University of Sussex
Browse
p-exponential_rev_rev-arxiv.pdf (534.63 kB)

Rates of contraction of posterior distributions based on p-exponential priors

Download (534.63 kB)
journal contribution
posted on 2023-06-09, 21:48 authored by Sergios Agapiou, Masoumeh DashtiMasoumeh Dashti, Tapio Helin
We consider a family of infinite dimensional product measures with tails between Gaussian and exponential, which we call p-exponential measures. We study their measure-theoretic properties and in particular their concentration. Our findings are used to develop a general contraction theory of posterior distributions on nonparametric models with p-exponential priors in separable Banach parameter spaces. Our approach builds on the general contraction theory for Gaussian process priors in (Ann. Statist. 36 (2008) 1435–1463), namely we use prior concentration to verify prior mass and entropy conditions sufficient for posterior contraction. However, the specific concentration properties of p-exponential priors lead to a more complex entropy bound which can influence negatively the obtained rate of contraction, depending on the topology of the parameter space. Subject to the more complex entropy bound, we show that the rate of contraction depends on the position of the true parameter relative to a certain Banach space associated to p-exponential measures and on the small ball probabilities of these measures. For example, we apply our theory in the white noise model under Besov regularity of the truth and obtain minimax rates of contraction using (rescaled) a-regular p-exponential priors. In particular, our results suggest that when interested in spatially inhomogeneous unknown functions, in terms of posterior contraction, it is preferable to use Laplace rather than Gaussian priors. However, the specific concentration properties of $p$-exponential priors lead to a more complex entropy bound which can influence negatively the obtained rate of contraction, depending on the topology of the parameter space. Subject to the more complex entropy bound, we show that the rate of contraction depends on the position of the true parameter relative to a certain Banach space associated to $p$-exponential measures and on the small ball probabilities of these measures. For example, we apply our theory in the white noise model under Besov regularity of the truth and obtain minimax rates of contraction using (rescaled) $\alpha$-regular $p$-exponential priors. In particular, our results suggest that when interested in spatially inhomogeneous unknown functions, in terms of posterior contraction, it is preferable to use Laplace rather than Gaussian priors.

History

Publication status

  • Published

File Version

  • Accepted version

Journal

Bernoulli - Journal of the Bernoulli Society (Bernoulli)

ISSN

1350-7265

Publisher

Bernoulli Society for Mathematical Statistics and Probability

Issue

3

Volume

27

Page range

1616-1642

Department affiliated with

  • Mathematics Publications

Full text available

  • Yes

Peer reviewed?

  • Yes

Legacy Posted Date

2020-10-07

First Open Access (FOA) Date

2020-10-27

First Compliant Deposit (FCD) Date

2020-10-06

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC