
<td>10 Number of rainy days > 30 mm (days)</td>
<td>0.11**</td>
</tr>
<tr>
<td>11 Season distribution</td>
<td>-0.001</td>
</tr>
<tr>
<td>12 Total number of rainy days with > 1mm (days)</td>
<td>0.18*</td>
</tr>
<tr>
<td>13 Cumulative dry days (days)</td>
<td>0.21</td>
</tr>
<tr>
<td>14 Length of Dry Spell (days event⁻¹)</td>
<td>0.03</td>
</tr>
<tr>
<td>15 Number of Dry Spells (events year⁻¹)</td>
<td>0.002</td>
</tr>
</tbody>
</table>

The rainy season starting date, which is critical for farming, showed non-significant trends (Table 4), which is in agreement with Sanogo et al’s (2015) gauge-based observations in the Sahel. We also observed significant positive trends for number of days of heavy rainfall over 30 mm, and in consecutive wet days, but insignificant trends for dry spells (Table 4) which accords with Sanogo et al’s (2015) observations for the Sahel. This suggests that recovery of rainfall in northern Nigeria since the drought decades of 1970s and 80s is mainly related to increase in number of rainy days.
(Table 5), a higher number of extreme rainfall events and later cessation of rainy season, rather than earlier onset of rains, or a reduction in the length or number of dry spells.

On the other hand, while Hess et al’s (1995) study of northern Nigeria during the drought decades of 1970s and 80s had similar findings of no changes in rainy season onset even during the drought decades, they did observe a dramatic fall in the average number of rainy days per rainy season during those dry decades (Hess et al, 1995).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maiduguri</td>
<td>47</td>
<td>35</td>
<td>30</td>
<td>42</td>
<td>41</td>
<td></td>
</tr>
<tr>
<td>Nguru</td>
<td>36</td>
<td>27</td>
<td>20</td>
<td>29</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Daura</td>
<td>46.7</td>
<td>42.4</td>
<td>37</td>
<td>29.9</td>
<td>35.5</td>
<td></td>
</tr>
</tbody>
</table>

5.3 Spatial distribution of monthly and annual rainfall trends using gauge data (1984-2013) and CHIRPS rainfall product (1981-2015)

Monthly rainfall data are required to investigate trends in total annual rainfall as well as its seasonal distribution. Thus the spatial aspects of trends in monthly and total annual rainfall between 1984 and 2013 were investigated based on both rain gauge data and CHIRPS data for the period 1981-2015 (Table 6 and Figure 8), as CHIRPS proved to be the most robust satellite rainfall product, and can be used to represent the typical performance of satellite rainfall datasets. CHIRPS satellite data for the 35-year period 1981 to 2015, show clear positive trends in annual rainfall over most of northern Nigeria (Figure 10). The CHIRPS observations are supported by clear positive trends in annual rainfall evident at stations across northern Nigeria (Table 6), which confirms rainfall recovery after the droughts of the 1980s.
Table 6. Trends for gauge based total annual and monthly rainfall using Sen’s slope for the period 1981-2015. Statistically significant changes are denoted by asterisks (+ = p ≤ 0.1, * = p ≤ 0.05; ** = p ≤ 0.01; *** = p ≤ 0.001) with respect to the Mann-Kendall test accounting for temporal autocorrelation.

