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CrossMark
Abstract
The theoretical framework for networked quantum sensing has been developed
to a great extent in the past few years, but there are still a number of open ques-
tions. Among these, a problem of great signi cance, both fundamentally and
for constructing ef cient sensing networks, is that of the role of inter-sensor
correlations in thesimultaneougstimation of multiple linear functions, where
the latter are taken over a collection local parameters and can thus be seen as
global properties. In this work we provide a solution to this when each node
is a qubit and the state of the network is sensor-symmetric. First we derive
a general expression linking the amount of inter-sensor correlations and the
geometry of the vectors associated with the functions, such that the asymptotic
error is optimal. Using this we show that if the vectors are clustered around two
special subspaces, then the optimum is achieved when the correlation strength
approaches its extreme values, whhere is a monotonic transition between
such extremes for any other geometry. Furthermore, we demonstrate that entan-
glement can be detrimental for estimating non-trivial global properties, and that
sometimesitis in factirrelevant. Finally, we perform a non-asymptotic analysis
of these results using a Bayesian approach, nding that the amount of corre-
lations needed to enhance the precision crucially depends on the number of
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measurement data. Our s will serve as a basis to investigate how to har-
ness correlations in networks of quamt sensors operating both in and out of
the asymptotic regime.

Keywords: quantum sensing networks, multi-parameter estimation, quantum
metrology, quantum correlations

(Some gures may appear in colour only in the online journal)
1 Introduction

An important task in quantum information science is to devise protocols for multi-parameter
metrology and estimation by exploiting the quantum properties of light and matter. This
problem has been widely explored not only in a theoretical fastiog2], but also in appli-

cations P, 15, 16, 23..39] and experimentsZ7, 40.42]. As a result, new practical ways of
enhancing our estimation sefmes have recently emergetB[48]. These protocols are nor-

mally formulated on the basis df unknown parameters= ( 1,..., ¢) that arise naturally

in the description of the system at hand, and in many cases these are the quantities of interest.
However, sometimes we may wish or need to hdew quantities that are functions of

thatis, f( ) = (f;( ),...,f( )). Thisis the case, in particular, when we analyse global prop-
erties in a quantum sensing netwo82[33], which is a model for spatially distributed sensing

[46] and the main focus of this work. Indeed, B 33] this model is de ned as an array of
guantum sensors where one or several parameters are locally encoded in each of them, and
while a property of the network is said to lmeal if it is represented by parameters at a single
sensor, global property is thought of as a non-trivial function of two or more parameters at
different sensors. Here we consider that a single parameigencoded in théh sensor, so

that is a collection of local properties, and wesame that both parameters and functions are
real-valued quantities. See gufefor a schematic representation.

Networked scenarios where global properties are relevant provide a natural testbed to iden-
tify the potential usefulness of entanglement in a broad range of multi-parameter scB2mes [
37]. Within this context, the optimal estimation of a single functfor) has been extensively
studied B2, 33, 37, 46, 49. 58], and it has been established that one can nd entangled states
that beat the best separabl®lpe when that function is linea82, 33]. In addition, Eldredge
et al[49] derived a bound on the error for this scenahat was later generalised to accommo-
date a single analytical functioB?], which can also be estimated with an enhanced precision
when there is entanglement, while Gross and Cav8djave reexamined the linear case using
an elegant geometric approach. On the opposite extreme, it has been shown that a collection
of | = d linear functions that generates an orthogonal transformation{i.e),= V  with
VV51 = |) can be estimated optimally with a local strate8,[37].

Beyond these two types of global properties, the simultaneous estimation bfinear but
otherwise arbitrary real functions has been a less travelled path. There exist generic bounds for
this problem (see, e.g.32, 60]), which in practice may arise in scenarios such as the esti-
mation of phase difference®9, 60]. However, how quantum correlations may help for linear
functions with arbitrary geometry has not been examined in detail. Given that this represents
aricher regime than the= 1 andl = d with orthogonal functions cases, it can be argued that
answering this question is essential for further progress in networked quantum metrology.
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Figure 1L A network ofd = 5 sensors. The parameterss ( 1,..., s)represent local
properties, since each of them is locally encoded in a single sensor. On the con-
trary, f1( 1, 3) andf,( 2, 4, s) are global properties associated with sensors 1 and 3
(green solid lines) and sensors 2, 4 and 5 (purple dashed lines), respectively.

