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Abstract
The theoretical framework for networked quantum sensing has been developed
to a great extent in the past few years, but there are still a number of open ques-
tions. Among these, a problem of great signi�cance, both fundamentally and
for constructing ef�cient sensing networks, is that of the role of inter-sensor
correlations in thesimultaneousestimation of multiple linear functions, where
the latter are taken over a collection local parameters and can thus be seen as
global properties. In this work we provide a solution to this when each node
is a qubit and the state of the network is sensor-symmetric. First we derive
a general expression linking the amount of inter-sensor correlations and the
geometry of the vectors associated with the functions, such that the asymptotic
error is optimal. Using this we show that if the vectors are clustered around two
special subspaces, then the optimum is achieved when the correlation strength
approaches its extreme values, whilethere is a monotonic transition between
such extremes for any other geometry. Furthermore, we demonstrate that entan-
glement can be detrimental for estimating non-trivial global properties, and that
sometimes it is in fact irrelevant. Finally, we perform a non-asymptotic analysis
of these results using a Bayesian approach, �nding that the amount of corre-
lations needed to enhance the precision crucially depends on the number of
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measurement data. Our results will serve as a basis to investigate how to har-
ness correlations in networks of quantum sensors operating both in and out of
the asymptotic regime.

Keywords: quantum sensing networks, multi-parameter estimation, quantum
metrology, quantum correlations

(Some �gures may appear in colour only in the online journal)

1. Introduction

An important task in quantum information science is to devise protocols for multi-parameter
metrology and estimation by exploiting the quantum properties of light and matter. This
problem has been widely explored not only in a theoretical fashion [1…22], but also in appli-
cations [9, 15, 16, 23…39] and experiments [27, 40…42]. As a result, new practical ways of
enhancing our estimation schemes have recently emerged [43…48]. These protocols are nor-
mally formulated on the basis ofd unknown parameters� = (� 1, . . . , � d) that arise naturally
in the description of the system at hand, and in many cases these are the quantities of interest.
However, sometimes we may wish or need to �ndl new quantities that are functions of� ,
that is, f (� ) = (f1(� ), . . . , fl (� )). This is the case, in particular, when we analyse global prop-
erties in a quantum sensing network [32, 33], which is a model for spatially distributed sensing
[46] and the main focus of this work. Indeed, in [32, 33] this model is de�ned as an array of
quantum sensors where one or several parameters are locally encoded in each of them, and
while a property of the network is said to belocal if it is represented by parameters at a single
sensor, aglobal property is thought of as a non-trivial function of two or more parameters at
different sensors. Here we consider that a single parameter� i is encoded in theith sensor, so
that� is a collection of local properties, and we assume that both parameters and functions are
real-valued quantities. See �gure1 for a schematic representation.

Networked scenarios where global properties are relevant provide a natural testbed to iden-
tify the potential usefulness of entanglement in a broad range of multi-parameter schemes [32,
37]. Within this context, the optimal estimation of a single functionf(� ) has been extensively
studied [32, 33, 37, 46, 49…58], and it has been established that one can �nd entangled states
that beat the best separable probe when that function is linear [32, 33]. In addition, Eldredge
et al [49] derived a bound on the error for this scenario that was later generalised to accommo-
date a single analytical function [52], which can also be estimated with an enhanced precision
when there is entanglement, while Gross and Caves [59] have reexamined the linear case using
an elegant geometric approach. On the opposite extreme, it has been shown that a collection
of l = d linear functions that generates an orthogonal transformation (i.e.,f (� ) = V� � with
VVŠ1 = I) can be estimated optimally with a local strategy [32, 37].

Beyond these two types of global properties, the simultaneous estimation ofl > 1 linear but
otherwise arbitrary real functions has been a less travelled path. There exist generic bounds for
this problem (see, e.g., [32, 60]), which in practice may arise in scenarios such as the esti-
mation of phase differences [29, 60]. However, how quantum correlations may help for linear
functions with arbitrary geometry has not been examined in detail. Given that this represents
a richer regime than thel = 1 andl = d with orthogonal functions cases, it can be argued that
answering this question is essential for further progress in networked quantum metrology.
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Figure 1. A network ofd = 5 sensors. The parameters� = (� 1, . . . , � 5) represent local
properties, since each of them is locally encoded in a single sensor. On the con-
trary, f1(� 1, � 3) andf2(� 2, � 4, � 5) are global properties associated with sensors 1 and 3
(green solid lines) and sensors 2, 4 and 5 (purple dashed lines), respectively.

While a general answer is beyond the scope of our methods, here we obtain a de�nite solu-
tion for a subclass of schemes with sensor-symmetric pure qubit states, which we introduce
in section2.1. Using the Helstrom Craḿer…Rao bound and the associated quantum Fisher
information matrix, in section3 we derive a general expression linking the geometry of the
vector components associated with the functions and the strength of the inter-sensor correla-
tions, such that the uncertainty in the asymptotic regime of many trials is optimal. Moreover,
we show that there exists a physical state for many of the optimal con�gurations that our for-
mula predicts. Equipped with this, we then derive a number of important results. First we �nd
that the largest amounts of correlations are associated, for sensor-symmetric states, with two
special subspaces: the direction of the vector of ones1� � (1, 1,. . .), and the subspace orthog-
onal to it. This connection between entanglement in a pure state and how much the vectors
are clustered around certain directions was precisely one of the open questions identi�ed in
[32], and our �ndings contribute towards its solution. In addition, we demonstrate that entan-
glement can be detrimental for estimating global properties other than those associated with
orthogonal transformations, while a three-sensor network reveals that entanglement is some-
times irrelevant. This is consistent with the fact that the asymptotic uncertainty only depends
on correlations of a pairwise nature, and thus other forms of entanglement do not affect the
asymptotic error.

On the other hand, it is known that strategies with a good asymptotic precision found by
optimising the Craḿer…Rao bound sometimes have a particularly poor performance when the
number of trials is very low (see, e.g., [61]). In fact, there is compelling evidence of the exis-
tence of a potential trade-off between the performances in the asymptotic and non-asymptotic
regimes [62]. In view of this, a non-asymptotic analysis of our �ndings for sensing networks
is in order. To do it, in section2.2we propose a multi-parameter Bayesian procedure that gen-
eralises its single-parameter counterpart in [61], and in section4 we utilise it to examine the
non-asymptotic properties of some of our results in section3. Our central insight here is that
trading a part of the asymptotic enhancement is sometimes associated with an improved per-
formance in the non-asymptotic regimealsoin networked quantum metrology, and in general
we �nd that the amount of correlations needed toenhance the precision crucially depends on
the amount of data that has been collected. Due to the more complex (and often numerical)
nature of Bayesian calculations, this study is restricted to thed = 2 case, although in section5
we discuss some potential directions to overcome this limitation. To the best of our knowledge,

3



J. Phys. A: Math. Theor. 53 (2020) 344001 J Rubio et al

this work, together with [16, 54], constitutes one of the �rst Bayesian studies of a network of
quantum sensors in this context.

Our approach to the simultaneous estimation of linear functions in a scheme for distributed
quantum sensing will serve as a basis to investigate how to harness correlations in multi-
parameter schemes, operating both in and out of the asymptotic regime. Since the construction
of entangled networks is likely to be dif�cult in practice, these insights may prove to be cru-
cial in the study and implementation of quantum sensing networks that operate with a realistic
amount of data.

2. Formulation of the problem

2.1. Physical scheme and available information

Consider a network ofd qubit sensors prepared in some initial state� 0 = |� 0�� � 0|, with

|� 0� =
1�

i1...id= 0

ai1...id |i1 . . . id� , (1)

� 1
i1...id= 0 |ai1...id |2 = 1, and the basis elements�0| j = (1, 0) and�1| j = (0, 1) for thejth sensor.