<table>
<thead>
<tr>
<th>Station</th>
<th>Total Annual</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>September</th>
<th>October</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sokoto</td>
<td>5.6*</td>
<td>0</td>
<td>0.9</td>
<td>0.2</td>
<td>0.2</td>
<td>2.1*</td>
<td>0.9</td>
<td>0.3**</td>
</tr>
<tr>
<td>Nguru</td>
<td>4.4*</td>
<td>0</td>
<td>0.3</td>
<td>1.1+</td>
<td>-0.02</td>
<td>1.9</td>
<td>1.23</td>
<td>0.2*</td>
</tr>
<tr>
<td>Gusau</td>
<td>2.6</td>
<td>0</td>
<td>0.4</td>
<td>-0.2</td>
<td>0.7</td>
<td>1.1</td>
<td>-1.6</td>
<td>0.9*</td>
</tr>
<tr>
<td>Katsina</td>
<td>7.5**</td>
<td>0</td>
<td>0.3</td>
<td>0.9</td>
<td>-0.06</td>
<td>4.3**</td>
<td>0.4</td>
<td>0.3**</td>
</tr>
<tr>
<td>Minjibir</td>
<td>8.1+</td>
<td>0</td>
<td>-0.06</td>
<td>1.0</td>
<td>2.5*</td>
<td>3.2</td>
<td>1.7+</td>
<td>0.4*</td>
</tr>
<tr>
<td>Kano</td>
<td>11.2**</td>
<td>0</td>
<td>0.3</td>
<td>2.7*</td>
<td>3.1*</td>
<td>3.9</td>
<td>1.6</td>
<td>0.07</td>
</tr>
<tr>
<td>Maiduguri</td>
<td>10.2***</td>
<td>0</td>
<td>0.2</td>
<td>1.8</td>
<td>2.6</td>
<td>3.2</td>
<td>2.1</td>
<td>0.6</td>
</tr>
<tr>
<td>Kadawa</td>
<td>6</td>
<td>0</td>
<td>-0.2</td>
<td>-0.8</td>
<td>-0.3</td>
<td>4.8*</td>
<td>1.4</td>
<td>1.2</td>
</tr>
<tr>
<td>Potiskum</td>
<td>4.2</td>
<td>0</td>
<td>0.2</td>
<td>1.7*</td>
<td>1.3*</td>
<td>0.6</td>
<td>2.7*</td>
<td>0.1</td>
</tr>
<tr>
<td>Zaria</td>
<td>9.9***</td>
<td>0.3</td>
<td>0.9</td>
<td>-0.07</td>
<td>0.7</td>
<td>2.9</td>
<td>4.6**</td>
<td>1.4*</td>
</tr>
<tr>
<td>Yelwa</td>
<td>4.1</td>
<td>0.3</td>
<td>0.4</td>
<td>-0.002</td>
<td>-0.4</td>
<td>3.6</td>
<td>2.5*</td>
<td>0.1</td>
</tr>
<tr>
<td>Kaduna</td>
<td>1.7</td>
<td>0.07</td>
<td>-0.08</td>
<td>-0.4</td>
<td>0</td>
<td>-0.9</td>
<td>1.7</td>
<td>2.1*</td>
</tr>
<tr>
<td>Bauchi</td>
<td>21.4***</td>
<td>0.3</td>
<td>-0.8</td>
<td>3.3*</td>
<td>3.7</td>
<td>6.2*</td>
<td>2.3</td>
<td>0.8</td>
</tr>
<tr>
<td>Yola</td>
<td>-5.7</td>
<td>-0.9</td>
<td>-1.3+</td>
<td>2.2+</td>
<td>-3.2**</td>
<td>-1.3</td>
<td>1.1</td>
<td>0.9</td>
</tr>
<tr>
<td>Ibi</td>
<td>-1.2</td>
<td>0.1</td>
<td>-1.4</td>
<td>-0.1</td>
<td>-0.5</td>
<td>-3.2*</td>
<td>0.9</td>
<td>0.9</td>
</tr>
</tbody>
</table>

Our satellite and gauge-based results conflict with Sanogo et al (2015) ARC-based estimates of rainfall trends for northern Nigeria, as they report negative but insignificant trends for seasonal rainfall amount for areas surrounding our climate stations of Kaduna, Zaria, Kano, Minjibir and Gusau. They suggest that decline in the number of GTS ground stations for these areas explained the observed negative trends using ARC-based satellite data. The reliance of CHIRPS on high resolution climatology (Toté et al., 2015) and multiple satellite products including visible, thermal infra-red and microwave as opposed to ARC’s emphasis on ground station data may explain the better result for long-term rainfall trends from CHIRPS.
Our CHIRPS satellite data observe a trend of increased rainy season length (Figure 9), with more rain in the months of August to October (Figure 8), and this is supported by our ground stations (Table 7). Our gauge observations indicate that the observed increase in annual rainfall is due to increases of 1-2 mm/year in each of the months August to October (Table 7) and these months contribute over 50% of annual rainfall amount.

Table 7. Trends for gauge based monthly rainfall (average for all gauges in northern Nigeria) for the period 1984-2013.

<table>
<thead>
<tr>
<th>Months</th>
<th>March</th>
<th>April</th>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
<th>September</th>
<th>October</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trend Slope</td>
<td>-0.08**</td>
<td>-0.06</td>
<td>-0.07</td>
<td>0.74**</td>
<td>0.78</td>
<td>2.22**</td>
<td>1.40*</td>
<td>1.05**</td>
</tr>
<tr>
<td>Contribution to annual rainfall (%)</td>
<td>0.37</td>
<td>2.28</td>
<td>7.90</td>
<td>13.46</td>
<td>23.36</td>
<td>30.25</td>
<td>18.24</td>
<td>4.10</td>
</tr>
</tbody>
</table>

