Emotional processes in binge drinking: a systematic review and perspective

Article (Accepted Version)

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/97561/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

http://sro.sussex.ac.uk
Emotional processes in binge drinking: A systematic review and perspective

Séverine Lannoy a,b, Theodora Duka c,d, Carina Carbia e, Joël Billieux f, Sullivan Fontesse b, Valérie Dormal b, Fabien Gierski g,h, Eduardo López-Caneda i, Edith V. Sullivan a & Pierre Maurage b

a Stanford University, Department of Psychiatry and Behavioral Sciences, Stanford, California, USA.
b Louvain Experimental Psychopathology research group (LEP), Psychological Sciences Research Institute, UCLouvain, Louvain-la-Neuve, Belgium.
c Behavioral and Clinical Neuroscience, School of Psychology, University of Sussex, Brighton, UK.
d Sussex Addiction and Intervention Centre, University of Sussex, Brighton, UK.
e APC Microbiome Ireland, Biosciences Building, University College Cork, Cork, Ireland.
f Institute of Psychology, University of Lausanne, Lausanne, Switzerland.
g Cognition Health and Society Laboratory (EA 6291), Université de Reims Champagne-Ardenne, Reims, France.
h Psychiatry and Addictology Departments, CHU de Reims & EPSM Marne, Reims, France.
i Psychological Neuroscience Laboratory, Research Center in Psychology (CIPsi), School of Psychology, University of Minho, Campus Gualtar, Braga, Portugal.

Corresponding authors:

Séverine Lannoy, PhD. Email: severine.lannoy.phd@gmail.com

Stanford University, Department of Psychiatry and Behavioral Sciences, 401 Quarry Rd, Stanford, California 94305, USA. Tel: +1 650 859 4085

Pierre Maurage, Professor. Email: pierre.maurage@uclouvain.be

UCLouvain. Place du Cardinal Mercier, 10, B-1348 Louvain-la-Neuve, Belgium. Tel: +32 10 479245. Fax: +32 10 473774.
Abstract

Binge drinking is a widespread alcohol consumption pattern commonly engaged by youth. Here, we present the first systematic review of emotional processes in relation to binge drinking. Capitalizing on a theoretical model describing three emotional processing steps (emotional appraisal/identification, emotional response, emotional regulation) and following PRISMA guidelines, we considered all identified human studies exploring emotional abilities among binge drinkers. A literature search was conducted in PubMed, Scopus, and PsychINFO, and a standardized methodological quality assessment was performed for each study. The main findings offered by the 43 studies included are, 1) regarding emotional appraisal/identification, binge drinking is related to heightened negative emotional states, including greater severity of depressive and anxiety symptoms, and have difficulties in recognizing emotional cues expressed by others; 2) regarding emotional response, binge drinkers exhibit diminished emotional response compared with non-binge drinkers; 3) regarding emotional regulation, no experimental data currently support impaired emotion regulation in binge drinking. Variability in the identification and measurement of binge drinking habits across studies limits conclusions. Nevertheless, current findings establish the relevance of emotional processes in binge drinking and set the stage for new research perspectives to identify the nature and extent of emotional impairments in the onset and maintenance of excessive alcohol use.

Keywords: emotional identification, emotional response, alcohol.
1. Introduction

Binge drinking consists of drinking large quantities (more than 60 gr of pure ethanol on one occasion, leading to a blood alcohol concentration level of at least 0.08%) in a short time interval – usually less than two hours (Courtney & Polich, 2009; NIAAA¹, 2004; WHO², 2018). This drinking pattern is common to youth from adolescence to young adulthood in most Western countries (ESPAD³, 2016; SAMHSA⁴, 2016). Recent statistics show that almost 90% of young people (18 years old or older) have already drunk alcohol, and 30% engaged in binge drinking (NIAAA, 2018). Moreover, nearly 12% of youth before the legal age (12-20 years old, United States) and 40% of college students (18-22 years old) report binge drinking habits (NIAAA, 2018). As bingers drink heavily but irregularly, this habit is also characterized by withdrawal episodes. The repeated alternation between high intake and withdrawal, known to be particularly detrimental for brain functioning (Alaux-Cantin et al., 2013; Pascual, Blanco, Cauli, Miñarro, & Guerri, 2007), has guided some authors to propose that binge drinking might lead to cerebral impairments similar to those reported in severe Alcohol Use Disorder (AUD) (e.g., Stephens & Duka, 2008). Comparable impairments between binge drinkers and patients with severe AUD have actually been identified by neuropsychological (see Carbia, López-Caneda, Corral, & Cadaveira, 2018a for a systematic review), neuroimaging, and electrophysiological (see Cservenka & Brumback, 2017; Maurage, Petit, & Campanella, 2013a for reviews) studies. Nevertheless, whereas emotion research constitutes a burgeoning field in severe AUD, explaining excessive drinking episodes and relapse risks (e.g., Bora & Zorlu, 2017; Le Berre, 2019), no paper has reviewed available data to determine the role of emotional processes in binge drinking. Emotional alterations play a role in excessive alcohol use but also

¹ National Institute on Alcohol Abuse and Alcoholism
² World Health Organization
³ European School Survey Project on Alcohol and Other Drugs
⁴ The Substance Abuse and Mental Health Services Administration
in the development of comorbid affective disorders that influence control over drinking (Boden & Fergusson, 2011). Thus, identifying alterations in emotional control and related processes may enhance a fundamental understanding of youthful hazardous drinking. Moreover, the neurotoxic effects of alcohol on the developing brain together with emotional and stressful events occurring during adolescence may increase the propensity of emotional disturbances (Agoglia & Herman, 2018; Elsayed et al., 2018) and create a self-perpetuating disorder.

Dual-process Approach of Binge Drinking

Dominant neuroscientific models of addictive behaviors and models of binge drinking have focused on drug-driven emotions and inhibitory control (e.g., Goldstein & Volkow, 2011; Koob, 2015), without integrating emotional processes per se. Indeed, most studies capitalized on a dual-process view, proposing an interaction between two types of processes related to specific brain systems (e.g., Blanco-Ramos, Cadaveira, Folgueira-Ares, Corral, & Rodríguez Holguín, 2019; Carbia, Corral, Doallo, & Caamaño-Isorna, 2018b; Castellanos-Ryan, Rubia, & Conrod, 2011; Lannoy, Billieux, & Maurage, 2014; Oei & Morawska, 2004; Peeters et al., 2012). The first one, *System A*, is sustained by the (bottom-up) limbic brain network (Hampton, Adolphs, Tyszka, & O’Doherty, 2007) and involves processes such as automatic/motivational tendencies (e.g., positive bias towards alcohol; Carbia et al., 2018b; reward-seeking, expectancies towards alcohol; Castellanos-Ryan et al., 2011; Oei and Morawska, 2004). The second one, *System B*, is sustained by the (top-down) prefrontal brain network (Daw, Niv, & Dayan, 2005) and encompasses cognitive processes such as executive functions or more specifically the ability to control alcohol consumption (Lannoy, Maurage, D’Hondt, Billieux, & Dormal, 2018a; Oei & Morawska, 2004). In line with what has been found in severe AUD, results showed an imbalance between these systems in binge drinking: high alcohol bias/expectancies towards alcohol combined with poor executive control predicts binge drinking (Carbia et al., 2018b; Morawska & Oei, 2005; Peeters et al., 2012). Studies focusing
on adolescence also speculated that the interaction between Systems A and B would be explained by a brain maturation imbalance: (a) limbic and paralimbic brain areas mature during early adolescence, following hormonal changes, and this modification results in increased reward sensitivity; (b) conversely, prefrontal and parietal cortices mature gradually during late adolescence, and this later maturity explains poor control abilities (Shulman, Harden, Chein, & Steinberg, 2015; Steinberg, 2007). The interaction between heightened reward sensitivity and poor control abilities might therefore lead to risk-taking behaviors in adolescence (Casey & Jones, 2010; Somerville, Hare, & Casey, 2011; Steinberg, 2007), including binge drinking (Noël, 2014; Peeters, Vollebergh, Wiers, & Field, 2014). These proposals, however, have been based primarily on studies exploring System A functioning through cue-reactivity, System B functioning through memory/executive function abilities, or both systems. To address the dearth of knowledge regarding the contribution of emotional processes, this review considers how emotional processing adds value to the current understanding of binge drinking.