While a general answer is beyond the scope of our methods, here we obtain a de nite solu-
tion for a subclass of schemes with sensor-symmetric pure qubit states, which we introduce
in section2.1 Using the Helstrom Craér...Rao bound and the associated quantum Fisher
information matrix, in sectior® we derive a general expression linking the geometry of the
vector components associated with the functions and the strength of the inter-sensor correla-
tions, such that the uncertainty in the asymptotic regime of many trials is optimal. Moreover,
we show that there exists a physical state for many of the optimal con gurations that our for-
mula predicts. Equipped with this, we then derive a number of important results. First we nd
that the largest amounts of correlations are associated, for sensor-symmetric states, with two
special subspaces: the direction of the vector of dnes (1, 1,...), and the subspace orthog-
onal to it. This connection between entang&rhin a pure state and how much the vectors
are clustered around certain directions was precisely one of the open questions identi ed in
[32], and our ndings contribute towards its solution. In addition, we demonstrate that entan-
glement can be detrimental for estimating global properties other than those associated with
orthogonal transformations, while a three-sensor network reveals that entanglement is some-
times irrelevant. This is consistent with the fact that the asymptotic uncertainty only depends
on correlations of a pairwise nature, and thus other forms of entanglement do not affect the
asymptotic error.

On the other hand, it is known that strategies with a good asymptotic precision found by
optimising the Crar@r...Rao bound sometimes have a particularly poor performance when the
number of trials is very low (see, e.g61]). In fact, there is compelling evidence of the exis-
tence of a potential trade-off between the performances in the asymptotic and non-asymptotic
regimes 62]. In view of this, a non-asymptotic analysis of our ndings for sensing networks
is in order. To do it, in sectio@.2we propose a multi-parameter Bayesian procedure that gen-
eralises its single-parameter counterpartaty,[and in sectiord we utilise it to examine the
non-asymptotic properties of some of our results in se®iddur central insight here is that
trading a part of the asymptotic enhancemergametimes associated with an improved per-
formance in the non-asymptotic regiralsoin networked quantum metrology, and in general
we nd that the amount of correlations needecetthance the precision crucially depends on
the amount of data that has been collected. Due to the more complex (and often numerical)
nature of Bayesian calculations, this study is restricted tdthe2 case, although in secti@n
we discuss some potential directions to overcome this limitation. To the best of our knowledge,
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this work, together with16, 54], constitutes one of the rst Bayesian studies of a network of
guantum sensors in this context.

Our approach to the simultaneous estimation of linear functions in a scheme for distributed
guantum sensing will serve as a basis to investigate how to harness correlations in multi-
parameter schemes, operating both in and out of the asymptotic regime. Since the construction
of entangled networks is likely to be dif cult in practice, these insights may prove to be cru-
cial in the study and implementation of quantum sensing networks that operate with a realistic
amount of data.

2. Formulation of the problem

2.1 Physical scheme and available information
Consider a network ai qubit sensors prepared in some initial stage= | o |, with

1
| o = Qiy.ig li1---1d (1)
il...idZO
L i 0la,.i/? = 1, and the basis elemeng; = (1,0)and 1|, = (0, 1) for thejth sensor.
In addition, suppose we encodéocal parameters = ( 1,..., q), ONE persensor, ag ) =
e g% whereK = (Ky,...,Kq), each generatd; has the form

Ki=1ly -+ list z liea -0 g zis @
and

1 0 .
z7 o S1 '

10
This is an instance of the type of unitary encoding that arises in spatially distributed sensing
[32, 33], and while it is separable, i.e.,

