Expression of sterile-α and armadillo motif in rheumatoid arthritis monocytes correlates with TLR2 induced IL-1β and disease activity

Article (Published Version)
Expression of sterile-α and armadillo motif in rheumatoid arthritis monocytes correlates with TLR2 induced IL-1β and disease activity

Ryan S. Thwaites¹, Sarah Unterberger¹, Giselle Chamberlain¹, Henry Gray¹, Kelsey Jordan², Kevin A. Davies¹, Neil A. Harrison³ & Sandra Sacre¹

1. Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PS, U.K.

2. Rheumatology Department, The Royal Sussex County Hospital, Brighton and Sussex University Hospitals NHS Trust, Brighton BN2 5BE, U.K.

Corresponding author: Dr Sandra Sacre, +441273872865, s.sacre@bsms.ac.uk; ORCID iD https://orcid.org/0000-0003-1665-1142

Keywords: Rheumatoid arthritis, toll-like receptor, Interleukin-1, sterile-α and HEAT/Armadillo motifs containing protein (SARM), DAS28

Key messages:

- SARM negatively correlates with TLR2 induced IL-1β and RA disease activity
- RA patients with active disease express lower levels of SARM
- Patients that responded to anti-TNFα therapy exhibit an increase in SARM expression

© The Author(s) 2021. Published by Oxford University Press on behalf of the British Society for Rheumatology. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Abstract

Objective: Cartilage and bone damage in rheumatoid arthritis (RA) are associated with elevated IL-1β. The effects of IL-1β can be reduced by biological therapies that target IL-1β or TNFα. However, the mechanisms responsible for increased IL-1β and the effect of anti-TNFα have not been fully elucidated. Recently, sterile-α and armadillo motif-containing protein (SARM) was identified as a negative regulator of toll-like receptor (TLR) induced IL-1β secretion through an interaction with the inflammasome. This study set out to investigate SARM during TLR induced IL-1β secretion in RA peripheral blood monocytes and in patients commencing anti-TNFα treatment.

Methods: Monocytes were isolated from RA patients and healthy controls; disease activity was measured by DAS28. IL-1β secretion was measured by ELISA following TLR1/2, TLR4 and TLR7/8 stimulation. The mRNA expression of SARM, IL-1β and the components of the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome were measured by quantitative PCR. SARM protein expression was measured by western blotting.

Results: TLR1/2 activation induced elevated IL-1β in RA monocytes compared to healthy controls (P=0.0009), which negatively correlated with SARM expression (P=0.0086). Lower SARM expression also correlated with higher disease activity (P=0.0246). Additionally, patients responding to anti-TNFα treatment demonstrated a rapid upregulation of SARM, which was not observed in non-responders.

Conclusion: Together, these data highlight a potential contribution from SARM to RA pathophysiology where decreased SARM may lead to elevated IL-1β associated...
with RA pathogenesis. Furthermore, the data additionally present a potential mechanism by which TNFα blockade can modify IL-1β secretion.
Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune disease associated with persistent inflammation of the synovial joints. Elevated production of pro-inflammatory cytokines leads to articular damage, together with cardiovascular, metabolic and neurological comorbidities [1]. IL-1β, TNFα and IL-6 are key cytokines involved in sustaining RA pathogenesis. Targeting these cytokines with biological therapies can reduce inflammation and suppress joint damage [2]. The biologics that target TNFα are the most widely used as treatments for RA and they can also result in a reduction in IL-1β [3-5]. However, direct inhibition of IL-1β has proven to be less effective than targeting TNFα, producing only moderate benefit, so tends to be rarely used for clinical treatment of RA. Although, IL-1β does not appear to have a pivotal role in controlling inflammation in RA, it contributes to synovial joint damage and may have a role in comorbidities such as type 2 diabetes and cardiovascular disease [6]. Within the joint, IL-1β activates osteoclasts and chondrocytes leading to cartilage erosion and bone resorption [7].