In addition, suppose we encoded local parameters� = (� 1, . . . , � d), one per sensor, as� (� ) =
eŠiK·� � 0eiK·� , whereK = (K1, . . . , Kd), each generatorKi has the form

2Ki = I1 � · · · � I iŠ1 � � z � I i+ 1 � · · · � I d � � z,i , (2)

and

� z =
�

1 0
0 Š1

�
, I i =

�
1 0
0 1

�
. (3)

This is an instance of the type of unitary encoding that arises in spatially distributed sensing
[32, 33], and while it is separable, i.e.,

exp (Š iK · � ) = eŠi� z� 1/ 2 � · · · � eŠi� z� d/ 2, (4)

in principle we allow for entangled pure states and any general measurement acting on all the
sensors at once. When the state and the measurement present no quantum correlations, we say
that the scheme implements alocal strategy. Otherwise we have aglobal strategy. We also
note that

[Ki, K j] = [� z,i , � z, j ]/ 4 = 0, (5)

which is a useful feature of this system becauseit will allow us to saturate the asymptotic bound
in section2.2.

To introduce the subclass ofsensor-symmetric statesthat we will exploit, �rst we recall
that the strength of correlations between any pair of sensors, which we callinter-sensor
correlations, may be quanti�ed as [29, 32]

J i j =
�KiK j� Š � Ki �� K j�

� Ki � K j
, (6)

4
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for i �= j, where� K2
i = �K2

i � Š � Ki � 2 and we use the notation� � � � � � 0| � |� 0� . Further-
more, J i j in equation (6) is bounded asŠ1 � J i j � 1. Using this quanti�er, we de�ne
sensor-symmetric states as those satisfying

v = �K2
i � Š � Ki � 2, c = �KiK j� Š � Ki �� K j� (7)

for all i, j, wherec andv are �xed values that characterise the preparation of the network and
the encoding of the parameters. In turn, equation (6) becomesJ i j = J = c/v , also for alli �= j,
and for our qubit model we see that

4v = � � 2
z,i � Š � � z,i � 2 = 1 Š � � z,i � 2, 4c = � � z,i � z, j � Š � � z,i �� � z, j � , (8)

where 0� 4v � 1 due to the fact that the eigenvalues of� z are± 1 and thus|� � z,i �| � 1. This
de�nition in terms of the conditions in equation (7) is a way of generalising the notion of path-
symmetric states in optical interferometry [29, 63, 64], and it motivates our choice of initial
probe.

The �nal piece required before we can formulate the estimation problem of interest is to
establish what prior information is available. The properties of the network that we wish to
estimate are those that can be modelled linearly as

f (� ) = ( f1(� ), . . . , fl (� )) = V� � + a, (9)

whereV is a (d × l) matrix anda is a column vector withl components. We consider that the
form of these functions is known and so there is no uncertainty associated with the matrixV or
the vectora. Furthermore, we assume that the unknown parameters� can be initially thought of
as independent in the statistical sense, such that there are no prior correlations between them,
and we suppose that the magnitude of theith parameter can be found somewhere within an
interval of widthW0,i centred around̄� i , which is a moderate amount of prior knowledge [45,
62, 65]. This state of information can be represented by the separable prior probability

p(� ) = 1/

�
d�

i= 1

W0,i

�

, (10)

for � � [�̄ 1 Š W0,1/ 2, �̄ 1 + W0,1/ 2] × · · · × [�̄ d Š W0,d/ 2, �̄ d + W0,d/ 2], and zero otherwise.
Equivalently, equation (10) may also be written asp(� ) = 1/ � 0, with hypervolume� 0 =	 d

i= 1 W0,i centred around̄� = (�̄ 1, . . . , �̄ d). The interested reader will �nd in appendixA a way
of justifying this prior from the perspective of the so-calledobjectiveversion of the Bayesian
framework.

2.2. Estimation method: a hybrid approach

Starting with the transformed network state� (� ) in section2.1, the next step is to considerµ
identical and independent measurements on this system, which we see astrials or repetitions.
In particular, theith measurement is represented by a POVME(mi) with outcomemi, and the
probabilityof this process generating the outcomesm = (m1, . . . , mµ) is given by the likelihood
function

p(m|� ) =
µ�

i= 1

p(mi|� ) =
µ�

i= 1

Tr [E(mi)� (� )] . (11)

Since the form of the functionsf (·) has been assumed to be known, it is appropriate to construct
their estimators as

�f (m) = f [ �� (m)] = ( f1[ �� (m)], . . . , fl [ �� (m)]) = V� �� (m) + a, (12)

5
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where�� (m) = (�� 1(m), . . . , �� d(m)) are the estimators for the parameters� , and we evaluate the
uncertainty of our estimates�f (m) as

�̄ mse =



d� dm p(� )p(m|� ) Tr{W [ �f (m) Š f (� )][ �f (m) Š f (� )]� } , (13)

wherep(� ) is the prior,W = diag(w1, . . . , wl ) is a weighting matrix,wi � 0 represents the
relative importance of estimating theith parameter, and Tr(W) = 1. Importantly, although a
square error is generally not suitable for quantities associated with topologies other than that
for the real line, it can still be a good approximation to the uncertainty for other topologies
when the prior knowledge about� is moderate or high (see, e.g., [45, 47, 61, 62, 66, 67]),
which is our case.

By using equations (10)…(12) and the network con�guration in section2.1, equation (13)
becomes

�̄ mse =



d� dm
� 0

µ�

i= 1

Tr
�
E(mi) eŠiK·� � 0eiK·� �

× Tr{W V� [ �� (m) Š � ][ �� (m) Š � ]� V} (14)

for our system. We note that this error does not depend ona, so that we can seta = 0 without
loss of generality. Hence, from now on the functions aref (� ) = V� � and the coef�cients are
encoded in the columns ofV.

Ideally, we would like to minimise the error in equation (14) with respect to the estimators
�� (m), the measurement schemeE(mi) and the initial sensor-symmetric state� 0, so that we can
�nd the optimal con�guration of the network andstudy its properties. Since, in general, this is
a very challenging problem, in this work we follow an approximate procedure that combines
asymptotic and non-asymptotic optimisations. We now describe thishybrid approach and how
to use it for our analysis of sensing networks (a discussion of other methods in the literature
can be found in appendixB).

On the one hand, equation (14) can be minimised with respect to�� (m) in a straightforward
way (e.g., using calculus of variations; see [16, 68]). This provides the familiar result that

�� (m) =



d� p(� |m) � (15)

are the optimal estimators [68, 69], wherep(� |m) = p(m|� )/ [� 0p(m)] is the posterior proba-
bility andp(m) =



d� p(m|� )/ � 0. As a consequence, inserting equation (15) in equation (14)

we have that

�̄ mse �
l�

i= 1

wi



dm p(m)

� 

d� p(� |m) f 2

i (� ) Š
� 


d� p(� |m) fi(� )
� 2

�

� � c
opt, (16)

where fi (� ) =
� d

j= 1 Vji � j. This is the optimal uncertainty based on the probabilities that
emerge from the measurements in a given quantum strategy (E(mi) plus� 0), and is valid and
exact for any number of trialsµ.

On the other hand, we may select the quantum strategy such that it is optimal in the asymp-
totic regime of many trials, whereµ 	 1. First we recall that, if the true values� 
 lie within
the prior hypervolume� 0, and the likelihoodp(m|� ), which we assume to be suf�ciently reg-
ular, becomes concentrated around� 
 asµ grows, then the posterior probabilityp(� |m) can

6
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be approximated as a multivariate Gaussian density, and the uncertainty� c
opt in equation (16)

satis�es [68, 70, 71]

� c
opt �



d� 


µ� 0
Tr

�
WV� F(� 
)Š1V

�
� � c

asym, (17)

where

F(� ) =



dm
p(m|� )

�
� p(m|� )

� �

� �
� p(m|� )

� �

� �

(18)

is the Fisher information matrix for a single trial with outcomem (for a derivation of this
approximation, see, e.g., [68, 70, 71] and section 6.2.2 of [45], and [8, 72, 73] for a rigorous
treatment). At the same time, given that the form of the unitary encoding is exp(Š iK · � ) and the
state� 0 = |� 0�� � 0| is pure, the Helstrom Craḿer…Rao bound establishes the matrix inequality
[43, 44, 46, 47]

F(� )Š1 � FŠ1
q , with (Fq)i j = 4

�
� � 0|KiK j|� 0� Š � � 0|Ki |� 0�� � 0|K j|� 0�

�
,

(19)

Fq being the quantum counterpart of the information matrix. Then, the combination of
equations (16), (17) and (19) implies that, in the asymptotic regime,

�̄ mse � � c
opt � � c

asym �
1
µ

Tr
�
WV� FŠ1

q V
�

� �̄ cr. (20)