1.1. The Role of Emotion

Emotion plays an essential role in the emergence and maintenance of psychopathological disorders. A dominant theoretical view for describing emotion depicts it as a multidimensional response comprising multiple components of emotional processing (Phillips, Drevets, Rauch, & Lane, 2003a). The constellation of components combines three successive steps, usually following a stimulus presentation: emotional appraisal and identification, emotional response, and emotional regulation (Phillips et al., 2003a). As this model identifies distinct emotional processes and has received strong support (e.g., Pessoa, 2017), we will use it as a theoretical framework for the present review. First, emotional appraisal and identification allow assessing an emotional stimulus or situation. Emotional stimuli may be internal (self-emotional states) or external (situation or other individuals’ emotional expressions). In human research, this process has been investigated by self-report questionnaires requiring one to identify internal
states (for internal stimuli) or by paradigms requiring the identification of emotionally salient stimuli; e.g., facial emotional expressions, emotional scenes (for external stimuli). Specific brain regions are involved in this external identification, namely the amygdala, insula, ventral striatum, thalamus, and hypothalamus (Britton et al., 2006; Murphy, Nimmo-Smith, & Lawrence, 2003; Pessoa, 2017; Phillips et al., 2003a). Second, emotional response is a reaction to the emotional situation. The inference of the emotional experience leads to feelings and reactions. This response is often described by cognitive, physiological, and behavioral correlates (e.g., danger-related thoughts, accelerated heartbeats, increased sweat, behavioral approach/avoidance tendencies). In human research, this process has been investigated by paradigms inducing affective states (e.g., mood induction, fear conditioning). The brain regions associated with this process are the amygdala, ventral striatum, insula, and orbitofrontal cortex (Britton et al., 2006; Murphy et al., 2003; Phillips et al., 2003a). The final stage of emotional processing is the emotional regulation of affective states and action tendencies (e.g., voluntarily slowing breath, using relaxation or cognitive restructuring). This step is critical for personal and social adaptation, poor emotional regulation being considered a central transdiagnostic process explaining several psychopathological states (see Sloan et al., 2017 for a review). In human research, emotional regulation has been investigated by paradigms involving response to or control from responding to emotional stimuli. The specific neural correlates associated with this process are the anterior cingulate and dorsomedial prefrontal cortices (Esperidião-Antonio et al., 2017; Murphy et al., 2003; Phillips et al., 2003a; Stevens, 2011).

These emotional processing steps enable disentanglement of the complexity of emotions and allow the exploration of individual abilities to process and react to emotional stimuli. It is worth noting that these steps are frequently intertwined, but can also be reported independently (e.g., an emotional response may occur without a specific emotional stimulus presentation and...
Critically, this model describes emotional processing as the successive steps occurring in a specific situation, but the processing of emotional signals may also lead to long-term emotional outcomes (e.g., depressive symptoms; Phillips, Drevets, Rauch, & Lane, 2003b). The relationship between alcohol and depression being crucial to better understand the onset and perpetuation of alcohol misuse (Boden & Fergusson, 2011), this paper will consider both short-term (e.g., self-reported emotional states at the time of the study) and long-term (e.g., persistent and significant depressive or anxious symptoms) perspectives.

In severe AUD, the role of emotional processing is critical and may explain the maintenance of substance abuse (Koob, 2015). Although patients can exhibit emotional deficits resulting from the alcohol’s effects on the brain (Bora & Zorlu, 2017), these emotional deficits can also be involved in relapse (Le Berre, 2019). Patients with severe AUD are impaired for the whole emotional processing stream, with deficits in emotional identification and regulation particularly salient (Le Berre, 2019). In binge drinking, the study of emotional processes only emerged recently. It has been proposed that the repeated alternations between high alcohol consumption and abstinence led to deleterious brain effects in binge drinking, especially in the prefrontal cortex and amygdala, which might produce similar emotional impairments than those observed in severe AUD (Stephens & Duka, 2008). The aim of this review is to highlight how emotion research may bring insight into understanding the antecedents and consequences of binge drinking. We aim to explore which emotional processing steps are altered in binge drinking and how emotional impairments may be related to alcohol-related outcomes in a non-clinical population. For this purpose, we adopted a comprehensive and systematic approach to review emotion studies in binge drinking for the first time. We expect that emotional difficulties will be reported in binge drinking, particularly for emotional identification and response, as these stages appear particularly related to the effects of alcohol (Bora & Zorlu, 2017; Stephens & Duka, 2008).
2. Methods

2.1. Inclusion Criteria and Articles Selection

The systematic research has been conducted according to the model of emotional processing previously described (Phillips et al., 2003a; 2003b). The reliability of this framework is supported in various studies (e.g., Caparelli et al., 2017; Rutter et al., 2019) and offers a theoretically driven research including distinct emotional processes. As this research field is nascent, lenient inclusion criteria were used to offer a broad representation of the field.

To determine inclusion criteria, we used a modified PICOS (Population, Intervention, Comparator, Outcome, Study design/setting) procedure for observational studies (Liberati et al., 2009): (1) the Population referred to human participants (adolescents and adults, identified age range: 13-74 years old) with current binge drinking (as a pattern of alcohol consumption) or having presented at least one binge drinking episode. Studies referring to other patterns of alcohol use (e.g., severe AUD, maternal binge drinking) that may bias the current results were excluded. We also excluded animal studies. In order to offer a comprehensive view of the relationship between binge drinking and emotional processing, no exclusion criterion was related to personal, demographic, and socio-economic characteristics. Regarding psychopathological conditions, we included studies assessing depression and anxiety, as these psychopathological symptoms are closely related to impaired affective processing and thus of critical importance when considering the links between emotional variables and binge drinking.

The presence of other psychopathological disorders not related to emotional processes (e.g., Attention Deficit Hyperactivity Disorder, Posttraumatic Stress Disorder) constituted an exclusion criterion as they may bias the interpretation of emotional difficulties (e.g., the difficulties observed may not be specifically related to binge drinking but rather, at least partly, to the comorbid pathological condition, which is not directly related to emotional processing and, therefore, out of the scope of the present review); (2) regarding Intervention, we focused
on alcohol drinking and considered both the immediate (i.e., emotional processing after
drinking alcohol; acute consumption) and long-term alcohol influence (i.e., stable emotional
processing among binge drinkers, outside the intoxication episodes). As the definition of binge
drinking varies widely across studies, we included all studies referring to the concept of binge
drinking, recognizing that the specificity of alcohol use criteria would be evaluated in the
quality assessment; (3) as Comparator, we considered two types of studies: those presenting
experimental comparisons (between binge drinking and control groups or between emotional
and control conditions) and those evaluating the relationship between binge drinking and
emotional processing (without group comparison), controlling for personal, demographic, and
psychopathological variables when statistically appropriate; (4) the Outcome focused on
emotion. Accordingly, research using self-report measures, behavioral tasks,
electrophysiological, or neuroimaging data were included if participants were required to
process emotional information or if emotional measures were taken; (5) the Study design
included correlational or experimental studies but excluded research focused on the evaluation
of clinical interventions as well as single-case or case series studies or publications without
experimental data (e.g., comments, reviews).