Monocytes recruited from the peripheral blood that differentiate into synovial tissue macrophages are considered to be the main source of IL-1β [8]. The secretion of IL-1β involves several processes; transcriptional upregulation of pro-IL-1β is first induced in response to cell stimulation, followed by proteolytic cleavage of pro-IL-1β by caspase-1, a component of the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome, to produce biologically active IL-1β [9]. Caspase-1, once activated, additionally cleaves gasdermin D, freeing the N-terminus to oligomerize forming a pore in the cell membrane, permitting the release of IL-1β and inducing pyroptosis [10, 11]. Further regulation comes from sterile-α and armadillo motif-containing protein (SARM) that negatively regulates the assembly of the NLRP3
inflammasome, suppressing the maturation of IL-1β [12]. Murine cells and human macrophages require two separate signals to produce mature IL-1β, one to induce transcription of pro-IL-1β and a second signal to activate the inflammasome. However, human monocytes can secrete IL-1β through toll-like receptor (TLR) activation alone in a pyroptosis independent manner [13].

A potential pathway for the induction of IL-1β in RA is through activation of TLRs. This family of pattern recognition receptors has been suggested to contribute to the chronic inflammation characteristic of both human disease and experimental animal models of RA [14]. Indeed, the RA joint contains many endogenous TLR ligands such as Tenascin-C and anti-citrullinated peptide antibody (ACPA) immune complexes containing citrullinated fibrinogen, which can activate TLR4 [15, 16]. Furthermore, ACPAs purified from RA patient serum can additionally induce NLRP3 dependent IL-1β release from human granulocyte-macrophage colony-stimulating factor derived macrophages [17].

Although many studies have demonstrated a contribution of IL-1β to RA pathogenesis, the underlying processes leading to increased IL-1β production in RA remain less well defined. The aim of this study was to investigate the relationship of SARM to IL-1β secretion in RA pathogenesis. SARM expression was examined in peripheral blood monocytes prior to stimulation with TLR ligands. RA patients with active disease expressed lower levels of SARM compared to healthy volunteers. SARM expression inversely correlated with RA disease activity and IL-1β release upon TLR1/2 activation. Furthermore, RA patients who responded to anti-TNFα therapy exhibited a transient increase in SARM that was not observed in non-responders, providing a possible mechanism by which TNFα blockade additionally reduces IL-1β levels in RA patients. Together, these data support a role for SARM in
RA pathophysiology where decreased SARM may contribute to the elevated level of IL-1β associated with RA pathogenesis.

Materials and methods

Patient samples

The study was approved by the Brighton East Research Ethics Committee (10/H1107/8), NRES committee South East Coast–Brighton and Sussex (11/LO/1320) and the NRES Committee North West–Lancaster (14/NW/1114). Patients were diagnosed by a consultant rheumatologist guided by the European League Against Rheumatism/American College of Rheumatology 2010 criteria for RA and recruited during a routine rheumatology clinic assessment. Healthy controls were recruited through the Brighton and Sussex University Hospitals Trust. The study complies with the Declaration of Helsinki. All participants provided informed written consent. Characteristics of the donors included throughout this study are summarised in table 1. Samples were collected over a 10-year period, consequently the number of RA patients receiving biological therapies within this study are lower than would be observed in current clinical practice.

Cell Culture

Whole venous blood was collected into tubes containing 1.8mg/ml (K2) EDTA (Becton Dickinson, Oxford, UK) and stored at room temperature for up to 2 hours prior to cell separation. Leukocyte cones from blood donors were purchased from NHS Blood and Transplant (Tooting, UK) to perform the experiments in figure 4B. Peripheral blood mononuclear cells (PBMCs) were isolated using Ficoll-Paque gradients (Cedarlane, Burlington, Canada) as previously described [18]. Monocytes
from PBMCs derived from whole venous blood were isolated using CD14⁺ selection beads (Miltenyi Biotec, Cologne, Germany) as per the manufacturer’s instructions. Peripheral blood monocytes from PBMCs derived from leukocyte cones were isolated by iso-osmotic Percoll gradient centrifugation, as previously described [19], before being cultured in RPMI1640 media supplemented with 5% (v/v) foetal calf serum and 1% (v/v) penicillin/streptomycin solution (PAA, Pasching, Austria) with or without 100ng/ml PAM₃CSK₄ (Axxora, Nottingham, UK), 10ng/ml lipopolysaccharide (LPS) or 2μg/ml resiquimod (R-848) at 37°C, 5% CO₂. All TLR ligands were used at predetermined concentrations that induce maximal cytokine induction.

Quantitative Polymerase Chain Reaction (qPCR)

RNA was extracted from CD14⁺ monocytes using a miRNeasy Mini Kit (QIAGEN, Stockach, Germany) according to manufacturer’s instructions and reverse transcribed using a High Capacity cDNA Reverse Transcription kit (Applied Biosystems, Paisley, UK) according to manufacturer’s instructions. The cDNA was analysed using Taqman qPCR assays (Life Technologies, Carlsbad, USA) using Taqman PCR master mix 2x (Thermo Fisher Scientific, Waltham, MA, USA). The level of SARM1 (assay: Hs00248344_m1), PYCARD (Hs00203118_m1), CASP1 (Hs00354836_m1), NLRP3 (Hs00918082_m1) and IL1B (Hs00174097_m1) were determined relative to the geometric mean of the housekeeping genes GAPDH (Hs02758991_g1) and HPRT1 (Hs02800695_m1). Reactions were performed using a Stratagene MX3000P thermocycler or an Agilent AriaMX thermocycler (Agilent Technologies, Cheshire, UK) as per manufacturer’s instructions. Agilent Aria 1.6 software (Agilent Technologies) was used for data collection and analysis. The comparative threshold cycle method \(2^{-\Delta\Delta Ct}\) was used for quantification of gene expression.
Enzyme linked immunosorbent assays (ELISA)

The concentration of IL-1β in cell culture supernatants was determined using an ELISA DuoSet (R&D Systems, Abingdon, UK) following the manufacturers’ instructions. Recombinant IL-1β standard was purchased from PeproTech (London, UK). Detection was performed using streptavidin-HRP (R&D systems, Minneapolis, USA) and a chromogenic TMB substrate (KPL, Gaithersburg, USA). Absorbance was read and analysed at 450nm on a spectrophotometric plate reader (BioTek Synergy HT, Winooski, USA) using the Gen5 version 1.08.4 software.

Western blotting

Monocytes were lysed in NP-40 buffer and protein concentrations were determined using bicinchoninic acid (BCA) protein assay kit (Life Technologies, Paisley, UK) according to the manufacturer’s instructions. Proteins were boiled in Laemmli buffer at 95°C for 5 minutes before resolved by SDS-PAGE using 10% Tris-glycine gels and transferred onto methanol activated Polyvinylidene difluoride membranes (Life Technologies). After transfer, membranes were blocked with 3-5% BSA in Phosphate-buffered saline (PBS) with 0.1% Tween-20 (Fisher Scientific, Loughborough, UK) (PBS-T) for 1h at room temperature, and incubated overnight at 4°C with the following primary antibodies diluted in 3-5% BSA in PBS-T; anti-SARM at 1:1000 (ProSci, Poway, USA), anti-GAPDH at 1:3000 (Cell Signalling, London, UK). A secondary anti-rabbit HRP-conjugated antibody (Sigma-Aldrich, Gillingham, UK) was used for detection. For protein visualisation, blots were incubated with Amersham ECL Prime Western Blotting Detection Reagent (GE Healthcare, Little Chalfont, UK). Membranes were then removed from the ECL solution and exposed to photographic film (GE Healthcare, Little Chalfont, UK) and developed using a
Konica Minolta SRX-101A film developer and Champion Photochemistry film
developer and fixer solutions (Jet X-ray, London, UK).