The quantum Craḿer…Rao bound�̄ cr in equation (20) is a function of� 0 only, sinceK, V, W
andµ are �xed, and it does not depend on the measurement. As such, if we choose the POVM
E(mi) for theith repetition such that� c

asym = �̄ cr, then that measurement will be asymptotically
optimal. It can be shown that a measurement such thatF(� ) = Fq (and thus� c

asym = �̄ cr) always
exists when the generatorsK commute with each other [12, 13], and equation (5) demonstrates
that this is indeed satis�ed by our qubit network. Hence, we will use this criterion to construct
the POVM. Regarding the optimisation of thestate, we will proceed by �rst calculatinḡ� cr as
a function of the properties that characterise the sensor-symmetric state� 0, which, as we will
see, are the variancev and the correlation strengthJ , and then minimising the resulting bound
with respect to the pair (v, J ). Once we know the optimal estimators

�f (m) = V�



d� p(� |m) � (21)

and the asymptotically optimal state and measurement as prescribed above, we can complete
the estimation by inserting these in the Bayesian uncertainty forµ repetitions in equation (14),
which here will be calculated numerically with the algorithm in section 6.2.3 of [45] (the
reader interested in reproducing our numerical results will �nd the associated MATLAB code
in appendixC of the same work).

It is important to realise that our approach can fail when the asymptotic approximation is
not valid. This could happen, for example, if theprior information provided within the hyper-
volume� 0 is not suf�cient to distinguish a single point [61, 68], or if the Fisher information
matrix (classical or quantum) is singular. Therefore, we will concern ourselves with schemes
where the information matrix is invertible, and, once we have found the asymptotically opti-
mal quantum strategy, we will also check that the likelihoodp(m|� ) associated with it does not

7
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present ambiguities in the relevant portion of the parameter space. Nevertheless, note that, in
general, a potentially ambiguous likelihood function or a singularF(� ) do not introduce any
fundamental dif�culty for Bayesian estimation itself (this will be demonstrated in section4
with an example).

In summary, the estimation method that emerges from the previous discussion requires that
we:

(a) calculate the quantum Cramér…Rao bound̄� cr and �nd the sensor-symmetric state that
makes it minimal,

(b) search for a POVM such that� c
asym = �̄ cr,

(c) verify that the quantum strategy (state plus POVM) allows for unambiguous estimation
given the prior information represented in equation (10),

(d) calculate the optimal estimators for the linear functions in equation (21), and
(e) calculate theµ-trial Bayesian uncertainty in equation (14).

While the protocols constructed in this way may not be optimal for lowµ, [61] demon-
strated that this technique can provide important information about the non-asymptotic regime
in optical interferometry, and here we will show that this is also true for networked quantum
sensing. Moreover, a very useful feature of our approach is that the analysis of the role of inter-
sensor correlations emerging from (a) and (b) willbe relevant for researchers interested only
in the Craḿer…Rao bound, while those that also require an analysis based on a �nite number
of repetitions will bene�t from the insights arising from (c)…(e). The next section is dedicated
to the former.

3. Asymptotic estimation of global properties

3.1. Estimation of arbitrary linear functions

Our �rst step is to examine the quantum strategies that are optimal in the regime where the
square error̄� mseconverges to the quantum Cramér…Rao bound�̄ cr = Tr(WV� FŠ1

q V)/µ asµ
grows. If we denote by{ ei} the basis components of the real space whereW, V andFq are
de�ned, withe�

i ej = � i j , then from equations (8) and (19) we have that

Fq =
d�

i, j= 1

�
� � z,i � z, j � Š � � z,i �� � z, j �

�
eie�

j = 4

�

�
�
� v

d�

i= 1

eie�
i + c

d�

i, j= 1
i�= j

eie�
j

�

�
�
�

= 4 [(v Š c)I + cI ] = 4v [(1 Š J )I + J I ] , (22)

whereI is a (d × d) matrix of ones andI the (d × d) identity matrix. This is the quantum
Fisher information matrix for sensor-symmetric states.

To invert Fq, we need to impose the condition of positive de�niteness, which is equiva-
lent to requiring that its eigenvalues are strictly positive. ExpressingI as I = 11� , where
we recall that1� = (1, 1,. . .) is the vector of ones, the information matrix becomesFq =
4v

�
(1 Š J )I + J 11� �

. In that case, the characteristic equation for the eigenvalues{ 	 } is

det
�

4v
��

1 Š J Š
	
4v

�
I + J 11�

��
= 0, (23)

8
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which upon using the identity det(X + yz� ) = (1 + z� XŠ1y)det(X), with X = [4v(1 Š J ) Š
	 ]I , y= 4vJ 1 andz = 1, implies that

{ 4v [1 + (d Š 1)J ] Š 	 } [4v (1 Š J ) Š 	 ]dŠ1 = 0. (24)

As a result, the eigenvalues ofFq are	 1 = 4v[1 + (d Š 1)J ], with multiplicity 1, and	 2 =
4v(1 Š J ), with multiplicity d Š 1, and by imposing that they are positive we conclude that
Fq is invertible when 1/ (1 Š d) < J < 1. The rest of our calculations assume thatJ lies in
such open interval under this assumption.

We can now calculate the inverse ofFq in equation (22), which is [32]

FŠ1
q =

[1 + (d Š 1)J ] I Š J I
4v(1 Š J ) [1 + (d Š 1)J ]

. (25)

Utilising this result we �nd that the asymptotic uncertainty for the estimation of linear functions
is given by

�̄ cr =
[1 + (d Š 2)J ] Tr

�
WV� V

�
Š J Tr

�
WV� X V

�

4µv(1 Š J )[1 + (d Š 1)J ]
, (26)

where we have introduced the (d × d) matrix X � I Š I to separate the contribution to the
uncertainty due to the diagonal elements ofFŠ1

q , which are the errors for each of the parameters,
from that of the rest of the matrix.

The expression in equation (26) shows that the uncertainty depends on three types of quan-
tities: (i) the number of repetitionsµ and the number of parametersd, (ii) the combined
properties of state and generators through the correlation strengthJ and the variancev, and
(iii) two quantities, Tr

�
WV� V

�
and Tr

�
WV� X V

�
, that are de�ned in terms of the functions

encoded inV and the weighting matrixW. The next step is to investigate the physical meaning
of these two quantities in (iii).

By relabelling the vector formed by the components of thejth linear function asf j (i.e.,
f j(� ) =

� d
i= 1 Vi j � i � f �

j � ), we can rewrite the �rst quantity in a more suggestive form as

Tr
�
WVTV

�
=

l�

i, j= 1

d�

k= 1

(W)i jVk jVki =
l�

j= 1

wj

d�

k= 1

Vk jVk j

=
l�

j= 1

wj f �
j f j =

l�

j= 1

wj| f j|
2. (27)

where the norm in the last term is de�ned as|v|2 =
�

kv
2
k for a real vectorv. This is the

weighted sum of the squared magnitudes of the vectors associated with the linear functions.
SinceVWVT is positive semi-de�nitive, and excludingthe degenerate case where all the coef-
�cients vanish, we have that Tr(WVTV) = Tr(VWVT) > 0. In addition, when the functions
are normalised, that is,| f i | = 1 for 1 � i � l, and recalling that Tr(W) =

� l
i= 1 wi = 1, we

have that Tr(WVTV) = 1. Hence, we de�ne thenormalisation term

N � Tr(WVTV) =
l�

j= 1

wj| f j|
2 (28)

satisfying thatN > 0, with N = 1 for normalised linear functions.

9
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As for the second quantity, we can rewrite it as

Tr
�
WVTX V

�
= Tr

�
WVT (I Š I) V

�
= ŠN +

l�

i, j= 1

d�

k,m= 1

(W)i jVk jI kmVmi

= ŠN +
l�

j= 1

wj

d�

k,m= 1

Vk j1k1mVm j = ŠN +
l�

j= 1

wj

�
d�

k= 1

Vk j1k

� 2

= ŠN +
l�

j= 1

wj
�

f �
j 1

� 2
= ŠN + d

l�

j= 1

wj| f j|
2 cos2

�

 1, j

�

=
l�

j= 1

wj| f j|
2 �

d cos2
�

 1, j

�
Š 1

�
, (29)

where
 1,j is the angle between the vector associated with thejth function and the direction
de�ned by the vector of ones1, and we have used the fact that|1| =

�
d.