The guidelines of the Preferred Reporting Items for Systematic reviews and Meta-
Analyses (PRISMA) were followed (Moher, Liberati, Tetzlaff, & Altman, 2009), as reported
in the PRISMA checklist (see supplementary material). Inclusion criteria included peer-
reviewed articles published in English between January 1st, 2000 and June 1st, 2020. The
systematic research was conducted in three databases (PubMed, Scopus, PsychINFO).
Keywords were determined following the theoretical proposal of Phillips and colleagues
(2003a) for emotion (emotional appraisal OR emotional identification OR emotional response
OR emotional regulation OR emotion OR emotions) and related to binge drinking (binge
drinking OR heavy drinking OR social drinking OR college drinking). The initial search
produced 575 papers, 43 of which met inclusion criteria for this review (see Figure 1 for a flowchart of article selection). As an example, the search for emotional response AND binge drinking in PubMed led to 72 results, 18 were removed because they were already found in other research (i.e., emotional appraisal, emotional identification) and 54 abstracts were screened. Articles were excluded when they did not focus on human studies (n=11), emotional processing (n=16), or binge drinking (n=10). We read 17 full-texts and excluded six other articles (intervention studies, no binge drinking measure). Then, four articles were included, related to internal emotional identification (i.e., Bekman, Winward, Lau, Wagner, & Brown, 2013; Pape & Norström, 2016; Scaife & Duka, 2009, Strine et al., 2008). The final research led to the identification of seven articles, included for the evaluation of emotional response. This procedure was applied for all searches. The first author performed the search in the databases and the first and last authors (SL and PM) conducted the articles’ selection based on exported PDF files.

2.3. Methodological Quality Assessment

The existing literature describes many ways to assess the quality of research studies without a specified standard (Zeng et al., 2015). Indeed, such assessments may appear subjective and have to be adapted according to the specific aims of each review. Consequently, for the present review, identified articles were assessed based on an adapted version of the AXIS criteria (Downes, Brennan, Williams, & Dean, 2016). This tool was developed to be adapted across all scientific disciplines, and its reliability was ensured by a Delphi panel (validation of 18 experts) (Downes et al., 2016). Its non-specificity affords a simple and clear way for a critical appraisal of the literature, which matched our aim to include studies using a variety of approaches (e.g., neuroscience, psychology) to assess emotional processing.
The final criteria appear in Table 1, with the detailed evaluation of each study. In summary, six items were deleted or modified from the original scale because they were not directly relevant: items 8 and 9 were combined in a unique item (item 13 in the adapted scale, referring to manipulation of the dependent variable and its appropriateness), evaluation of sample size was added in item 3 (to determine what a sufficient sample size was, we referred to previous studies and defined a minimum of 25 participants for group studies; Carbia et al., 2018a, and 52 participants per predictors for correlational studies; Maxwell, 2000), and items 13, 15, and 19 were deleted as they referred to non-response bias, internal consistency (already assessed in other items), and conflicts of interest, respectively. Several adaptations were also conducted regarding selection criteria and representativeness of the population to meet the specific needs of the present paper (e.g., evaluation of timeframe, intensity, and frequency of binge drinking).

To increase the procedure reliability, this quality assessment was performed by two independent judges (authors SL and PM). The total agreement between the assessors was 87.9% (= 605/688), which can be evaluated as very strong (McHugh, 2012). Assessment discrepancies were related to two items (6 and 10). Thus, the minimum quantity of alcohol in a binge drinking episode (i.e., the consumption of at least 60 gr of pure ethanol on one occasion, 56 gr was considered if authors used distinct categorization for girls; binge drinking score) and the reliable ways to determine statistical significance to reach a consensus (e.g., p-values, confidence intervals) were discussed. A score (i.e., percentage of "Yes" answers) was computed to provide an overview of the quality associated with each study (i.e., poor quality for scores below 50%, fair quality for scores between 50 and 69%, good quality for scores between 70% and 79%, strong quality for scores of 80% and beyond; Black et al., 2017; Maurage, Masson, Bollen, & D’Hondt, 2020).

3. Results

3.1. Description of the Studies
For each study, data were extracted systematically using the PICOS framework. All details regarding the sample, inclusion/exclusion criteria, or emotional processes and measures are reported in Tables 2-4. The Results section describes the key conclusions related to each research study and is divided into three sub-sections, organized according to the theoretical model of emotional processing (Phillips et al., 2003a): emotional appraisal and identification (subdivided in self/internal emotional identification and other/external emotional identification), emotional response, and emotional regulation.

Study characteristics are illustrated in Figure 2. Regarding the geographical distribution (i.e., affiliation of the first author), the papers selected were mainly from North America (the United States of America and Canada) and Europe (the United Kingdom, Belgium, Sweden, Spain, and Italy), one from Uruguay, and one from Thailand. The yearly number of publications increased after 2012 and most studies were cross-sectional (81.4%). Among longitudinal studies (18.6%), seven were related to the evaluation of internal emotional states and its association with binge drinking and one with external emotional identification. Self-reported measures were mainly used to assess internal emotional identification and emotional regulation, whereas studies assessing external emotional appraisal/identification and emotional response used behavioral tasks or a combination of behavioral and neuroimaging/(electro)physiological measures. Only six studies (13.9%) focused on the effects of acute alcohol intake at binge-drinking level or among binge drinkers for the evaluation of emotional experience and emotional response. Finally, in 16 of the studies included (37.2%), participants had to process emotional stimuli (emotional scenes, emotional facial expressions, emotional words, or emotional voices).

3.1. Quality Assessment
The methodological quality of the 43 studies (Table 1) was globally estimated as good according to the applied criteria (i.e., only three studies had a score below 50%). All studies had clear research objectives and the majority took the influence of confounding factors into account (e.g., depression, anxiety, drug use) (65.1%). The selected studies covered various designs and methodologies, but the vast majority proposed clear study aims and a justified experimental protocol. Nevertheless, most studies did not justify their sample size based on a priori power computation or previous experiments. Studies comparing groups with experimental measures also had small sample sizes (i.e., 60% had fewer than 25 participants per groups) with often unbalanced gender ratio (e.g., some studies focusing only on women). Moreover, we found a poor evaluation of binge drinking habits in 58.1% of the papers, few studies combining sufficient quantity (i.e., at least 56/60 gr) and timeframe (i.e., at least six months) measures to evaluate habit validly.

3.2. Emotional Processing in Binge Drinking

3.2.1. Emotional Appraisal and Identification (Table 2)

Emotional identification of internal cues. This section comprises 19 studies that evaluated the identification of internal emotions. This subsection has been divided into two categories: 1) the current emotional states (i.e., those felt during the evaluation like stress or short-term negative/positive affect); 2) the longer-term and prolonged emotional states or mood disorders, like depression and anxiety.