In August, the month with greatest overall increase in rainfall, distribution of the increase is extremely patchy, with large increases of over 4 mm in the northeast, but non-significant trends in many other areas. A marked decrease in September around the Federal Capital Territory in the south, is also evident. Thus CHIRPS satellite products give a better spatial representation of overall long term rainfall trends, growing season length, and distribution of rainfall within the growing season, than ground station data.
Figure 8. Spatial temporal trends in CHIRPS based monthly rainfall between 1981 to 2015 based on Sen’s slope expressing change in monthly rainfall in mm/year. White areas showing non-significant trends at 90% confidence level with respect to the Mann–Kendall test.
5.4 Spatio-temporal trends in CHIRPS rainfall variables (1981-2015)

CHIRPS satellite-based observations indicate significant positive changes between 1981 and 2015 for seasonal rainfall amount, which represents the traditional May to September growing season, and these increases are most marked in northeastern and north central Nigeria (Figure 10) around the cities of Maiduguri and Kano, with dense rural populations dependent on agriculture. A significant but less marked increase in seasonal rainfall is also evident in the extreme northwest of Nigeria around the city of Sokoto, also with a densely settled rural hinterland. Significant positive changes across the whole region are also observed for total annual rainfall amount and the total number of rainy days (Figure 10). However, the distributions are extremely patchy, with some areas gaining over 9 mm annual rainfall, adjacent to areas with no gain.

The length of rainy season also showed significant positive trends over most of northern Nigeria (Figure 9), indicating that the rainy season has become longer in recent years, due to a late ending. The onset of rainy season shows non-significant trends in most parts of northern Nigeria, so indicating little change in the start of the rainy season, thus the longer rainy season appears mainly due to later cessation of rains.

The number, cumulative length and average length of dry spells (Figure 11) show a decreasing trend over the whole area but especially in northwestern Nigeria. This would have favourable implications for crop production and crop security, as a non-interrupted supply of moisture throughout the growing season is essential for a good yield.
Figure 9. Spatial temporal trends for seasonal onset (day of year), cessation (day of year) and length (days) using CHIRPS data between 1981 and 2015 based on Sen’s slope expressing changes in days/year.
Figure 10. Spatial temporal trends for seasonal rainfall amount (mm/year), total number of rainy days per season (days), frequency (no units) and intensity (mm/day).
Figure 11. Spatial temporal trends for total number (events/year), cumulative length (days/year) and mean length of dry spells (days/event) using CHIRPS data between 1981 and 2015 based on Sen’s slope.
5.5 Discussion

Of the four satellite rainfall products examined, CHIRPS demonstrated the best results with consistently higher correlation for most variables, a Bias closest to 1 and lower error, when compared to ground station data. The results for TARCAT were also consistently good, with confidence intervals overlapping with those of CHIRPS. The robustness of satellite rainfall estimates increased with increasing aggregations of daily data, due to cancelling out of positive and negative errors. Thus for dekadal (monthly) data, CHIRPS, with r of 0.68 (0.81) and Bias close to 1, of 0.95 (0.98) observed good results. The observed underestimation of dekadal rainfall by all four satellite products, with ME <1, is not as critical for agricultural yield prediction as overestimation, as the major stress on the main cereal crops of northern Nigeria, sorghum and millet is drought, especially 15 to 20 days of no rain in mid-growing season. For drought monitoring, overestimation of satellite rainfall (ME >1) should be avoided, as it would tend to overlook drought periods.

All satellite products overestimate low rainfall events, leading to overestimation of the number of rainy days in a season. This may be the result of the sensors’ much larger spatial scales than the point locations of rain gauges, as low rainfall is likely to be more patchy than heavier rainfall. Additionally, comparing point based measurements with large area pixel values would lead to a positive bias for variables with high spatial variability like rainfall in West Africa which occurs by local convective clouds (Fensholt et al., 2006). Thus for both these reasons, events with low rainfall of 1-10 and 10-20 mm are overestimated by satellite products. Although this overestimation appears to be a serious deficiency, which could lead to non-detection of drought spells during the growing season, with consequences for crop yield prediction, all satellite products have the opposite tendency for high rainfall events, which they underestimate. Thus for dekadal, monthly
and seasonal rainfall the overall tendency is slight underestimation, and the overall estimates of rainfall amounts are good.

For estimating temporal trends for rainfall variables averaged over stations in northern Nigeria, our gauge data indicate recovery of rainfall since the drought decades of 1970s and 80s. This recovery, observed from both gauge and CHIRPS data between 1981 and 2015 appears to be due to increases of about 2 mm a year in the later part of the rainy season from August to October, with these months now contributing over 50% of annual rainfall. Thus both data types observed stronger rainfall recovery in the months of August and September, and CHIRPS data suggest particularly strong recovery in the northeastern states. Since sorghum enters a high water use period in the late growing season in August, this reduces the risk of late drought impeding the swelling of grain which affects dry weight production.