Recalling that| cos
�

 1, j

�
| � 1 and using equation (29), we see that Tr

�
WVTX V

�
is

bounded as

ŠN � Tr
�
WVTX V

�
� N (d Š 1), (30)

and that the extremes are realised when either the functions are aligned with the direction of
the vector of ones1, or they lie in a subspace orthogonal to it and of dimension (l Š 1). So, for
sensor-symmetric networks with properties modelled by linear functions, there are two kinds
of global properties that play a special role: the sum of all the natural parameters with equal
weights, and any linear combination of them such that the sum of its coef�cients vanishes.
Any other set of global properties will produce some value for Tr

�
WVTX V

�
lying within the

interval in equation (30), and this will be given by the geometry of the transformation de�ned
by VWVT. This motivates the introduction of thegeometry parameter

G �
1
N

Tr
�
WVTX V

�
=

1
N

l�

j= 1

wj| f j|
2 �

d cos2
�

 1, j

�
Š 1

�
, (31)

which satis�es thatŠ1 � G � (d Š 1).
Inserting equations (28) and (31) in equation (26), the asymptotic uncertainty �nally

becomes

�̄ cr =
N

4µv
h(J , G, d) , (32)

where
h(J , G, d) =

[1 + (d Š 2 Š G)J ]
(1 Š J )[1 + (d Š 1)J ]

. (33)

Given a sensor-symmetric network withd local properties, the factorh(J , G, d) in
equation (33) codi�es the interplay between the inter-sensor correlations of strengthJ and
the geometry parameterG for any linear property, which may be local or global. A represen-
tation of this interplay can be found in �gure2. The formulas in equations (32) and (33) have
been obtained without imposing further restrictions on the functions, and this implies that this
formalism can be applied to any number of linear functions whose coef�cients generate vectors
that can form any angle and have any length.

10
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Figure 2. Representation of the interplay between the correlation strengthJ and the
geometry parameterG in equation (33) for a quantum sensing network with (i)d = 2,
(ii) d = 3, (iii) d = 5 and (iv)d = 10 parameters. We observe that, givenG � (Š1, (d Š
1)), the minimum asymptotic uncertainty is achieved using a scheme with inter-sensor
correlations of strengthJ � (1/ (1 Š d), 1). The quantitative characterisation of these
minima is provided in section3.2.

3.2. The role of inter-sensor correlations I

Let us exploit the previous result to address the problem of selecting a sensor-symmetric net-
work state that is optimal to estimate a given set of linear functions. This amounts to �nding
the values forv andJ that are optimal for a givenG. One approach is to use the fact that, for
qubits, 0� 4v � 1, which allows us to lower bound equation (32) as

�̄ cr �
N
µ

h(J , G, d) � �̄ f . (34)

We then search for theJ that minimises this bound after having �xedG, d andµ. In princi-
ple, there is no guarantee that the pairs of values (4v = 1,J ) generated by this method will
correspond to any physical state, although the bounds on the asymptotic error constructed in
this way would still be valid. Nevertheless, later we will study an example that realises a large
portion of the pairs (4v = 1,J ) that we will predict.

By minimising �̄ f (see appendixC) we �nd that, if 4v = 1, and restricting our attention to
the range 1/ (1 Š d) < J < 1 where the information matrix is invertible, the optimal strength
for the inter-sensor correlations of the network is

J opt =
1

G+ 2 Š d

�

1 Š

�
(G+ 1)(d Š 1 Š G)

d Š 1

�

, (35)

11
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Figure 3. Optimal inter-sensor correlation strengthJ opt versus the geometryGof a set of
arbitrary linear functions, ford = 2, 3, 5 and 10 parameters (lines (a)…(d) respectively).
These monotonic curves provide a quantitativerepresentation for the uncertainty min-
ima identi�ed in �gure 2, and the associated analytical formula is in equation (35). This
result shows that, the more a collection of functions is clustered around the direction of1,
so thatG = d Š 1, the larger the amount of correlations must be in order to perform the
estimation optimally (provided that 4v = 1), while the opposite is true if the functions
are instead clustered around the subspace orthogonal to1, for whichG = Š1. Remark-
ably, any amount of correlations is detrimental whenG = 0, even though a vanishing
geometry parameter canalsobe obtained for properties of the network that are global.

for Š1 < G < d Š 1, which is determined by the structure of the functions alone viaG(onced
has been �xed). This provides a map between correlation strength and geometry with one-to-
one correspondence (note thatJ opt 
 (d Š 2)/ [2(d Š 1)] whenG 
 d Š 2), as is illustrated in
�gure 3, and this is the central result of our asymptotic analysis.

The expression in equation (35) reveals that, the more a collection of functions is clustered
around the vector of ones1, the larger the amount of positive correlations is required to be
in order to perform the estimation optimally (provided that 4v = 1). Similarly, the amount
of correlations with negative strength needs to be large if the functions are instead clustered
around the subspace orthogonal to1. The potential existence of this type of connection between
geometry and quantum correlations was precisely one of the general open questions identi�ed
in [32].

Furthermore, equation (35) (and �gure 3) shows that any non-zero pairwise correlation
strength is detrimental whenever the geometry parameter vanishes. It is therefore interesting
to investigate which linear functions imply thatG = 0, as well as the form of the associated
optimal strategy. To achieve this, let us recall the original de�nition forGin equation (31), that
is, G = Tr(WV� X V)/ N . If we choose the uniform weighting matrixW = I/ l, and ifV is an
orthogonal transformation (i.e.,VV� = V� V = I), then

G =
1

N l
Tr(VV� X ) =

1
N l

Tr(X ) =
1

N l
Tr(I Š I) = 0. (36)

12
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Now we observe thatJ = 0, which is the optimal choice for the previous scenario, is always
achieved by a separable qubit state|� 0� = (

�
a |0� +

�
1 Š a|1� )� d, and by selectinga = 1/ 2

we have that 4v = 1. Thus we can say that the estimation of a set ofl = d linear functions that
are equally relevant and orthogonal can be carried out optimally by preparing our scheme with
separable states. Moreover, since the estimation of the parameters� is equivalent to choosing
V = I , our result implies that separable states are also optimal in that case. So, our present
formalism is consistent with previous results [32, 33, 37, 74].

The above conclusion is suf�cient to af�rm that while entangled pure states are generally
useful for the optimal estimation of global properties, it is not true that wealwaysneed entan-
gled probes in such case. However, a transformation that is orthogonal preserves angles and
lengths, and thus one may argue that, in a sense, the information encoded by a set of functions
that gives rise to an orthogonal transformation is equivalent to the information content of the
original parameters, provided that the weighting matrices are uniform. Hence, it is perhaps not
surprising that a local estimation strategy is preferred here, since [32, 33] had already shown
that the estimation of local properties associated with commuting generators can be performed
optimally with a local scheme. In view of this, it is important to establish whether there are
other global properties withG = 0 that instead select information that is not equivalent to esti-
mating all the original parameters. First we observe that the eigendecomposition ofX , which
is a symmetric matrix, is (see appendixD)

XD = U�
X X UX = diag[(d Š 1),Š1,. . . , Š1] , (37)

where the eigenvector for the �rst eigenvalue is1 and those for the other eigenvalues belong
to the orthogonal subspace. That implies that if we choose a single linear function asV =
f = UX 1, then we will have thatG = 1� U�

X X UX 1/ d = 1� XD1/ d = 0. Now consider a three-
parameter network, so that

f = UX 1 =
1

�
6

�

�

�
2

�
3 1�

2 Š
�

3 1�
2 0 Š2

�

�

�

�
1
1
1

�

� =
1

�
6

�

�

�
2 +

�
3 + 1�

2 Š
�

3 + 1�
2 Š 2

�

� . (38)

Clearly, this gives rise to a global property, as these are the coef�cients of a non-trivial function
of three local parameters. Yet,G = 0, and so, according to equation (35), pairwise correlations
are detrimental. Therefore, entanglement is sometimes not needed in scenarios where we are
estimating non-trivial global properties. Interestingly, the same argument fails ford = 2, since
in that case

f = UX 1 =
1

�
2

�
1 1
1 Š1

� �
1
1

�
=

� �
2

0

�
, (39)

and this is associated with a local property because it simply rescales the �rst parameter.
Nonetheless, our conclusion above is still valid in general.