First, the evaluation of current emotional states showed that binge drinking is differentially associated with loneliness, stress, and short-term affect according to age. In adolescents (13-15 years old), loneliness was related to past 30-day binge drinking (Stickley, Koyanagi, Koposov, Schwab-Stone, & Ruchkin, 2014), but in college students (18-29 years old) perceived stress predicted binge drinking two weeks later (Chen & Feeley, 2015). Regarding
mood, an initial study indicated that binge drinkers (18-30 years old) reported less positive mood than non-binge drinkers (Townshend & Duka, 2005), but results were not supported in other studies among similar populations (Hartley et al., 2004; Scaife & Duka, 2009). Another study evaluating mood considered the effects of school-related stress and sex in college students (mean age: 20.83 years old). In men, school-related stress was indirectly related to binge drinking through its positive relation with depressive mood, which was directly related to binge drinking. In women, depressive mood was indirectly related to binge drinking through school stress, which was directly and negatively related to binge drinking (Pedersen, 2013). The relationship between binge drinking and mood is thus influenced by stress and differs according to sex. Interestingly, a study evaluated whether alcohol abstinence was related to negative mood in young binge drinkers (16-18 years old). The prevalence of negative mood was related to the specific number of drinks consumed on one occasion and to the total number of drinks consumed before the abstinence period (Bekman et al., 2013). Further, depressive and anxiety symptoms were more pronounced in binge drinkers than in non-binge drinkers during the early stages of abstinence (before 4 weeks) but disappeared by the end of abstinence. In general, these studies suggest that current emotional states (loneliness, stress, mood) are associated with binge drinking and with early stage of alcohol abstinence in binge drinkers, but relevant parameters including age and the type of emotional states need to be determined.

Additional studies have explored whether mood impairments were observed after drinking alcohol at binge levels (acute alcohol consumption). Rose and Grunsell (2008) showed that mood evaluation differed between binge drinkers and non-binge drinkers (18-25 years old) following both alcohol and placebo intakes. Binge drinkers showed diminished feelings of stimulation in the placebo condition, and more lightheadedness in the alcohol condition (Rose & Grunsell, 2008). The mood alterations after drinking alcohol were supported and extended by another study indicating impaired mood the morning after drinking alcohol (average of 0.12
% breath alcohol concentration) in young people (21-24 years old) who presented at least one binge-drinking episode in the past month (Howland et al., 2010). Longitudinally, alcohol consumption affected both positive and negative mood in young adults (21-28 years old), higher alcohol-induced positive mood was associated with more frequent binge drinking and more alcohol-related problems after 18-month, and higher negative mood reduction from alcohol predicted more alcohol-related problems (Venerable & Fairbairn, 2020). Together, these findings suggest that drinking alcohol (acute intoxication) impairs mood in binge drinkers and has implications for understanding differential effects of current and long-term emotional states in binge drinking (long-term effects of alcohol).

Second, cross-sectional studies showed that binge drinking is related to depression and anxiety in different age ranges and countries. In all studies, the diagnosis of depression and anxiety was based on cutoff scores from validated questionnaires but was not formally performed by a psychiatrist. A large-scale study conducted in the United States evaluated the prevalence of binge drinking in adults (18 years old or older) with current or previous depression diagnosis. Participants with current depression or having a lifetime history of depression or anxiety exhibited more binge drinking than controls (Strine et al., 2008). In Thailand, another large-scale study conducted among adolescents (12-17 years old) supported the association between binge drinking and depression, particularly among girls (Wichaidit, Pruphetkaew, & Assanangkornchai, 2020). In South Africa, suicidal thoughts were associated with depression, anxiety, worthlessness, and binge drinking in young men (Mngoma, Ayonrinde, Fergus, Jeeves, & Jolly, 2020). In Uruguayan college students (18-30 years old), however, psychological distress (i.e., anxiety, depression, distress) was not associated with binge drinking but rather with negative alcohol consequences (Ruiz, Pilatti, & Pautassi, 2020). Longitudinal studies enable specifying antecedents of these relations. In college students (mean age of 19.9 years), depressive symptoms predicted binge drinking over one week in women
(Mushquash et al., 2013). Longer-term longitudinal studies indicated that sub-clinical anxious and depressive symptoms in the general population (18-74 years old) were related to the onset of AUD but not of binge drinking at 12-month follow-up (Haynes, Farrell, Singleton, Meltzer, & Aya, 2005). However, in the transition from adolescence to adulthood (13-17 years old at baseline), a 13-year longitudinal study specified that depressive symptoms were positively associated with binge drinking (Pape & Norström, 2016). Interestingly, depressive and anxiety symptoms in binge drinkers were related to greater activations in limbic and fronto-striatal regions when viewing alcohol cues compared to other appetitive cues, supporting the relationship between depression, anxiety, and the potential reinforcement of alcohol drinking (Ewing, Filbey, Chandler, & Hutchison, 2010).

Finally, the relationships identified between internal emotional states and binge drinking did not address the specificity of these emotional states in binge drinkers relative to comparison groups (either non-binge drinkers\(^5\) or teetotalers\(^6\)). For example, it has been shown that young adult binge drinkers (18-23 years old) exhibited lower trait-anxiety and depression than teetotalers (Hartley, Elsabagh, & File, 2004). Yet, the comparison between binge drinkers and teetotalers may lead to unexpected results, as teetotalers may exhibit higher levels of somatic anxiety and aggressive mood (Gil-Hernandez & Garcia-Moreno, 2016). Further, in comparison with non-binge drinkers, adolescent binge drinkers (16-18 years old) presented greater anxiety and depressive symptoms (Bekman et al., 2013), but this result was not replicated among young adults (mean age of 21.1; Nourse, Adamshick, & Stoltzfus, 2017).

Interim summary: The investigation of internal emotional identification shows that both current emotional states as well as depression and anxiety symptoms are related to binge drinking. Overall, findings seem to indicate that loneliness is more prevalent in early adolescence,

\(^5\) Individuals with regular drinking habits but without binge drinking pattern

\(^6\) Non-drinking participants
whereas high stress levels are more frequent in late adolescence. The evaluation of mood leads to consistent results in studies evaluating alcohol drinking and abstinence, showing an augmentation of positive mood immediately after alcohol drinking and the emergence of negative mood the day after drinking or when adolescents quit drinking. Finally, the relation between binge drinking and depression or anxiety is supported in several studies but also seems influenced by other alcohol outcomes, such as severe AUD or alcohol-related problems. These findings are particularly important for healthcare providers, as emotional identification of internal cues is related to binge drinking in prospective studies.

Emotional identification of external cues. External emotional identification has been investigated in binge drinking by 12 studies using various measures. This subsection has been divided into two categories. First, *external emotional appraisal,* namely the ability of binge drinkers to appraise emotional situations (e.g., emotional situations or scenes), was measured in two studies. Secondly, *emotional identification,* the ability of binge drinkers to identify emotional states expressed by other individuals (e.g., emotional faces), was targeted in ten studies. For the sake of clarity, we first describe in each subsection the results obtained with self-reported and behavioral measures, before shifting to the studies based on brain-functioning measures.