Statistics

Mean, standard deviation (SD), standard error of the mean (SEM) and statistical
significance were calculated using GraphPad version 8 (GraphPad Software Inc.,
California, USA). For statistical analysis parametric data were compared using a two
tailed unpaired t-test with Welch's correction, or a two-tailed paired t-test. Non-
parametric data were compared with a two tailed Mann Whitney U test. One-way
ANOVA using Dunnett’s multiple comparisons test was applied for the comparison of
multiple datasets relative to a control for parametric distributed variables. Correlation
analysis was performed using a Pearson two-tailed test for parametric data and the
Spearman’s test for non-parametric data. SEM was used for pooled experimental
data. Multivariable linear regression analysis was performed in SPSS version 26
(SPSS Inc., Chicago/IL, USA). Significance is shown as ****P<0.0001, ***P<0.001,
**P<0.01 and *P<0.05.

Results

IL-1β production was elevated from RA monocytes upon TLR1/2 activation

To assess the capability of TLRs to induce IL-1β from RA monocytes, peripheral
blood CD14+ monocytes from RA patients and healthy controls (HCs) were
stimulated with Pam3CSK4 to activate the TLR1/2 heterodimer, lipopolysaccharide
(LPS) to stimulate TLR4 and R-848, a ligand that can activate both TLR7 and TLR8
(Fig. 1). A significant elevation of IL-1β secretion was observed following TLR1/2
stimulation with Pam3CSK4 from RA monocytes relative to HCs (Fig. 1A, P=0.0009)
but surprisingly this was not observed from cells activated with LPS or R-848 (Fig. 1B and C). The elevated IL-1β upon TLR1/2 activation was not associated with treatment of either methotrexate or glucocorticoids (Supplemental Figure S1A).

SARM expression was elevated in RA monocytes and inversely correlated with the level of TLR1/2 induced IL-1β release

To explore this enhancement of IL-1β secretion from RA monocytes, the gene expression of inflammasome components NLRP3 (gene name *NLRP3*), procaspase-1 (gene name *CASP1*), apoptosis-associated speck like protein containing a caspase recruitment domain (ASC) (gene name *PYCARD*) and the NLRP3 inhibitor SARM (gene name *SARM1*) were measured. Equivalent expression of *NLRP3*, *CASP1* and *PYCARD* were observed between HC and RA monocytes (Fig. 2A, B and C, respectively). By contrast, increased expression of *SARM1* was evident in monocytes from RA patients, relative to HC (*P*=0.0054) (Fig. 2D). The level of *SARM1* expression was not associated with treatment of either methotrexate or glucocorticoids (supplemental Figure S1B). However, a wide range of expression was observed within the RA samples for all of these genes, with some donors exhibiting similar levels of expression to HCs whilst others demonstrated a substantially increased expression.

These data were then compared with the TLR1/2 induced IL-1β secretion from RA patient monocytes to explore if the varying levels of gene expression correlated with TLR1/2 induced IL-1β. No association was observed between *NLRP3*, *CASP1* or *PYCARD* and IL-1β secretion (Fig. 3A, B and C). However, an inverse relationship was observed between the basal expression of *SARM1* in unstimulated cells and TLR1/2 induced IL-1β secretion (*P*=0.0086, *R*=-0.546) (Fig. 3D) which was not
observed for TLR4 or TLR7/8 induced IL-1β secretion (Supplemental Figure S2).

Multivariable linear regression analysis confirmed the association of SARM1 with the level of IL-1β secretion upon TLR1/2 activation (Supplemental Table S1).

SARM was upregulated in response to activation of TLR4 and TLR8, but not TLR1/2

The study that identified SARM as a negative regulator of the NLRP3 inflammasome demonstrated that SARM controlled IL-1β maturation but not the production of pro-IL-1β (gene name *IL1B*) in murine bone marrow derived macrophages [12]. To verify that SARM was regulating TLR1/2 induced IL-1β through this NLRP3 dependent action and not by an alternative mechanism, basal expression of SARM1 was compared to the transcriptional expression of *IL1B* induced upon TLR1/2 activation. In agreement with the original study, SARM1 did not correlate with *IL1B* expression (Fig. 3E). However, it remained unclear as to why TLR1/2 induced elevated IL-1β secretion which correlated with SARM1 in the RA monocytes, while TLR4 and 7/8 produced equivalent levels of IL-1β to HCs (Fig. 1). Negative regulators of inflammatory signalling cascades are often expressed in response to cell activation to restore the cell to a state of homeostasis [20]. To explore if SARM1 was upregulated in response to TLR activation, monocytes from healthy donors were cultured with Pam3CSK4, LPS or R-848 to measure the fold change in SARM1 following stimulation. Both LPS and R-848 significantly upregulated SARM1 expression (*P*=0.007 and *P*<0.0001, respectively), while TLR1/2 stimulation did not significantly affect expression (Fig. 3F).