For the link between geometry and correlations in equation (35) to be truly relevant, it is
necessary that there are physical states with the properties that such a link predicts as optimal. In
[32] we studied the estimation of 1� l � d = 2 linear and normalised but otherwise arbitrary
functions using the sensor-symmetric state

|� 0� =
1

�
2

�
1 + � 2

�
�
|00� + �

�
|01� + |10�

�
+ |11�

�
, (40)
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with Š� < � < � , and we provided a complete solution to this two-parameter estimation
problem. The fact that this is a particular case of the more general formalism that we develop
in this work suggests that, for thed = 2 case, it may be possible to use the state in equation (40)
to realise all the pairs (4v = 1,J ) that are optimal according to our results. We will now show
that this is the case.

Recalling that� z |i� = (Š1)i |i� , we see that, for the state in equation (40), � � z,1� = � � z,2� =
0 and� � z,1� z,2� = � � z,1� z,2� = (1 Š � 2)/ (1 + � 2), so that the variance is 4v = 4v1 = 4v2 = 1
and the quanti�er for the inter-sensor correlations can be written as a function of� asJ =
(1 Š � 2)/ (1 + � 2). This function reaches the maximumJ = 1 at� = 0, while it tends mono-
tonically from such point toJ = Š1 when� 
 ±� . In other words, ford = 2 there is always
a physical state that satis�es the condition imposed in equation (35) when 4v = 1.

It is interesting to observe that� splits the state into a part where the sum of the parameters
is encoded and a part that encodes the difference. More concretely,

eŠ i
2 (� z,1� 1+ � z,2� 2) |� 0� =

1
�

2
�
1 + � 2

�
 
eŠ i

2 (� 1+ � 2) |00� + e
i
2 (� 1+ � 2) |11�

!

+
�

�
2

�
1 + � 2

�
 
eŠ i

2 (� 1Š � 2) |01� + e
i
2 (� 1Š � 2) |10�

!
. (41)

A partial extension of this idea to thed-parameter case can be achieved by constructing a state
where the part that encodes functions aligned with the direction of1 is isolated in an analogous
fashion, i.e.,

|� 0� =
1

�
2

�
1 +

�
2dŠ1 Š 1

�
� 2

�
�
|00. . . 0� + |11. . . 1� + � (all other terms)

�

=
1

�
2

�
1 +

�
2dŠ1 Š 1

�
� 2

�
 
(1 Š � )

"
|0� � d + |1� � d

#
+ �

�
|0� + |1�

� � d
!

. (42)

For this probe, 4vi = 1 Š � � z,i � 2 = 1 = 4v for all i, and 4cij = � � z,i � z,j � Š � � z,i �� � z,j � =
� � z,i � z,j � = (1 Š � 2)/ [1 + (2dŠ1 Š 1)� 2] = 4c for all i �= j, which veri�es that the state in
equation (42) is also sensor symmetric. As a result, we can see that its inter-sensor correlations
are given by

J =
1 Š � 2

1 +
�
2dŠ1 Š 1

�
� 2

. (43)

If 0 � |� | � 1, then we have that 1� J � 0. This implies that there always exists a physi-
cal state associated with all the results in this section that require either positive inter-sensor
correlations, or the absence of them. On the other hand, the amount of negative correlations
that this state can cover lies in 0> J > Š1/ (2dŠ1 Š 1), which corresponds to 1< |� | < � .
Unfortunately, the amount of negative correlations that equation (35) might predict can lie in
0 > J > 1/ (1 Š d), where 1/ (1 Š d) � Š1/ (2dŠ1 Š 1) for d � 2 and the inequality is only
saturated whend = 2. Thus there is a subinterval not covered by equation (42). Whether there
are other physical states that may realise the missing values is an open question.

Finally, we note that the only entangled pure probes that may be asymptotically relevant
for sensor-symmetric networks are those that give rise to inter-sensor correlations, while any
other form of entanglement will be irrelevant in this type of scenario. To illustrate this idea, let

14
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us consider the state in equation (42) for d = 3, and suppose that the functions to be estimated
give rise to the geometry parameterG = 0. We have seen that, in that case, no inter-sensor
correlations are needed to perform the estimation optimally, which implies that, according to
equation (43), � = ± 1. By inserting these parameters in equation (42) we �nd that the optimal
states are

|� + � =
1

2
�

2

�
|0� + |1�

� � 3
(44)

and

|� Š � =
1

2
�

2

 
2

"
|0� � 3 + |1� � 3

#
Š

�
|0� + |1�

� � 3
!

. (45)

The �rst state is separable, but|� Š � is not. More concretely, if we tried to write the
latter as|� Š � = (x0 |0� + x1 |1� )(y0 |0� + y1 |1� )(z0 |0� + z1 |1� ), with |x0|2 + |x1|2 = |y0|2 +
|y1|2 = |z0|2 + |z1|2 = 1, we would �nd contradictions such as

[(x0 = x1) � (x0 = Š x1)] �
�
|x0|2 + |x1|2 = 1

�
, (46)

which byreductio ad absurdumallows us to conclude that the state with� = Š1 andd = 3 is
entangled. Hence, while here entanglement is not required to reach the asymptotic optimum,
neither is it necessarily detrimental. The only requirement imposed by our formalism is the
absence of pairwise correlations, and the presence or absence of any other kind of correlation
does not affect the asymptotic uncertainty.

3.3. Optimal POVM in the asymptotic regime

The �nal step of the asymptotic analysis is to �nd some POVM that is optimal in the large-µ
regime, in the sense that it saturates the quantum Cramér…Rao bound as� c

asym = �̄ cr, and we
can achieve this by requiring thatF(� ) = Fq [12, 13]. That the latter condition refers to the
parameters but not to the functions, together with the fact that the former can be estimated
optimally using a local strategy [32, 33] (see also section3.2), suggests that a local POVM
might be suf�cient to make the classical and quantum information matrices equal. In fact,
this would be very useful, since then we could associate any enhancement derived from the
presence of correlations with the initial state alone. In the following we demonstrate this for a
network withd = 2 parameters.

Consider a local POVM with elements

|n, k� =
�
|0� + (Š1)n |1�

�
� [|0� + (Š1)k |1� ]/ 2, (47)

wheren, k = 0, 1. Furthermore, we have seen that, ifd = 2, then the state in equation (40) is
general enough to realise all the asymptotic results predicted by our theory. As such, this is the
probe that we will use in this calculation. Combining this POVM with the transformed state
|� (� 1, � 1)� = eŠ i

2 (� z,1� 1+ � z,2� 2) |� 0� in equation (41), we �nd the amplitude

�n, k|� (� 1, � 2)� � eŠ i
2 (� 1+ � 2) + (Š1)n+ ke

i
2 (� 1+ � 2)

+ �
 
(Š1)keŠ i

2 (� 1Š � 2) + (Š1)ne
i
2 (� 1Š � 2)

!

� cos{ [� 1 + � 2 + � (k + n)] / 2} + � cos{ [� 1 Š � 2 Š � (k Š n)] / 2} ,

(48)
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the modulus of the proportionality factor being 1/
$

2(1+ � 2). This allows us to arrive at the
likelihood function

p(n, k|� 1, � 2) = �� n, k|� (� 1, � 2)�� 2 =
�
cos(x+ ) + � cos(xŠ )

� 2
/ [2(1 + � 2)], (49)

where we have introduced the notationx± � [� 1 ± � 2 ± � (k ± n)] / 2.
The elements of the classical Fisher information matrix in equation (18) for the quantum

probability in equation (49) are

[F(� )]11 =
1�

n,k= 0

1
p(n, k|� 1, � 2)

�
� p(n, k|� 1, � 2)

�� 1

� 2

=
1

2
�
1 + � 2

�
1�

n,k= 0

�
sin(x+ ) + � sin(xŠ )

� 2
= 1, (50)

[F(� )]22 =
1�

n,k= 0

1
p(n, k|� 1, � 2)

�
� p(n, k|� 1, � 2)

�� 2

� 2

=
1

2
�
1 + � 2

�
1�

n,k= 0

�
sin(x+ ) Š � sin(xŠ )

� 2
= 1, (51)

and

[F(� )]12 =
1�

n,k= 0

1
p(n, k|� 1, � 2)

� p(n, k|� 1, � 2)
�� 1

� p(n, k|� 1, � 2)
�� 2

=
1

2
�
1 + � 2

�
1�

n,k= 0

�
sin2(x+ ) Š � 2 sin2(xŠ )

�
=

1 Š � 2

1 + � 2 , (52)

with [F(� )]21 = [F(� )]12. Additionally, in sections3.1 and 3.2 we have seen that, for this
con�guration,

Fq =
�

1 J
J 1

�
=

�
1 (1Š � 2)/ (1 + � 2)

(1 Š � 2)/ (1 + � 2) 1

�
, (53)

which is identical to the classical Fisher information matrix in equations (50)…(52). We thus
conclude that the quantum strategy formed by the local POVM in equation (47) and the state
in equation (40) is asymptotically optimal. This completes our solution for the asymptotic
estimation of linear functions in a two-parameter network, and will be our starting point to
perform a Bayesian analysis.