Regarding emotional appraisal, a first study underlined that poor self-reported distress appraisal predicted alcohol-related problems in binge drinkers (18-23 years old). This relationship was explained by a propensity to drink to deal with negative emotions (Khan et al., 2018). Then, emotional appraisal was assessed through brain electrophysiological activity (electroencephalographic recordings) while participants rated positive, negative, erotic, and neutral images (Huang, Holcomb, Cruz, & Marinkovic, 2018). Results comparing binge drinkers and non-binge drinkers (18-30 years old) showed no group difference in the self-reported appraisal of emotional images. However, reduced sensitivity in event-related theta
power was found in binge drinkers during emotional appraisal, both at early and later processing stages. During emotional appraisal, binge drinkers also presented attenuated differences between neutral and emotional conditions in comparison with non-binge drinkers. This indicates that attentional resources during emotional appraisal are reduced in binge drinkers, potentially limiting their ability to evaluate and react to emotional stimuli accurately (Huang et al., 2018).

Regarding the identification of others’ emotional states, recent studies present behavioral insights about the binge drinkers’ abilities to identify and recognize emotional expressions. Performing a crossmodal identification task (facial and vocal stimuli depicting anger and happiness), binge drinkers did not differ from non-binge drinkers (18-23 years old; Lannoy, Dormal, Brion, Billieux, & Maurage, 2017). However, in a more complex task, binge drinkers (18-27 years old) exhibited poorer performance than non-binge drinkers in recognizing emotional categories presented at different intensities (Lannoy et al., 2018b). This first study produced a group effect nonspecific to emotional category, whereas a second exploration in a larger sample specified that binge drinkers had impairments in recognizing fear and sadness (Lannoy et al., 2019). Individual single-case analyses have also been conducted in this larger sample to explore the percentage of binge drinkers who actually presented a clinically significant emotional recognition deficit compared to a group of matched control participants: 21.15% of binge drinkers were identified as having a deficit for fear recognition and 15.38% for sadness recognition. These studies thus illustrate that binge drinkers have overall difficulties to recognize emotions, while clinical deficits were identified in a subsample of binge drinkers.

Then, comparing binge drinkers of different intensities (high and low binge-drinking score) among college students (mean age of 21.2) and youth (mean age of 15.4), another study indicated that low binge drinkers had difficulties to detect sadness whereas high binge drinkers correctly detected sadness but poorly recognized fear (Leganes-Fonteneau, Pi-Ruano & Tejero, 2021).
2019). Finally, evaluating the impact of emotional processing on memory, it has been shown that college students with binge drinking (18-20 years old) had a negative emotional recall bias. Results showed no significant effects in males but an emotional memory bias for negative words in females; i.e., higher recall of negative words, increased false alarms for negative emotional distractors, and lower recall of positive and neutral words (Carbia, Corral, Caamaño-Isorna, & Cadaveira, 2020). These findings thus support the proposal of impaired processing of external emotional contents in binge drinkers and show possible specific difficulties with negative emotions.

In addition to these results, studies have evaluated emotional identification through electrophysiological brain measures. Indeed, behavioral studies were not always able to detect subtle differences between binge drinkers and healthy controls (e.g., Lannoy et al., 2017). Electrophysiological measures thus offer a complementary observation of the brain correlates during external emotional identification. Ehlers and colleagues (2007) focused on young adults who had experienced at least one binge drinking episode or had both binge drinking and drug use histories and compared them to non-bingeing and non-drug-consuming controls (18-25 years old). Electrophysiological activity was explored during the identification of happy, sad, and neutral faces, and results suggested a reduced recruitment of attentional resources during emotional identification in young adults with a binge drinking history (i.e., decreased amplitude of the late P3 component). Young adults with binge drinking and drug history also depicted a faster latency of the early P3 component for all stimuli compared with controls, this being interpreted as a possible effect of alcohol and drug use on developmental changes in the P3. Another study (Lannoy et al., 2018c) explored emotional crossmodal integration as described above and showed differences in electrophysiological activity in binge drinkers compared to both teetotalers and non-binge drinkers (18-29 years old). In particular, greater brain activity was observed for anger processing than for happiness in binge drinkers, they also presented
increased brain activity during incongruency (e.g., a happy face presented together with an angry voice). Differences in electrophysiological activity were finally observed when binge drinkers had to process vocal stimuli consisting of the emotional enunciation of a semantically neutral word. Results indicated that after nine months of binge drinking, participants (mean age of 18.17 years old at baseline) who did not present a binge drinking pattern at baseline depicted delayed latency of the ERP components related to early perceptive-attentional (P1, N2) and late decision-related (P3) processing (Maurage, Pesenti, Philippot, Joassin, & Campanella, 2009), supporting that short-term binge drinking lead to modification of brain activity during emotional identification of anger and fear.

Eventually, the occurrence of brain modifications during emotional identification has been supported by a neuroimaging study (Maurage, Bestelmeyer, Rouger, Charest, & Belin, 2013b) that used morphed auditory stimuli (fear-anger continuum). Relative to non-binge drinkers, binge drinkers (19-32 years old) presented poorer ability to categorize emotional contents at the behavioral level and disrupted brain activation during emotional identification, namely lower activation of the bilateral superior temporal gyrus and increased activation of the right middle frontal gyrus. Authors proposed that the lower temporal activation observed in bingers indicated an impaired processing of affective sounds, whereas the greater frontal activation reflected a compensatory activity. Brain responses during emotional identification (i.e., emotional faces of anger, fear, or neutral expressions) were also used to classify binge drinkers and non-binge drinkers (22-35 years old) using machine learning algorithms. Results, however, showed that emotional processes were not among the variables offering a reliable distinction between groups. Neural correlates of social cognition were conversely related to a trustworthy group classification (Gowin, Manza, Ramchandani, & Volkow, 2020).

Interim summary: The investigation of external emotional identification highlights emotional difficulties related to binge drinking. Emotional appraisal was only documented in two studies.
Results showed lower attentional resources to *appraise* emotional images in binge drinkers, while poor appraisal of distress was related to alcohol-related problems. Lower attentional resources to *identify* emotional images were also linked to binge drinking. Regarding facial expressions processing, findings highlight consistent difficulties to recognize fear, while impairments in the recognition of sadness need to be further supported. Brain activity during emotional facial expressions processing appear to be disturbed in binge drinking, but this impairment is not sufficient to distinguish binge drinkers from non-binge drinkers. In order to delineate clinical perspectives, longitudinal findings are still needed to determine whether disrupted external emotional identification is a consequence of binge drinking (alcohol’s effect on the brain) and/or a risk factor for excessive drinking.

3.2.2. Emotional Response (Table 3)

Emotional response has been assessed in seven studies focused on binge drinking, using various measures and emotional induction procedures. We first describe results obtained with behavioral evaluations, then synthetize the insights offered by physiological and brain data, and finally we illustrate emotional responses after drinking alcohol.

A behavioral study demonstrated the effect of mood induction by short video clips (sad, happy, and neutral mood) on specific drinking responses (i.e., implicit and explicit alcohol-related associations and effective drinking in a taste test) in binge drinkers (21-25 years old; Lindgren et al., 2018). A positive relation was found between alcohol depressed associations (i.e., low excitement) and alcohol drinking and was stronger after the induction of sadness, whereas the link between alcohol excitement and alcohol drinking was stronger after the induction of happy or neutral mood (Lindgren et al., 2018). Beyond the potential effects of alcohol consumption in mood described earlier (i.e., drinking alcohol leads to negative mood), this study suggested that a specific emotional situation may influence drinking-related
responses in binge drinkers (e.g., sad mood leads to drinking alcohol). However, these results only modestly predicted effective drinking in the taste test. Whereas this study showed the effects of both positive and negative emotional induction, another study explored distress induction using the anagram solution task (requiring participants to resolve soluble and insoluble anagrams); however, binge drinkers (18-30 years old) did not present higher self-reported distress than non-binge drinkers after the task (Poncin, Vermeulen, & de Timary, 2017).