Higher RA disease activity was associated with lower SARM expression
IL-1β has long been associated with RA pathogenesis leading to cartilage and bone erosion [21]. As lower SARM1 expression was associated with elevated IL-1β release from RA monocytes (Fig. 3D), SARM1 expression was next correlated with the disease activity score in 28 joints (DAS28), a clinical measure of RA disease activity [22]. Expression of SARM1 in RA monocytes was inversely correlated with DAS28 (P=0.0246, R=-0.4776, Fig. 4A). Multivariable linear regression analysis confirmed the association of SARM1 with DAS28 (Supplemental Table S1). By comparison, no significant associations between DAS28 and expression of PYCARD, CASP1 or NLRP3 were observed (Fig. 4B, C and D). To confirm the relationship between SARM1 and RA disease activity, SARM protein expression was analysed in monocyte lysates from HCs and RA patients over a range of DAS28 scores. DAS28 can be used to categorize RA disease activity scores into groups, with scores of <2.6 representing patients in remission, 2.6 to <3.2 as low disease activity, 3.2 to ≤5.1 as moderate disease activity and scores >5.1 as high disease activity [23]. SARM protein levels were similar between RA donors in disease remission and healthy controls; by comparison, SARM protein was not detected in monocytes from RA donors with active disease (Fig. 4E).

Patients that respond to anti-TNFα treatment demonstrated a rapid but transient increase in SARM expression

As TNFα blockade is reported to lower IL-1β in addition to neutralizing the effects of TNFα, SARM protein expression during the initiation of anti-TNFα biological therapy was investigated in RA peripheral blood monocytes [3, 4, 24]. Samples were collected at three time points, T1 (prior to anti-TNF treatment), T2 (24 h following initiation of treatment) and T3 (3 months after initiation of anti-TNF treatment). Approximately one third of RA patients do not respond to anti-TNFα treatment [25].
Thus, the patient responses to treatment were recorded according to the European League Against Rheumatism (EULAR) response criteria [26]. Three patients displayed no response to treatment, whilst three showed an improvement by T3 (Fig.5A). In the patients where no improvement of the DAS28 was evident, SARM expression was not increased between T1, T2 or T3 (Fig. 5B). However, for patients where a good or moderate response was detected, SARM was transiently increased at T2, which then declined at T3 (Fig. 5C).
Discussion

Activation of the NLRP3 inflammasome and consequent downstream release of IL-1β could contribute to several aspects of RA pathogenesis. IL-1β has long been associated with bone and cartilage damage in RA joints, through activation of chondrocytes and osteoclasts [21]. However, more recently IL-1β has also been suggested to have a role in RA comorbidities such as type 2 diabetes and cardiovascular disease [27]. In a recent, randomised controlled trial, anakinra (a human IL-1 receptor antagonist) was found to reduce the percentage of glycated haemoglobin in RA patients with type 2 diabetes [28]. Furthermore, improvements in cardiac function have also been reported in RA patients treated with anakinra [29].

Since the discovery of the NLRP3 inflammasome, a more detailed understanding of IL-1β production in RA has evolved. In the collagen induced arthritis model, treatment with MCC950, a selective inhibitor of NLRP3, reduces IL-1β, synovial inflammation and cartilage erosion [30]. In human studies, components of the NLRP3 inflammasome are reported to be increased in RA peripheral blood mononuclear cells and ACPAs present in the sera of some RA patients can stimulate NLRP3 dependent IL-1β release [17, 31]. Furthermore, incubation of RA synovial biopsies cultured with MCC950 is reported to reduce IL-1β [32]. However, the contribution of negative feedback mechanisms controlling activation of the NLRP3 inflammasome have yet to be examined in the context of RA pathophysiology.