EXDSIK ): eéi21/2 eSizd/Z, (4)

in principle we allow for entangled pure stateslaany general measuremt acting on all the

sensors at once. When the state and the measurement present no quantum correlations, we say
that the scheme implementdaral strategy Otherwise we have global strategy We also

note that

[Ki,Kil =1 zi, 2j]/4=0, 5)

which is a useful feature of this system becatsal allow us to saturate the asymptotic bound
in section2.2

To introduce the subclass eénsor-symmetric statélsat we will exploit, rst we recall
that the strength of correlations beten any pair of sensors, which we cadter-sensor
correlations may be quanti ed as49, 32

KiK; S Ki K;
Ki Kj '

Jij = (6)
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fori=j, where K?= K? S K; 2 and we use the notation ol | o . Further-
more, Jjj in equation ) is bounded asS1 J;; 1. Using this quanti er, we de ne
sensor-symmetric states as those satisfying

v= KZ2S K% c= KK;S K K; 7

forall i, j, wherec andv are xed values that characterise the preparation of the network and
the encoding of the parameters. In turn, equat®bécomes;; = J = c/v,alsoforalli = j,
and for our qubit model we see that

4v = g,i S zi =18 i 21 dc= 4 4 S zZi  zj s (8)

where 0 4v 1 due to the fact that the eigenvalues gfaretx 1 and thug .| 1. This
de nition in terms of the conditions in equatiof)(is a way of generalising the notion of path-
symmetric states in optical interferomet®9 63, 64], and it motivates our choice of initial
probe.

The nal piece required before we can formulate the estimation problem of interest is to
establish what prior information is available. The properties of the network that we wish to
estimate are those that can be modelled linearly as

f()=(R()....5()=V +a ©)

whereVis a d x 1) matrix anda is a column vector with components. We consider that the

form of these functions is known and so there is no uncertainty associated with the Vhatrix

the vectom. Furthermore, we assume that the unknown parametgan be initially thought of

as independent in the statistical sense, such that there are no prior correlations between them,
and we suppose that the magnitude of itheparameter can be found somewhere within an
interval of widthWp; centred around;, which is a moderate amount of prior knowledgs,[

62, 65. This state of information can be represented by the separable prior probability
d

p( )=V Wo,i (10)

i=1

for [ 1SWot/2, 1+ Woa/2]%---%x [ ¢S Woa/2, g+ Wog/ 2], and zero otherwise.
Equivalently, equation10) may also be written ap( ) = 1/ o, with hypervolume ¢ =

id=1Wo,i centredaround = ( 1,..., q). Theinterested reader will nd in appendixa way
of justifying this prior from the perspective of the so-callgtjectiveversion of the Bayesian
framework.

2.2. Estimation method: a hybrid approach

Starting with the transformed network state ) in section2.1, the next step is to considgr
identical and independent measuremsem this system, which we seetaals or repetitions

In particular, theth measurement is represented by a POR(vh) with outcomem;, and the
probability of this process generating the outcomes (my, ..., m,) is given by the likelihood

function
H M

pm )= pm| )= TriEm) (). 11)

i=1 i=1

Since the form of the functionfy-) has been assumed to be known, itis appropriate to construct
their estimators as

f(m)= f[ (M]= (W[ M],....4[ (M) =V (m)+ a, 12)

5
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where (m) = ( 1(m),..., 4¢(m)) are the estimators for the parameterand we evaluate the
uncertainty of our estimatelym) as

Tmse=d dmp( )p(m| ) THW [f(m)S fO)IF(MS ()]}, (13)

wherep( ) is the prior,W = diagfvy, ..., w) is a weighting matrixw; 0 represents the
relative importance of estimating tlin parameter, and W) = 1. Importantly, although a
square error is generally not suitable for gtis associated with topologies other than that
for the real line, it can still be a good approxitizan to the uncertainty for other topologies
when the prior knowledge aboutis moderate or high (see, e.g45] 47, 61, 62, 66, 67)),
which is our case.
By using equationsl()...12) and the network con guration in sectidhl, equation 13)
becomes
H
“mse= m Tr E(m) ek OeiK'
0 =1

xTfWV [ MS [ mMS ]V} (14)

for our system. We note that this error does not deperal eo that we can set= 0 without
loss of generality. Hence, from now on the functions &fe) = V  and the coef cients are
encoded in the columns o