4. Bayesian analysis of non-asymptotic quantum sensing networks

Now we turn to the more general problemof estimating linear functions when differentamounts
of data are available, which may include cases with a low number of trials. Thanks to the
simplicity of the asymptotic approach, in section3 we were able to discuss examples where
d = 2, 3, 5 and 10, and many of the results there were valid for anyd.However, due to the more
challenging nature of the numerical calculationsassociated with Bayesian estimation, in the
remainder of this work we will focus ontwo-parametersensor-symmetric qubit networks.
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Figure 4. Posterior density functions for random simulations ofµ = 100 trials, a �at
prior and the quantum strategy represented by the likelihood in equation (49), with (i)
� = 1, (ii) � = 0.9, (iii) � = 0.531, (iv) � = 0.334 and (v)� = 0. The simulated true
values of the parameters are� 


1 = 1 and� 

2 = 2. This �gure shows that the potential

ambiguities in the estimation associated with scenarios (i)…(iv) can be generally avoided
if the prior area satis�es� 0 � � 2. On the contrary, while the scheme (v) can be exploited
to estimate the sum of the parameters, in general it cannot provide good estimates for
other linear functions, independently of the value for� 0. We draw attention to the fact
that a similar pattern emerges as� 
 � , but with the posterior peaks tending to the
direction orthogonal to that in (v).

4.1. Regions of unambiguous information

Our aim is to use the asymptotically optimal strategy in equations (41), (47) and (49) as a guide
to perform a non-asymptotic analysis. Following our discussion in section2.2, this approach
is best justi�ed when, asµ grows, the likelihood function

p(n, k|� 1, � 2) =
µ�

i= 1

p(ni, ki |� 1, � 2), (54)

with eachp(ni , ki |� 1, � 2) given by equation (49), becomes concentrated around auniqueabso-
lute maximum within the prior area� 0. Indeed, this condition helps to prevent the estimation
process from giving ambiguous answers [68]. Hence, before we proceed we need to �nd how
large� 0 can be such that the above requirement is satis�ed.

One way of estimating this size is to �rst represent the posterior probabilityp(� 1, � 2|n, k) �
p(n, k|� 1, � 2) as a function of (� 1, � 2), where the outcomes (n, k) come from a simulation with
true values (� 


1, � 

2), and then visualise the regions with an asymptotically unique absolute

maximum in a direct fashion (see [61]).
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The previous method generates the results shown in �gure4 for several values of� . First
we note that the simulations in �gure4 have been restricted to the area (� 1, � 2) � [0, 2� ] ×
[0, 2� ] because the single-shot likelihood in equation (49) is invariant under� i 
 � i + 2� m,
with m = 0,± 1,± 2,. . . . andi = 1, 2, and thus it suf�ces to examine its symmetries within one
period. Depending on the value for� , we see that the posterior probability in �gures4(i)…(iv)
develops either two or four identical absolute maxima asµ grows, and that each of these peaks
is located within an extension of area� 2. Therefore, in the presence of complete ignorance, i.e.,
� 0 = 4� 2, the quantum strategy under analysis cannot select a unique answer, a phenomenon
already encountered in single-parameter metrology [45, 61, 62, 75]. In view of this, to avoid
the ambiguities in �gures4(i)…(iv) we shall impose that the prior area satis�es the condition
� 0 � � 2.

The situation for� = 0 in �gure 4(v) is, however, different. In that case, no single peak
can be selected even ifµ 	 1, which implies that such scheme does not have an asymptotic
approximation in the sense of section2.2. This is consistent with the fact that, if� = 0, then
J = 1, and this case must be excluded forFq to be invertible (see section3.1). Moreover,
the same type of behaviour would have been observed if we had examined the limit|� | 
 � ,
for which J 
 Š 1. Hence, we only need to impose the existence of a unique absolute max-
imum for 0< |� | < � . Crucially, this does not imply that the scheme with� = 0 is useless.
Figure4(v) shows that this scheme is giving information about the combination� 1 + � 2 = � m,
with m = 0,± 1,± 2,. . . , that is, about the sum of the parameters. In fact, this can be readily
seen by inserting� = 0 in equation (49), since then the likelihood for a single shot is only
sensitive to the equally weighted sum of the parameters. The calculations in the next section
will reveal that while the asymptotic performance of this scheme is poor, it can be useful when
µ is low.

4.2. The role of inter-sensor correlations II

Given the quantum strategy in equations (41) and (47) for a two-parameter qubit network, we
wish to estimate two global properties of such network when the experiment operates both in
and out of the regime of limited data. In particular, consider the linear functionsf1(� ) = (2� 1 +
�� 2)/

�
4 + � 2 and f2(� ) = (2� 1 + � 2)/

�
5, which can be encoded in the columns ofV as

V =
1

�
20+ 5� 2

�
2
�

5 2
$

4 + � 2

�
�

5
$

4 + � 2

�

. (55)

We assume that both functions are equally relevant, so thatW = I/ 2, and that our prior
knowledge is represented by the prior probabilityp(� 1, � 2) = 4/� 2, when (� 1, � 2) � [0, �/ 2] ×
[0, �/ 2], and zero otherwise. The area associated with this prior assignment is suf�ciently small
for the square error to be a suitable �gure of merit in phase estimation [62, 67], and, thanks
to our analysis in section4.1, we know that it will allow us to perform the estimation unam-
biguously when the asymptotically optimal strategies are employed, since� 0 = � 2/ 4 < � 2.

Let us start by comparing a local strategy with an entangled scheme that is asymptotically
optimal. The former assumes that theexperiment is arranged such that� = 1, J = 0, while to
�nd the properties of the latter we need to recall our results in section3.2 for the asymptotic
role of inter-sensor correlations. Equation (35) indicates that, ford = 2,

J opt =
"

1 Š
$

1 Š G2
#

/ G, (56)
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whenG �= 0, andJ opt = 0 if G = 0. In addition,J = (1 Š � 2)/ (1 + � 2), and by combining
the latter expression with equation (56) we �nd that

� opt = ±

�
G Š 1 +

�
1 Š G2

G+ 1 Š
�

1 Š G2

� 1
2

, (57)

whenG �= 0, and� opt = 1 if G = 0. The normalisation term for the functions in equation (55)
is simplyN = Tr(WV� V) = 1, while the geometry parameter is

G =
1
N

Tr
�
WV� X V

�
=

8 + 10� + 2� 2

20+ 5� 2 � 0.853. (58)

By inserting this result in equations (56) and (57) we have that� opt � ± 0.531 (we can choose
the positive solution without loss of generality) andJ = 0.561, where the latter veri�es that
this state is indeed entangled (note that the two-sensor state in equation (40) is only separable
when� 2 = 1).