Recently, SARM was identified as a negative regulator of NLRP3, inhibiting the recruitment of ASC and consequent inflammasome assembly [12]. Here, our study reveals an association between dysregulation of SARM expression in RA
monocytes, elevated disease activity and increased IL-1β production. In keeping with its role as a regulator of IL-1β release, low SARM expression in RA monocytes correlated with enhanced IL-1β secretion upon TLR1/2 stimulation with Pam3CSK4. However, increased IL-1β was not observed upon TLR stimulation with LPS or R-848 compared to HCs. Initially it was not clear why increased IL-1β was only evident upon TLR1/2 activation as in murine bone marrow derived macrophages SARM deficiency leads to an increase in IL-1β release upon activation with LPS or Pam3CSK4 [12]. However, upon further investigation of human monocytes, SARM was found to be upregulated at the message level in response to TLR stimulation with LPS and R-848 but not with Pam3CSK4.

This suggested a negative feedback role for SARM that was absent following TLR1/2 activation in human monocytes. Thus, RA monocytes from patients with active disease, which have a lower basal level of SARM compared to HC monocytes, could therefore release greater IL-1β upon TLR1/2 stimulation. Whereas upon stimulation with LPS or R-848, upregulation of SARM may compensate for this low basal expression, restoring IL-1β to a comparable level to HC monocytes. This data revealed the potential for TLR2 on monocytes to contribute to RA pathology through increased IL-1β production. It is in keeping with other studies suggesting a role for TLR2 in RA. TLR2 expression has been shown to be increased in both circulating monocytes and macrophages in the synovial joint [33]. We have previously demonstrated elevated TLR2 induced TNFα and IL-6 from RA monocytes [34]. Whilst activation of TLR2 in RA synovial fibroblasts leads to increased cell migration, invasion and glycolytic activity [35, 36]. Furthermore, addition of a TLR2 neutralizing antibody has been shown to reduce spontaneous cytokine production including IL-1β from human RA synovial explants [37].
Investigation of the expression of the inflammasome components revealed that despite \textit{NLRP3, CASP1} and \textit{PYCARD} being reported to be increased in peripheral blood mononuclear cells from RA patients, this was not the case for the purified monocytes studied here [31]. Although both studies demonstrated a spread in the level of expression within the RA patient samples, in this study although a trend towards increased expression was observed, this did not reach significance. However, \textit{SARM1} levels were significantly higher in the RA patients compared to HCs, but curiously, this did not equate to the presence of higher protein levels. \textit{SARM1} expression did inversely correlate with RA disease activity but SARM protein was almost undetectable by western blot in most patients with active disease. However, monocytes from RA patients in remission (DAS28 <2.6), exhibited a comparable level of SARM to HCs.

This discrepancy in the mRNA and protein expression may reflect post-transcriptional control, possibly by non-coding RNAs. Indeed, the finding that patients who were responsive to anti-TNFα biologics had a transient increase in SARM, may indicate a regulatory mechanism downstream of TNFα. Inhibition of TNFα in RA patients is reported to decrease the level of other inflammatory cytokines, including IL-1β, in addition to its effects on TNFα [3-5]. Thus, the downstream regulation of SARM expression by TNFα biologics in patients that respond to treatment may explain the additional suppressive effect on IL-1β. Biological therapies blocking TNFα are far more effective in RA than those that inhibit the action of IL-1β, most likely due to an upstream role of TNFα in regulating inflammation [6]. However, this does not preclude a functional role for IL-1β in RA pathogenesis. Indeed, a study in a human TNF transgenic arthritis model suggested that TNF induced bone and cartilage damage may be mediated by IL-1 [38].
next be important to develop an understanding of how SARM protein expression is regulated in RA, as this may have relevance to RA comorbidities and other diseases where NLRP3 activation and excess IL-1β are associated with disease pathology, such as cardiovascular disease, type 2 diabetes and Alzheimer’s disease [39]. Overall, this study suggests the potential for SARM to contribute to IL-1β production and disease activity in RA. A limitation of this study was that it was not possible to directly modulate SARM expression in the patient monocytes, there are currently no inhibitors available and genetic manipulation of primary monocytes is not feasible due to their short viability in culture. However, the data demonstrate that SARM protein expression is lower in RA monocytes from patients with active disease and could promote RA pathogenesis by lowering the inhibitory action of SARM on TLR1/2 induced IL-1β production. Furthermore, these results reveal a possible mechanism by which anti-TNFα therapies affect IL-1β levels in RA patients.
Acknowledgments