Ideally, we would like to minimise the error in equatidid] with respect to the estimators

(m), the measurement schefd@m) and the initial sensor-symmetric statg so that we can

nd the optimal con guration of the network anstudy its properties. Since, in general, this is
a very challenging problem, in this work we follow an approximate procedure that combines
asymptotic and non-asymptotic optimisations. We now describéytisd approach and how
to use it for our analysis of sensing networksdiscussion of other methods in the literature
can be found in appendB).

On the one hand, equatioh4) can be minimised with respect tqm) in a straightforward
way (e.g., using calculus of variations; s&6,[68]). This provides the familiar result that

(m=d p([m) (15)

are the optimal estimator68, 69|, wherep( |m) = p(m| )/[ op(m)] is the posterior proba-
bilityandp(m)= d p(m| )/ o.Asaconsequence, inserting equatid® (n equation {4)
we have that

| 2
me Wi dmpm) dp Imf*()S  d p( Imfi() opr  (16)

where fi( ) = ?zlvj'i j- This is the optimal uncertainty based on the probabilities that
emerge from the measurements in a given quantum straigy) (plus ), and is valid and
exact for any number of triais.

On the other hand, we may select the quantum strategy such that it is optimal in the asymp-
totic regime of many trials, wheng 1. First we recall that, if the true values lie within
the prior hypervolume o, and the likelihoog(m| ), which we assume to be suf ciently reg-
ular, becomes concentrated aroundasp grows, then the posterior probabilipf |m) can

6
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be approximated as a multivariate Gaussian density, and the uncerfgjrityequation {6)
satis es [68, 70, 71]

d -
gpt ﬂ T WV F( )Slv gsym (17)

where

dn  pm ) _pm )
p(m| )

is the Fisher information matrix for a single trial with outcomme(for a derivation of this
approximation, see, e.g68, 70, 71] and section 6.2.2 of45], and [B, 72, 73] for a rigorous
treatment). At the same time, given that the form of the unitary encoding iSép( ) and the
state o= | o ol ispure,the Helstrom Craen...Rao bound establishes the matrix inequality
[43, 44, 46, 47

F()=

(18)

FO)S FSYL with (Fj=4  olKiKjl 0 S oKl o olKjl o .
(19)

Fq being the quantum counterpart of the information matrix. Then, the combination of
equations16), (17) and @9) implies that, in the asymptotic regime,

_ 1 :
mse  opt  gsym aTr WV v o (20)

The quantum Crafr...Rao boung in equation 20) is a function of ( only, sinceK, V, W
andp are xed, and it does not depend on the measurement. As such, if we choose the POVM
E(m) for theith repetition such thaf .= ¢, then that measurement will be asymptotically
optimal. It can be shown that a measurement suchRhgt= Fq (and thus s, = o) always
exists when the generatdfscommute with each othet 2, 13], and equation§) demonstrates
that this is indeed satis ed by our qubit network. Hence, we will use this criterion to construct
the POVM. Regarding the optimisation of thte, we will proceed by rst calculating, as
a function of the properties that characterise the sensor-symmetric gtatkich, as we will
see, are the varianweand the correlation strengbh, and then minimising the resulting bound
with respect to the paiv(J ). Once we know the optimal estimators

f(m =V d p( |m) (21)

and the asymptotically optimal state and measent as prescribed above, we can complete
the estimation by inserting these in the Bayesian uncertainfy fepetitions in equatiorid),
which here will be calculated numerically with the algorithm in section 6.2.346f (the
reader interested in reproducing our numerical results will nd the associated MATLAB code
in appendixC of the same work).