Next we perform the numerical calculation of the Bayesian uncertainty�̄ msein equation (14)
for these two sensor-symmetric states, whose form as a function of� is in equation (40); the
measurementE(ni, ki) = |ni , ki �� ni , ki | in equation (47) for theith repetition in a sequence ofµ
trials; and the optimal estimators

� �f 1(n, k)
�f 2(n, k)

�
=

4

� 2
�

20+ 5� 2

�
2
�

5 �
�

5
2
$

4 + � 2
$

4 + � 2

�

×

 �/ 2

0
d� 1


 �/ 2

0
d� 2 p(n, k|� 1, � 2)

�
� 1

� 2

�
, (59)

which arise from equation (21) after inserting equation (55). The results have been represented
in �gure 5(i) as graphs (a) for the local scheme and (b) for the optimal entangled strategy. We
can observe that the local strategy performs worse than the entangled one for any number of
repetitions. Therefore, in this case we have that the prediction made by the asymptotic theory
is qualitatively preserved in the non-asymptotic regime. However, a closer analysis reveals that
the distance between the two lines is considerably less when 1� µ � 20 than whenµ 	 1,
and this behaviour is reminiscent of that of a Mach…Zehnder interferometer [62]. Indeed, opti-
cal probes with a large Fisher information (and thus a good asymptotic performance) have
sometimes an error very close to that of a coherent laser beam in the regime of limited data,
and coherent probes can be seen as an optical analogue of the notion of local strategy in this
work. Moreover, the optical study in [62] also demonstrated that a better asymptotic error is
sometimes associated with a worseperformance in the regime of lowµ. As a consequence, a
natural question is whether a similar phenomenon can be exploited here, so that we can obtain
an uncertainty that is lower than the error for the asymptotically optimal entangled state when
the network operates in the non-asymptotic regime.

To test this idea, let us select a third arrangement with an asymptotic error that lies between
those of the local scheme and the asymptotically optimal strategy. The asymptotic error for our
network can be written in terms of� as (see equations (32) and (33))

�̄ cr =

�
1 + � 2

� �
(1 Š G) + (1 + G) � 2

�

4µ� 2 � �̄ qbit (� ) . (60)
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Figure 5. (i) Mean square error for the estimation of the linear functionsf1(� ) = (2� 1 +
�� 2)/

�
4 + � 2 and f2(� ) = (2� 1 + � 2)/

�
5 by means of the two-sensor qubit network

introduced in the main text, where ((a), blue line) is a local strategy, with� = 1, J = 0;
((b), green line) is the asymptotically optimal entangled strategy, with� = 0.531,J =
0.561; ((c), red line) is a strategy whose enhancement has been balanced between the
asymptotic and non-asymptotic regimes, with� = 0.334,J = 0.799; and ((d), purple
line) is a maximally entangled state, with� = 0, J = 1. Figures (ii)…(iv) compare the
mean square error (solid lines) and the multi-parameter quantum Cramér…Rao bound
(dashed lines) for the strategies in (a)…(c), respectively, verifying that the latter is recov-
ered asymptotically. All the calculations assume the weighting matrixW = I / 2 and a
�at prior of area� 0 = � 2/ 4 centred around (�/ 4, �/ 4).

Using this we can �nd the value of� for the strategy satisfying our desideratum above by
imposing that

�̄ qbit (� ) =
1
2

�
�̄ qbit (� loc = 0) + �̄ qbit (� ent = 0.531)

�
, (61)

and the solutions are� � ± 0.334,± 0.842. So we take our third strategy to be the state in
equation (40) with � = 0.334 (and thusJ = 0.799), a choice motivated by the fact that this is
the option with the lower uncertainty for a single shot (in particular,�̄ mse(µ = 1,� = 0.334) �
0.158 and̄� mse(µ = 1,� = 0.842) � 0.173).

The uncertaintȳ� mse for the third scheme has been represented as a function of the num-
ber of trials in �gure5(i), where it is labelled as (c). As expected, this error lies equidistantly
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between the local and the asymptotically optimal strategies whenµ 	 1, but this is no longer
the case in the regime of limited data. More concretely, the graphs for the asymptotically opti-
mal strategy and the new scheme cross each other whenµ � 40, so that the former is optimal
whenµ > 40 and the latter is the preferred choice if 1� µ � 40. Consequently, we may say
that trading a part of the asymptotic enhancement is sometimes associated with an improved
performance in the non-asymptotic regime, whichconstitutes a multi-parameter generalisation
of the analogous phenomenon in [62] for a Mach…Zehnder interferometer.

Interestingly, the balanced strategy (� = 0.334,J = 0.799), which provides a better pre-
cision in the non-asymptotic regime, is associated with larger inter-sensor correlations, and
in what follows we propose a potential explanation for this. Let us �rst recall that, whenµ is
large, the information about the global properties is essentially provided by the measurement
outcomes that we accumulate asµ grows, which contrasts with the non-asymptotic regime
where the information is a mixture of prior knowledge and experimental data. This implies
that the optimal correlation strength predicted by the asymptotic theory is implicitly assuming
a large amount of information, while the information available in the non-asymptotic regime
is poorer becauseµ is low and the prior in equation (10) is only moderately informative. It is
thus reasonable to expect that the asymptotically optimal amount of entanglementis generally
inappropriatein the non-asymptotic regime. One can then try to compensate the low amount of
information in the regime with limited data by choosingJ judiciously. In our case, we observe
that our functions are clustered around the equally weighted sum of the parameters, since the
geometry parameter of the former isG � 0.853 and this is relatively close to the geometry
parameter of the latter,G = 1. In turn, this motivates choosing aJ that is closer to that associ-
ated with1, which isJ = 1, in order to enhance the precision whenµ is low, and this is what
(b) and (c) in �gure5(i) show.

We may push this intuition further and consider a network with� = 0,J = 1, which makes
the state in equation (40) maximally entangled. Its graph has been labelled as (d) in �gure5(i),
and upon comparing it with the three previous strategies we see that the maximally entangled
state is the best option when 1� µ � 10. The price that we pay for this low-µ enhancement
is that the scheme ceases to be useful afterµ � 20 trials, and it is asymptotically beaten by
the rest of schemes, including the local strategy. We notice that this result is consistent with
our analysis in section4.1, where we established that this probe is only sensitive to the equally
weighted sum of the parameters.

The maximally entangled state also illustrates how, despite the lack of an asymptotic approx-
imation in the sense of section2.2, we can still perform a Bayesian estimation using such
strategy, even when it has limited usefulness. On the contrary, for the local, asymptotically
optimal and balanced strategies we have thatthe Bayesian mean square errors converge to
their respective Craḿer…Rao bounds, as it may be veri�ed by observing �gures5(ii)…(iv). The
number of repetitions required for the relative error between these Bayesian uncertainties and
the asymptotic bounds to be equal to or less than 5% runs fromµ � 10 toµ � 102 (see table1
for more details).

In summary, in this section we have demonstrated that the strength of the inter-sensor cor-
relations that is useful to estimate a given collection of global properties changes substantially
for different amounts of data, i.e., for different values ofµ. Since this is the same type of
behaviour that we had established for single-parameter schemes in [62], weconjecturethat the
novel effects associated with a limited number of trials, which here have been uncovered using
speci�c examples, are a general feature of non-asymptotic quantum metrology, and that they
are generally present in a wide range of experiments operating in the regime of limited data.
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Table 1. Properties of different strategies based on a two-parameter qubit network,
where� selects the state andJ is the amount of inter-sensor correlations. The POVM is
separable for all four schemes, but only the local strategy is based on a separable state.
The asymptotically optimal strategy minimises the quantum Cramér…Rao bound. The
balanced strategy has also been enhanced via quantum correlations, but it is not asymp-
totically optimal because part of this enhancement has been traded to instead enhance
its non-asymptotic performance. Finally, the fourth strategy uses a maximally entangled
state. We note that the fourth column provides the number of repetitionsµ
 needed such
that the relative error between the Bayesian uncertainty and the Cramér…Rao bound
is equal to or less than a 5% threshold (see [61]), and in general it depends on the
available prior information. Importantly, this calculation does not apply to the strat-
egy with a maximally entangled state, since the estimation uncertainty for the latter
does not have an asymptotic limit in the sense of section2.2. These results demonstrate
the state-dependent nature of the conditions required to approach the Cramér…Rao in
multi-parameter systems.