We thank the patients and study participants, in addition to the staff at the clinical research facility of the Royal Sussex County Hospital and are most grateful to Dr Lisa Mullen for critically reading the manuscript and Dr Chris Jones for providing advice on statistical analysis. KD, NH and KJ were responsible for the acquisition of the patient samples and clinical data. RT, SU, GC, HG and SS were responsible for the acquisition of data, data analysis and interpretation. RT and SS were responsible for study conception and design. All authors were involved in drafting the article or revising it critically for important intellectual content. All authors approved the final version to be submitted for publication apart from GC who is deceased.

Funding

This work was supported by the European Commission Seventh Framework Programme (Masterswitch 223404), the Medical Research Council (G1001715), Brighton and Sussex Medical School and the University of Brighton.

Disclosure statement

The authors declare no conflicts of interest.

Data availability statement

All data generated or analysed during this study are included in this published article.
Bibliography

34. Thwaites, R.S., et al., *TLR1/2 and 5 induce elevated cytokine levels from rheumatoid arthritis monocytes independent of ACPA or RF autoantibody status.* Rheumatology (Oxford), 2020. 59(11): p. 3533-3539.

Figure legends

Figure 1. TLR1/2 activation induces higher IL-1β secretion from RA patient monocytes than healthy controls. CD14+ monocytes were isolated from peripheral blood donated by healthy controls (HC) and rheumatoid arthritis (RA) patients. IL-1β secretion was measured following 24h of culture with media alone (Unstimulated) and (A) 100ng/ml Pam3CSK4 (HC n=18; RA n= 28), (B) 10ng/ml LPS (HC n=21; RA n=29) or (C) 2μg/ml R-848 (HC n=22; RA n=28). Significance was tested using two-tailed Mann-Whitney U-test (**P=0.0009).
Figure 2. SARM mRNA expression is elevated in RA monocytes. Monocytes were isolated from whole blood collected from healthy controls (HC) and rheumatoid arthritis patients (RA). RNA was extracted and the expression of (A) NLRP3 (HC n=11; RA n=23), (B) CASP1 (HC n=15; RA n=40), (C) PYCARD (HC n=15; RA n=40) and (D) SARM1 (HC n=15; RA n=31) were measured by quantitative PCR. Significance was tested using two-tailed Mann-Whitney U-tests (**P<0.0054).
Figure 3. SARM expression negatively correlates with IL-1β secretion following TLR1/2 stimulation in RA monocytes. TLR1/2 induced IL-1β secretion was measured following 24h of stimulation with 100ng/ml Pam3CSK4 and correlated with the basal expression of (A) NLRP3 (n=22), (B) CASP1 (n=22), (C) PYCARD (n=22) and (D) SARM1 (n=22) in monocytes from RA patients. The significance was analysed using a two-tailed Spearman test. (E) Monocyte IL1B expression following a 3h stimulation with 100ng/ml Pam3CSK4 was compared to basal SARM1 expression (prior to stimulation) in matched patient samples (n=12). (F) Monocytes from healthy volunteers (n=7) were stimulated for 6h with 100ng/ml Pam3CSK4, 10ng/ml LPS or 2µg/ml R-848. SARM1 expression was expressed as the fold change from unstimulated cells (US). A one-way ANOVA using Dunnett´s multiple comparisons test was used to test significance compared to US cells (**P=0.007, ****P<0.0001).
Figure 4. SARM expression by rheumatoid arthritis monocytes inversely correlates with disease activity. Expression of (A) SARM1 (n=22), (B) PYCARD (n=22), (C) CASP1 (n=22) and (D) NLRP3 (n=22) in monocytes isolated from rheumatoid arthritis (RA) patients correlated to the disease activity score in 28 joints (DAS28). Significance was analysed using a two-tailed Pearson’s test (*P=0.0246).