Furthermore, our observed significant positive trends for number of days of heavy rainfall over 30 mm, and for consecutive wet days, but insignificant trends for dry spells suggests that this recent rainfall recovery may be related to increase in number of rainy days, a higher number of extreme rainfall events and later cessation of rainy season, rather than a reduction in the length or number of dry spells. The onset of rainy season shows small negative (earlier start), but non-significant trends in most parts of northern Nigeria, so indicating little change in the start of the rainy season. Thus longer rainy season in recent years, appears to be due to a later cessation of rains.

Conversely to gauge data averaged over the whole of northern Nigeria, which indicate a slight but non-significant increase in the number and average length of dry spells, CHIRPS data indicate a significant and decreasing trend in dry spells in some areas. These are in northwestern Nigeria around the city of Sokoto and in the southern part of the study areas around the cities of Jos and
Abuja. This would have favourable outcomes for crop production and crop security, as a non-interrupted supply of moisture throughout the growing season is essential for a good yield.

CHIRPS-based rainfall variables indicate spatial differences in the observed large increases in seasonal rainfall over the last 35 years. The increase is especially marked in northeastern and north central Nigeria around the cities of Maiduguri and Kano, both of which have dense rural populations dependent on agricultural produce for their livelihoods. The patchy nature of rainfall variables across northern Nigeria affirms the need for the spatial perspective offered by satellite observations.

6. Conclusion

The only previous satellite-based studies of rainfall trends in West Africa (Sanogo et al, 2015; Zhang et al, 2017) were at continental scale, and used ARC satellite product, which is at a coarser (10 km) resolution, and is more reliant on the sparse network of ground stations across West Africa, than CHIRPS. The ARC products were found to be consistently inferior to CHIRPS, when compared to data from 18 rain gauges across northern Nigeria over a 30-year period, and the study did not address regional or local implications of observed trends. The CHIRPS data at 5 km resolution rely on a wider variety of satellite data inputs, as well as ground stations. The CHIRPS data were in agreement with gauge data, observing an increase in annual rainfall over the last 35 years, whereas Sanogo et al (2015) observed a slight decrease over our study area.

The study indicates that all satellite products slightly underestimate dekadal, monthly and annual rainfall. This is due to detection of a higher number of rainy days due to recording a higher number of low rainfall events than at ground stations. Consequently they also retrieve a higher number of rainy days and fewer and shorter drought spells during the growing season, than do ground stations,
which may have serious implications for crop yield prediction and consequent perceptions of food
security. However, since satellites tend to also underestimate high rainfall events, the over-and
under-prediction cancel out when considered at dekad, monthly and seasonal time scales, thus
the overall prediction of rainfall amounts by satellite products is good.

For trends in seasonal rainfall variables, both gauge and satellite data show increased growing
season length over the last 35 years, which is due to increases in rainfall in the later part of the
rainy season. This is expected to have favourable implications for local subsistence crops,
especially sorghum which has lower drought tolerance at the ripening stage. Although satellite
data do not show significant correlation with gauge data for number and length of dry spells,
because the data are consistent among satellite products, this is not thought to affect the detection
of trends. CHIRPS data indicate a decrease in the number and length of dry spells across northern
Nigeria, and especially in northwest and north central Nigeria around the cities of Sokoto, Jos and
Abuja, all in the densely populated Sudan zone and northern Guinea. This reduction in dry spells
is potentially favorable for crop yields, and could have played a role in the increase in rural
population densities over these 35 years of the study. The currently low nutritional status combined
with a return to the drought conditions of earlier decades, could therefore bring severe hardship to
rural households.

Acknowledgements
This work is done through a PhD fellowship grant from the Research Grants Council of Hong
Kong, grant No. RTYU. Authors would also like to acknowledge Nigerian Meteorological Agency
(NIMET), Institute of Agriculture Research (IAR), ICRISAT, Jasper Tomlinson and Prof. Mike
Mortimore (Late), Hadiza Aminu Tukur from University of Abuja and Prof. M. D. Magaji from Agricultural Research Council of Nigeria (ARCN) for providing rain gauge data. Special thanks to Wael Ahmed from Department of LSGI, PolyU and Dr. Abdulhakim M. Abdi from Lund University, for providing R scripts for processing. We would also like to acknowledge valuable assistance from Prof. Muhammad Bilal from Nanjing University and our colleagues Dr Sawaid Abbas, Dr Majid Nazir and Syed M Irteza Naqvi.

References

Mortimore, M., Wilson, J., 1965. Land and people in the Kano close-settled zone; a survey of some aspects of rural economy in the Ungogo District, Kano Province: A report to the Greater Kano Planning Authority.