Physiological measures (e.g., body changes related to a stimulation) presents an additional perspective on induced emotional responses. In one study, binge drinkers and non-binge drinkers (19-30 years old) were conditioned to an aversive auditory procedure (i.e., fear conditioning; a conditioned stimulus notifying the appearance of an aversive stimuli) while electromyographic data and skin conductance were recorded (Stephens et al., 2005). Binge drinkers exhibited impaired fear conditioning as they did not present 1) the classical increased amplitude of the startle response when the conditioned stimulus (aversive stimulus) was presented before the unpleasant noise related to fear conditioning; or 2) an increased galvanic skin response for the conditioned stimulus (Stephens et al., 2005). Second, electrophysiological brain responses to the passive viewing of neutral, positive, and negative emotional images were aimed at assessing the differential and combined effects of binge drinking and depressive symptoms (Connell, Patton, & McKillop, 2015). Binge drinkers (18-22 years old) had attenuated attentional and higher-order cognitive resources to negative emotional stimuli (i.e., lower Late Positive Potential (LPP) amplitude). The combination of binge drinking and depressive symptoms also showed an increased early attentional engagement (Early Posterior Negativity) for negative and neutral images, but a reduced later processing (P3 and LPP) for all emotional categories (Connell et al., 2015). Thus, physiological data support an overall blunted emotional response in binge drinkers.
Support of these results come from investigations of emotional response after drinking alcohol at binge levels. A study using an auditory aversive conditioned procedure revealed that after drinking alcohol at binge levels, social drinkers (mean age of 21.6 years old) presented less avoidance of aversive noise than participants who were not subjected to binge drinking levels acutely (Loeber & Duka, 2009). This study supported the presence of an impaired emotional response when binge alcohol drinking, leading to a decreased avoidance of negative stimuli. Beyond the discrimination noise procedure, acute drinkers had poorer behavioral control. Indeed, during prepotent response inhibition (i.e., control of automatic behavioral responses) of affective words, acute drinkers exhibited more commission errors in response to positive words and slower reaction times in response to negative words (Loeber & Duka, 2009), suggesting low control towards positive stimuli and slow (reduced) response towards negative stimuli.

Finally, studies have evaluated how the expectancies related to alcohol may alter emotional responses following stress in college students. In an initial study (Balodis, Wynne-Edwards, & Olmstead, 2011), three groups (19-27 years old) were compared: drinkers with alcohol intoxication at binge levels, placebo drinkers (who believed they were drinking alcohol) and sobers (knowing they were not drinking alcohol). Physiological and self-reported emotional responses were evaluated following two conditions: stress (speech task in public) and non-stress. Exposure to stress in the alcohol and placebo groups induced less tension and anxiety and a smaller increase in cortisol compared to the placebo, demonstrating that alcohol expectancies altered subjective and physiological responses to stress (Balodis et al., 2011). This reduced physiological response to stress after drinking alcohol at binge levels was also supported by a study evaluating the specific alcohol stress-response dampening (i.e., reduction of the stress reaction after drinking alcohol; Hefner, Moberg, Hachiya, & Curtin, 2013). In this study, participants (21-35 years old) performed a task while receiving predictable and
unpredictable electric shocks (induction of fear and anxiety). The startle response was reduced in acute binge drinking in the unpredictable condition (anxiety elicitation); however, this result was observed in participants who actually drank alcohol but not in the placebo group, demonstrating a genuine alcohol-related dampening effect to uncertain threat.

Interim summary: The investigation of emotional response highlights consistent results supporting that binge drinkers exhibit a attenuated emotional responses, shown by 1) reduced startle in response to fear; 2) low electrophysiological attentional engagement in response to negative images, and 3) less avoidance of aversive stimuli. Most results are observed with physiological data, behavioral evidence of impaired emotional response, and its consequences (e.g., inappropriate reactions such as initiation of fight or drinking alcohol excessively) is thus lacking. Longitudinal data are needed to understand the causal relationship between impaired emotional response and binge drinking.

3.2.3. Emotional Regulation (Table 4)

Emotional regulation was explored in five studies: three measured global emotion regulation strategies through self-reported measures, and two evaluated how the presentation of emotional stimuli affects cognitive abilities (conceptualized as a specific regulatory strategy) in binge drinking. A further study (Poncin et al. 2017) described earlier is also relevant to explicating emotion regulation strategies.

A study targeting emotion regulation strategies demonstrated that the distress induced by an insoluble anagram task was associated with self-reported maladaptive emotion regulation strategies (rumination and self-blame) among binge drinkers but not non-binge drinkers (Poncin et al., 2017). However, with no previous distress induction, a study evaluating cognitive reappraisal and expressive suppression as adaptive and maladaptive emotion regulation strategies respectively, showed that only adolescent binge drinkers (16-21 years old)
who also presented binge eating had poor emotion regulation (Laghi, Liga, & Pompili, 2018). This observation was supported among young adults (17-22 years old), results showing that emotion regulation strategies did not differ between binge drinkers and non-binge drinkers (Trojanowski, 2019). Finally, when considering emotional regulation in the specific context of alcohol drinking, college students who had lower protective behavioral strategies (i.e., alcohol-related regulation strategies such as slowing the consumption speed) and poor drinking refusal self-efficacy reported higher binge drinking. The relationship between alcohol-related problems and emotional distress was mediated by coping-related drinking motivations (Ehret, Ghaidarov, & LaBrie, 2013), also reported previously (Khan et al., 2018).

Combining behavioral and neuroimaging measures, two studies evaluated whether the presentation of emotional stimuli can affect control ability (inhibition of automatic responses) and its relation to binge drinking (Cohen-Gilbert et al., 2017; Herman, Critchley, & Duka, 2018). Presenting positive and negative emotional scenes before inhibition targets, Cohen-Gilbert and colleagues (2017) showed that, among college students (19-20 years old), a higher number of binge-drinking episodes in the past three months was related to lower brain activations in the dorsolateral prefrontal cortex, dorsomedial prefrontal cortex, and anterior cingulate cortex when viewing negative emotional backgrounds. No association was found with positive versus neutral scenes. Using neutral and fear facial expressions, Herman and colleagues (2018) showed that higher binge drinking scores were related to lower activations in frontal and parietal brain areas during successful fear inhibition among a sample of adults (18-37 years old), suggesting that binge drinkers would be less distracted by negative emotional backgrounds, which actually leads to an increase of their cognitive abilities in a fearful context. In that sense, these results also support the inappropriate (reduced) emotional response in binge drinkers (see the above section). This study also evaluated the relevance of emotions on the ability to differ a reward (i.e., delay discounting task) and showed that higher binge drinking
scores were related to lower frontopolar activations during delayed reward decision after the presentation of fear. Although these studies go beyond the regulation of emotional response per se, they suggest that the indirect processing of emotional stimuli before or during cognitive processing may affect binge drinkers’ abilities to control behavioral reactions (Cohen-Gilbert et al., 2017; Herman et al., 2018).

Interim summary: The evaluation of emotional regulation has led to inconsistent results across studies, making it difficult to specify associations between emotional regulation disturbances and binge drinking. Studies using self-reported measures highlighted mixed results, with possible emotion regulation difficulties in specific contexts (e.g., after the insoluble anagram task or when emotional coping is needed). Studies using neuroimaging measures support the possibility of binge-related brain modifications related to regulatory processes affected by the processing of emotional stimuli.