(E) SARM protein expression in monocytes from healthy controls (HC) and RA patients with a range of DAS28 scores was analysed by Western blot with GAPDH as a loading control.
Figure 5. SARM protein expression is increased in patients that responded to anti-TNFα therapy. Patients starting anti-TNFα treatment were monitored at three-time points; pre-therapy (T1), 24h post therapy (T2) and 3 months post therapy (T3).

(A) At each time point the disease activity score in 28 joints (DAS28) was measured \((n=6)\). A paired students t-test was used to test significance \((**P=0.0125)\). The level of SARM protein expression was also measured by Western blot at these time points in (B) patients that did not respond to the anti-TNFα therapy \((n=3)\) and (C) in those that did respond with a reduction in DAS28 score \((n=3)\). GAPDH was used as a loading control.
Table 1: Demographics, clinical data and treatment modalities of study participants. Abbreviations: DAS28, disease activity score 28; csDMARDs, conventional synthetic disease-modifying antirheumatic drug; SZP, sulfasalazine; HCQ, hydroxychloroquine; AZA, azathioprine; LEF, leflunomide; bDMARDs, biological disease-modifying antirheumatic drugs; NSAIDs, nonsteroidal anti-inflammatory drugs.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Healthy controls (n)</td>
<td>27</td>
</tr>
<tr>
<td>Age (years, mean ±SD)</td>
<td>44.6 ±11.53</td>
</tr>
<tr>
<td>Sex (male:female)</td>
<td>3:23 (1 unknown)</td>
</tr>
<tr>
<td>Rheumatoid arthritis (n)</td>
<td>99</td>
</tr>
<tr>
<td>Age (years, mean ±SD)</td>
<td>57.48 ±15.06</td>
</tr>
<tr>
<td>Sex (male:female)</td>
<td>24:75</td>
</tr>
<tr>
<td>DAS28 (mean ±SD)</td>
<td>4.51 ±1.83</td>
</tr>
<tr>
<td>Disease duration (years, mean ±SD)</td>
<td>12.36 ±12.76</td>
</tr>
<tr>
<td>Medication of rheumatoid arthritis patients</td>
<td>Value, n (%)</td>
</tr>
<tr>
<td>csDMARDs</td>
<td>72 (72.7%)</td>
</tr>
<tr>
<td>Methotrexate</td>
<td>41 (41.4%)</td>
</tr>
<tr>
<td>Other csDMARDs (SZP, HCQ, AZA, LEF)</td>
<td>18 (18.2%)</td>
</tr>
<tr>
<td>Methotrexate and other csDMARDs</td>
<td>19 (19.2%)</td>
</tr>
<tr>
<td>bDMARDs</td>
<td>14 (14.1%)</td>
</tr>
<tr>
<td>TNF-α inhibitor</td>
<td>11 (11.1%)</td>
</tr>
<tr>
<td>Other bDMARDs (IL-6 inhibitor, anti-CD20)</td>
<td>2 (2.0%)</td>
</tr>
<tr>
<td>TNF-α inhibitor and anti-CD20</td>
<td>1 (1.0%)</td>
</tr>
<tr>
<td>Treatment</td>
<td>Count (Percentage)</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>NSAIDs</td>
<td>10 (10.1%)</td>
</tr>
<tr>
<td>Glucocorticoids</td>
<td>26 (26.3%)</td>
</tr>
<tr>
<td>Antidepressants</td>
<td>1 (1.0%)</td>
</tr>
<tr>
<td>Analgesics</td>
<td>1 (1.0%)</td>
</tr>
<tr>
<td>No or unknown treatment</td>
<td>16 (16.2%)</td>
</tr>
</tbody>
</table>