Differential susceptibility of Onchocerca volvulus microfilaria to ivermectin in two areas of contrasting history of mass drug administration in Cameroon: relevance of microscopy and molecular techniques for the monitoring of skin microfilarial repopulation within six months of direct observed treatment

Article (Supplemental Material)
Abong, Raphael Awah, Amambo, Glory N, Chounna Ndongmo, Patrick W, Njouendou, Abdel Jellil, Ritter, Manuel, Beng, Amuam Andrew, Esum, Mathias Eyong, Deribe, Kebede, Fru-Cho, Jerome, Fombad, Fanny F, Nji, Theobald Mue, Enyong, Peter Ivo, Poole, Catherine B, Pfarr, Kenneth, Hoerauf, Achim et al. (2020) Differential susceptibility of Onchocerca volvulus microfilaria to ivermectin in two areas of contrasting history of mass drug administration in Cameroon: relevance of microscopy and molecular techniques for the monitoring of skin microfilarial repopulation within six months of direct observed treatment. BMC Infectious Diseases, 20. a726. ISSN 1471-2334

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/94162/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
Figure S1. Representative analysis of PCR inhibitors in DNA samples. A real-time PCR that detects mouse interferon-γ plasmid spiked into the PCR master mix was used to determine if there were PCR inhibitors in the extracted DNA as published [1, 2]. Samples that deviated more than 3 cycles form the expected Ct of 18.76 (plasmid alone) would be considered to contain inhibitors and would be diluted stepwise 1:10 until the inhibition was no longer seen. B) Melting curve analysis of samples to confirm that the PCR product was the expected mouse interferon-γ sequence. For all samples tested, no evidence of inhibition was seen.