4. Discussion

This systematic review describes the current state of emotion research in binge drinking. Emotional deficits have been largely documented in severe AUD, where they are considered a key factor explaining alcohol-related problems and relapse (e.g., Bora & Zorlu, 2017; Le Berre, 2019). Bingeing is a harmful drinking pattern, widespread in adolescence, with increased prevalence in young adults, possibly evolving toward AUD. The contribution of emotion research is, however, less straightforward in binge drinking than in severe AUD, only suggesting difficulties in specific emotional processes, such as impaired emotional response and reactivity associated with alcohol's effects on the amygdala (Stephens & Duka, 2008). To offer a systematic exploration of emotional processes in binge drinking, we capitalized on the theoretical proposal of Phillips et al. (2003a), referring to three steps of emotional processing:
emotional appraisal and identification (that has been split into two subsections related to internal and external emotional states), emotional response, and emotional regulation.

This review supports the proposal of impaired emotional processes in binge drinking by centrally showing that 1) internal emotional states as well as symptoms of depression and anxiety are associated with or predict alcohol use and binge drinking, and that binge drinkers have difficulties to identify emotions expressed by others; 2) binge drinkers also present a reduced behavioral and cerebral response to emotional stimulations or situations, but 3) binge drinkers do not appear to have impairments to regulate emotional responses. We have identified the need for longitudinal studies controlling for alcohol-related outcomes to advance our knowledge, but our systematic evaluation already has implications for fundamental research and clinical applications. Notably, these findings underline the role of emotional processes, which should be integrated in the current models of binge drinking. In the introduction, we noted that most proposals consider that addiction is related to heightened appetitive cues reactivity, reward seeking and poor executive functioning contributing to a poor control of alcohol-related behaviors (e.g., Lannoy et al., 2014; Voon et al., 2020). Recent systematic reviews focusing on binge drinking support this proposal (Carbia et al., 2018a; Courtney, Li, & Tapert, 2019; Lees et al., 2019). Here, we note the role of emotion with the model of Phillips et al. (2003a), which purports several conceptual considerations. Referring to dual-process models, emotion could be considered as part of System A and drives automatic behaviors (Steinberg, 2007; Volman, Roelofs, Koch, Verhagen, & Toni, 2011). However, this review clearly underlines that emotional processing does not present a total overlap with automatic processing, as it also involves regulatory processes. An alternative addiction model considering emotional processing is the triadic neurocognitive model, which postulates the existence of a third system modulating the interaction between Systems A and B, i.e., the insular cortex. According to this proposal (Noël, Brevers, & Bechara, 2013), the insula converts interoceptive
information into subjective experiences (e.g., physiological sensations), which activates System A and reduces the cognitive resources of System B. The role of the insula is widely described in emotional processing and related to the identification of and response to emotional stimuli (Phillips et al., 2003a; Wilcox, Pommy, & Adinoff, 2016). Nevertheless, with regards to the model of Phillips et al. (2003a), emotional processing also requires cognitive abilities that are, in this model, encompassed in System B. These conceptual issues may be answered by considering a recent position that goes beyond dual or triadic models and refers to unitary models, in which all cognitive and emotional processes are conceptualized into a functionally integrated system. Various evidence has supported this unitary approach (Hommel & Wiers, 2017; Melnikoff & Bargh, 2018; Murphy et al., 2003; Pessoa, 2017), showing that the nature of psychological processes is composed of several features. This integrated proposal also comports with the emotion model (Phillips et al., 2003a), showing that emotional processing encompasses both automatic and cognitive processes. Indeed, the theoretical background approached in this review does not only consider emotion as a situation driving alcohol-related behaviors, but also as a multidimensional process bringing strong insights to the study of binge drinking and AUD.

In particular, the internal emotional state has a role in binge drinking (e.g., Bekman et al., 2013; Mushquash et al., 2013; Pape & Norström, 2016). Although the current literature does not inform about the ability to identify one’s own emotional states (i.e., detecting and labeling the emotions felt), it does show a consistent relationship between excessive drinking and the presence of symptoms of depression and anxiety. Although this association is well-known to researchers and clinicians working with patients presenting severe AUD (Boden & Fergusson, 2011), it remained uncertain in non-AUD binge drinkers. Whereas binge drinking is often considered as driven by positive emotions (Kuntsche, Knibbe, Gmel, & Engels, 2005), this literature review extends this consideration to negative emotions, the "dark side" of excessive
drinking (Koob, 2015). Binge drinking was related to loneliness in adolescence and to
depressive symptoms in the transition from adolescence to adulthood and during adulthood. It
is thus possible that emotional dysregulation contributes to the escalation of binge drinking in
late adolescence, when alcohol is readily available (Rowland et al., 2016) and positive
expectancies abound (e.g., drinking to deal with negative emotions). Considering mood
evaluation, available studies showed promising results, but no convincing conclusion can be
drawn due to the limited number of studies and the inconsistent mood evaluation across them
(see Table 2). Future studies should further the understanding of acute binge drinking effects
on mood in order to determine how binge drinking may affect emotional states and how acute
effects may predispose to potential chronic effects (e.g., Howland et al., 2010; Venerable &
Fairbairn, 2020). One possibility is that the relationship between negative emotional states and
future alcohol abuse may be induced by the repetition of excessive drinking episodes, which
could support the late appearance of this association. Importantly, this association could also
be explained by an impaired emotional processing, possibly leading to negative affect and
social difficulties. Indeed, the current systematic review focused on a model of emotional
processing (Phillips et al., 2003a), which enabled an understanding of the presence of
disruptions related to external emotional identification and emotional responses in binge
drinking. In contrast to this clear result, impairments in emotional regulation in both general
and drinking contexts remain to be fully investigated.

Regarding the appraisal and identification of emotional states, several difficulties have
been reported in young adult binge drinkers. Lower percentage of correct emotional
identification were observed among binge drinkers in complex experimental paradigms,
whereas increased brain activity was found in less demanding tasks (Lannoy et al., 2018c;
Maurage et al., 2013b), suggesting that binge drinkers could show neural compensate for their
emotional processing difficulties. With measures of electrophysiological activity, consistent
results emphasized that binge drinkers have attentional difficulties in focusing on and efficiently appraising emotional content (e.g., Ehlers et al., 2007; Huang et al., 2017), which consequently hampers emotional identification (Lannoy et al., 2019). These findings constitute initial insight into the scope and limit of emotional difficulties in binge drinkers, which warrants considered at the clinical level, as a poor processing of emotional content has been associated with psychiatric symptoms (Phillips et al., 2003b).

Variability in emotional valences and intensities themselves and in the context of binge drinking need explication. The current literature indicates difficulties related to negative emotional processing (Huang et al., 2018; Lannoy et al., 2018c; Leganes-Fonteneau et al., 2019) but stops short of providing systematic evaluations and comparisons across emotional conditions. Indeed, although a tendency emerges for deficits in fear recognition (Lannoy et al., 2019; Leganes-Fonteneau et al., 2019; Stephens & Duka, 2008), it remains unclear whether the recognition of specific emotions is affected in binge drinking. Further, the production of emotional responses is impaired in binge drinkers, in particular in negative emotional context (Connell et al., 2015; Hefner et al., 2013; Herman et al., 2018; Loeber & Duka, 2009; Stephens et al., 2005). Such impairment is described by attenuated emotional response, both after acute alcohol consumption and among people without current intoxication but presenting a binge drinking pattern. Nevertheless, considering the model of Phillips et al. (2003a), it is unclear whether this altered response is the result of poor emotional appraisal and identification (e.g., reduced emotional response due to a misperception of the emotional significance) or a genuine emotional response impairment (e.g., inability to generate an appropriate emotional response).