Strategy � J µ
 (� 0 = � 2/ 4)

Local 1 0 4.58× 102

Asymptotically optimal 0.531 0.561 4.3 × 10
Balanced enhancement 0.334 0.799 5.37× 102

Maximally entangled 0 1 „

5. Summary and outlook

The central question addressed in this work has been that of the role of inter-sensor correla-
tions in the estimation of linear functions with arbitrary geometry, having exploited a sensor-
symmetric qubit network in the presence of different amounts of data. First we focused on the
asymptotic part of the problem, and by optimising the class of sensor-symmetric states, we
have established an optimal link between correlation strength and the geometry of the linear
functions. Thanks to this we have been able to demonstrate that, while entanglement is useful
for many geometrical con�gurations, it is sometimes detrimental even with functions that are
non-trivial global properties. Furthermore, we have found that forms of entanglement other
than those of a pairwise nature are in fact irrelevant in this regime. Hence, our approach sig-
ni�cantly extends previous studies in networked quantum sensing that had only considered the
estimation of a single function or a collection ofl = d orthogonal ones.

Given that, in practice, the number of trialsµ is always �nite and possibly small, we have
also performed a non-asymptotic analysis of sensing networks. To this end we have intro-
duced ahybrid estimation technique combining asymptotic and non-asymptotic optimisations
in Bayesian estimation. This approximate but powerful approach has revealed that the correla-
tion strength that is optimal for sensor-symmetric networks crucially depends on the number
of times that we repeat the experiment. Additionally, we have demonstrated how the non-
asymptotic precision may be enhanced by trading precision enhancements associated with the
asymptotic regime.

Admittedly, while many of our asymptotic results are valid ford parameters, our Bayesian
analysis has been restricted to thed = 2 case due to numerical complexity. Hence, developing
methods to overcome this limitation may have a major impact in the long run. For instance, it
would be interesting to examine whether the irrelevancy of forms of entanglement other than
those that generate pairwise correlations is also true for a low number of trials, which is a ques-
tion that requires simulations whered � 3. One possibility is to modify the multi-parameter
algorithm in [45] that we have exploited in section4, such that the integrals associated with
the parameters� are performed with Monte Carlo techniques. Alternatively, we could employ
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some other quantum bound whose calculation is simple enough to study cases where bothµ
andd are unrestricted. One potential candidate ful�lling the latter is the multi-parameter quan-
tum Ziv…Zakai bound in [9], although, according to our �ndings in [16], we cannot expect the
results derived using this type of tool to be tight in general.

Another important direction for future work is to extend our analysis to include the potential
effect that decoherence may have in our conclusions. For example, it would be desirable to
establish whether, in such case, inter-sensor correlations are still generally detrimental for the
estimation of linear functions whose geometry parameter vanishes, i.e., whenG = 0. Note that
our hybrid estimation technique can still be employed here, but replacing the ideal quantum
Craḿer…Rao bound by its version for mixed states when such bound is applied to equation (17).

Notwithstanding these limitations, our methodology has revealed new important aspects
of the role of entanglement in the simultaneous estimation of linear functions with net-
worked schemes, and these results could contribute decisively towards a powerful theoretical
framework for networked quantum sensing.
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Appendix A. Constructing the multi-parameter prior probability

Suppose that, according to our prior information about the network, we know that: (a)a priori
there is no reason to expect that the parameters� are correlated in any way with each other and
(b) we are ignorant of the magnitudes of the parameters, although (c) only within a hypervol-
ume� 0 that is centred around̄� = (�̄ 1, . . . , �̄ d). The purpose of this appendix is to construct a
prior density that codi�es this state of information.

Given (a), the parameters are initially thought of as independent in the statistical sense,
which in turn allows us to formalise (b) as the assertion that a displacement by an arbitrary real
vectorcdoes not change our state of information. That is,� and� 
 = � + cgenerate equivalent
estimation problems.

At the same time, this invariance in our state of information is equivalent to imposing that
p(� )d� = p(� 
)d� 
 = p(� + c)d� , which gives rise to the functional equationp(� ) = p(� + c),
and the latter can be satis�ed withp(� ) � 1.

Finally, (c) indicates that the argument in the previous two paragraphs can only be approx-
imately ful�lled in a portion of the parameter domain with hypervolume� 0 centred around
�̄ = (�̄ 1, . . . , �̄ d). Sincea priori the parameters are thought of as independent, we may express
the hypervolume� 0 as� 0 =

	 d
i= 1 W0,i , whereW0,i is the prior width for theith parameter.

23



J. Phys. A: Math. Theor. 53 (2020) 344001 J Rubio et al

Therefore, our multi-parameter prior will be

p(� ) = 1/ � 0 = 1/

�
d�

i= 1

W0,i

�

, (A.1)

for � � [�̄ 1 Š W0,1/ 2, �̄ 1 + W0,1/ 2] × · · · × [�̄ d Š W0,d/ 2, �̄ d + W0,d/ 2], and zero otherwise,
which is the prior introduced in section2.1and employed in the main text. We notice that this
is a multi-parameter application of a methodproposed by Jaynes to construct objective prior
probabilities [68, 76]. Other methods can be found in [77, 78].

Appendix B. Optimising the multi-parameter Bayesian uncertainty: review of
techniques

There are several ways of addressing the problem of optimising the uncertainty in equation (14)
with respect to the estimators�� (m), the measurement schemeE(mi) and the initial sensor-
symmetric state� 0. One option is to perform a direct minimisation [2…5], which is sometimes
possible in covariant estimation [7, 23, 47, 79] but generally intractable. Alternatively, one can
bound the estimation error and search for the strategy that better approaches that bound, which
may be attempted with tools such as the Yuen…Lax bound [1], the quantum Weiss…Weinstein
bound [11], or some multi-parameter version of the quantum Ziv…Zakai bound [9, 10], among
others [8, 47]. This method usually suffers from the lack of tightness of the bounds, although
this can be partially overcome with the Bayesian analogue of the Helstrom Cramér…Rao bound
that we recently constructed in [16] (see also [46, 47]), since it can be saturated in certain cases
and we showed how to exploit it for the estimation of local parameters (i.e.,� ). Neverthe-
less, we have followed the weaker but computationally simpler hybrid approach in section2.2
because the theory of estimating global properties of a network is more challenging, and we
leave the application of more sophisticated methods to the estimation of linear functions for
future work.

Appendix C. Minimisation of the asymptotic uncertainty for linear functions

The optimal strength for the inter-sensor correlations in equation (35) can be found as follows.
If we look at �̄ f = N h(J , G, d) /µ as a function ofJ , where we recall that, according to the
discussion in section3.1,

h(J , G, d) =
[1 + (d Š 2 Š G)J ]

(1 Š J )[1 + (d Š 1)J ]
, (C.1)

then the equation for its extrema is

N
µ

� h(J , G, d)
� J

=
N
µ

(d Š 1)(d Š 2 Š G)J 2 + 2(d Š 1)J Š G
(1 Š J )2[1 + (d Š 1)J ]2 = 0, (C.2)

whose solutions are

J ± =
1

G+ 2 Š d

�

1 �

�
(G+ 1)(d Š 1 Š G)

d Š 1

�

. (C.3)

Since we need to restrict our study to the range 1/ (1 Š d) < J < 1 for Fq to be invertible,
onlyJ + is a valid candidate to �nd a minimum. Next we examine the sign of the slope in the
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left-hand side of equation (C.2) for some values ofJ aroundJ + . By noticing thatN /µ > 0
and using the endpoints of the domain forJ we �nd that

� h (1 Š � , G, d)
� J

> 0,
� h

�
1/ (1 Š d) + � , G, d

�

� J
< 0 (C.4)

for an arbitrarily small� > 0 whenG �= Š1, G �= d Š 1, which we exclude to guarantee that
J �= 1/ (1 Š d), J �= 1. Consequently,J + gives rise to the minimum that we were looking
for.

Appendix D. Eigendecomposition of X

The characteristic equation forX = I Š I is

det (X Š 	 I ) = det
�
11� Š (1 + 	 )I

�
� (1 Š d + 	 ) (1 + 	 )dŠ1 = 0, (D.1)

giving the eigenvalues	 1 = d Š 1, with multiplicity 1, and	 2 = Š1, with multiplicity d Š 1
(see the calculations associated with equation (23), whose eigenvalues are obtained in the same
way). By inspection we see that1 is one of the eigenvectors. Since the latter satis�es that
X 1 = (11� Š I)1 = (d Š 1)1, the rest of the eigenvalues must be associated with the subspace
orthogonal to1, and this concludes the eigendecomposition ofX .
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