The consideration of this theoretical model emphasizes the emotional processes that are disturbed in binge drinking but also calls for an in-depth investigation of emotional processing to address the nature of these difficulties. Although some studies implicate the need to consider emotional regulation in binge drinking, despite of the relevance of this process in severe AUD
(Petit et al., 2015), experimental results are lacking. Indeed, neuroimaging findings showed decreased brain activations during negative emotion-related inhibition (Cohen-Gilbert et al., 2017; Herman et al., 2018), but no finding supports that this deficiency is directly related to poor regulation of the emotional response, as proposed in emotional processing (Phillips et al., 2003a). Additionally, results based on self-reported measures do not demonstrate a specific impairment to regulate one’s own emotions in binge drinking (Laghi et al., 2018; Trojanowski, 2019), difficulties of binge drinkers being only related to specific contexts (e.g., Ehret et al., 2013; Poncin et al., 2017). Upcoming studies should thus further explore emotion regulation by considering the role of additional factors such as population heterogeneity and personality traits (Gierski et al., 2017; Maurage, Timary, & D’Hondt, 2017).

Taken together, these findings indicate that binge drinkers exhibit poor identification of emotional and social cues as well as poor emotional responses. These processes constitute risk factors for the perpetuation of excessive alcohol use (e.g., Rupp, Derntl, Osthaus, Kemmler, & Fleischhacker, 2017) and may lead to negative emotional states, reinforcing the vicious circle of AUD (Boden & Fergusson, 2011). Currently lacking are prospective evaluations that would enable investigation of whether disrupted emotional identification and emotional response in binge drinkers result from the effects of alcohol on brain structure and function and whether identified difficulties constitute risk factors for excessive drinking, as suggested in severe AUD (Bora & Zorlu, 2017; Le Berre, 2019; Rupp et al., 2017). In binge drinking, some proposals support the position that emotional difficulties are the result of drinking alcohol (e.g., Stephens & Duka, 2008), whereas others note modified frontostriatal and frontolimbic activations during emotional processing as a vulnerability (e.g., Heitzeg, Nigg, Yau, Zubieta, & Zucker, 2008).

Although emotional processes mature early (Steinberg, 2007), most studies exploring emotional abilities focused on late adolescence, 18 years old or older, and were cross-sectional, limiting observation of a potential interaction among age, development, and alcohol.
Furthermore, in patients with severe AUD, low awareness of emotional deficits and high level of alexithymia have been recognized and contribute to explain family, social, and professional troubles as well as difficulties in initiating and maintaining abstinence (Le Berre, Fama, & Sullivan, 2017; Le Berre & Sullivan, 2016; Le Berre, 2019). Beyond the importance to explore emotional processing with controlled experimental tools, these results thus extend the interest to explore awareness of emotional difficulties and ability to feel and identify ones’ own emotions in binge drinkers. Investigations could also target overall processes of social cognition such as theory of mind (Gowin et al., 2020), which intersects with emotional recognition and hazardous drinking (Le Berre).

This narrative review highlights the relevance of emotion research in binge drinking and recognizes the limitations to determining causal relationships between behavioral outcomes and drinking. First, it is unfortunate that a poor definition/evaluation of binge-drinking habits was found in half of the papers reviewed. This might lead to biases in the current results and calls for future studies with a well-defined binge drinking conceptualization (e.g., Maurage et al., 2020b). Second, whereas we did not limit inclusion criteria according to age, all but one study identified in our searches were conducted in adolescents or young adults, leaving a gap in the relationship between emotional processing and binge drinking in older adulthood as emotional processing changes with age (Wirth et al., 2017). Indeed, recent studies highlight the increase of binge drinking in adulthood (Hingson, Zha, & White, 2017), especially among older populations (age 60+) (Breslow, Castle, Chen, & Graubard, 2017; Han, Moore, Ferris, & Palamar, 2019). Exploring the role of emotional processing in transition towards late life binging thus appears crucial. This review emphasizes the need to delineate and differentiate emotional processing associated with different ages, sex (Carbia et al., 2020; Erol & Karpyak, 2015), and drinking (Mushquash et al., 2013).
References

 Consumption Among Older Americans: National Health Interview Surveys, 1997 to
 https://doi.org/10.1111/acer.13365
 Neural correlates of social and nonsocial emotions: An fMRI study. *NeuroImage, 31*(1),
5 Caparelli, E. C., Ross, T. J., Gu, H., Liang, X., Stein, E. A., & Yang, Y. (2017). Graph theory
 reveals amygdala modules consistent with its anatomical subdivisions. *Scientific
 Reports, 7*(1), 14392. https://doi.org/10.1038/s41598-017-14613-4
 https://doi.org/10.1016/j.drugalcdep.2020.107888
 young adults with a consistent binge drinking trajectory into adulthood. *Drug and
 Alcohol Dependence, 186*, 113–119. https://doi.org/10.1016/j.drugalcdep.2018.01.023
 neuropsychological studies involving young binge drinkers. *Neuroscience &

2 https://doi.org/10.1007/s11065-019-09411-w
3 Leganes-Fonteneau, M., Pi-Ruano, M., & Tejero, P. (2020). Early Signs of Emotional
4 Recognition Deficits in Adolescent High-Binge Drinkers. *Substance Use & Misuse*,
7 Moher, D. (2009). The PRISMA Statement for Reporting Systematic Reviews and
8 Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and
10 https://doi.org/10.1371/journal.pmed.1000100
13 drinking relation in college student heavy episodic drinkers. *Psychology of Addictive
16 response to avoid aversive consequences in social drinkers. *Psychopharmacology*,
20 Maurage, P., Lannoy, S., Mange, J., Grynberg, D., Beaunieux, H., Banovic, I., Gierski, F., &
21 Naassila, M. (2020). What We Talk About When We Talk About Binge Drinking:
22 Towards an Integrated Conceptualization and Evaluation. *Alcohol and Alcoholism*, in
23 press. https://doi.org/10.1093/alcalc/agaa041

Zeng, X., Zhang, Y., Kwong, J. S. W., Zhang, C., Li, S., Sun, F., ... Du, L. (2015). The methodological quality assessment tools for preclinical and clinical studies, systematic

Figure Captions

Figure 1. PRISMA flowchart of articles selection

Figure 1 illustrates the different steps of article selection and inclusion through the PRISMA guidelines (identification, screening, eligibility, inclusion), and the number of articles kept and excluded at each selection step. The procedure leads to the inclusion of 43 articles, 19 related to internal emotional identification, 12 related to external emotional identification, 7 related to emotional response, among which one also informs about emotional regulation, and 5 more related to emotional regulation.

Figure 2. Description of the studies

Figure 2 illustrates the distribution of the studies included in this systematic review: the number of studies per country, the number of studies per year (studies conducted in Europe in dark grey, studies conducted in North America in light grey, studies conducted in South America in middle grey, and studies conducted in Asia in white), and the study methods (from white to black: 51.2% of studies used self-reported measures, 18.6% behavioral measures, 11.6% electrophysiological measures, 11.6% neuroimaging measures, and 7% physiological measures).