It is important to realise that our approach can fail when the asymptotic approximation is
not valid. This could happen, for example, if thigor information provided within the hyper-
volume  is not suf cient to distinguish a single poinél, 68|, or if the Fisher information
matrix (classical or quantum) is singular. Therefore, we will concern ourselves with schemes
where the information matrix is invertible, and, once we have found the asymptotically opti-
mal quantum strategy, we will also check that the likelihp@d| ) associated with it does not

7
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present ambiguities in the relevant portion of the parameter space. Nevertheless, note that, in
general, a potentially ambiguous likelihood function or a singElar) do not introduce any
fundamental dif culty for Bayesian estimation itself (this will be demonstrated in seetion

with an example).
In summary, the estimation method that emerges from the previous discussion requires that

we:
(a) calculate the quantum Cram..Rao boung,; and nd the sensor-symmetric state that
makes it minimal,
(b) search for a POVM such th&, = e
(c) verify that the quantum strategy (state plus POVM) allows for unambiguous estimation
given the prior information represented in equatid)
(d) calculate the optimal estimators for the linear functions in equafity) &énd
(e) calculate thei-trial Bayesian uncertainty in equatiob4).

While the protocols constructed in this way may not be optimal for lgvi61] demon-
strated that this technique can provide important information about the non-asymptotic regime
in optical interferometry, and here we will show that this is also true for networked quantum
sensing. Moreover, a very useful feature of our approach is that the analysis of the role of inter-
sensor correlations emerging from (a) and (b) wélrelevant for researchers interested only
in the Craner...Rao bound, while those that also require an analysis based on a nite number
of repetitions will bene t from the insights arising from (c)...(e). The next section is dedicated
to the former.

3. Asymptotic estimation of global properties

3.1 Estimation of arbitrary linear functions

Our rst step is to examine the quantum strategies that are optimal in the regime where the
sguare errormyse converges to the quantum Cram..Rao boung = Tr(WV F§1V)/u asp
grows. If we denote bye} the basis components of the real space whErev andFg are

de ned, withe e; = ;;, then from equations8f and (L9) we have that
d d d
Fq= i 2] Sz oz ee = 4 v e +cC ee
ij=1 i=1 ij=1
i=j
= 4[(vSol+cl]=4v[@ASI)l+JI], (22)

wherel is a d % d) matrix of ones and the {d x d) identity matrix. This is the quantum
Fisher information matrix for sensor-symmetric states.

To invertFq, we need to impose the condition of positive de niteness, which is equiva-
lent to requiring that its eigenvalues are strictly positive. Expresbkirag| = 11 , where
we recall thatl = (1,1,...) is the vector of ones, the information matrix beconfgs
4v (1SJ)I+J 11 .Inthatcase, the characteristic equation for the eigenvilues

det 4v 1SJSE l+J11 =0, (23)
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which upon using the identity det@ yz ) = (1+ z XS1y)det(X), with X = [4v(1SJ ) S
11, y= 4vJ 1andz= 1, implies that

{av[1+ @S 1)JI]S }[4v(@SI)S 1%t=o. (24)

As a result, the eigenvalues Bf are 1 = 4v[1+ (d S 1)J ], with multiplicity 1, and , =
4v(1SJ ), with multiplicity d S 1, and by imposing that they are positive we conclude that
Fq is invertible when 1(1S d) < J < 1. The rest of our calculations assume thalies in
such open interval under this assumption.

We can now calculate the inversefgfin equation 22), which is [32]

g1_ [1+(dS1)JI]ISJI
4 7 4vaSJ )+ dS 1]

(25)

Utilising this resultwe nd that the asymptotic uncertainty for the estimation of linear functions
is given by

~ _[1+@dS2J3]Tr WV V SJ Tr WV XV
o apv(A8SI )1+ (dS 1) ] ’

(26)

where we have introduced thd X d) matrix X | S | to separate the contribution to the
uncertainty due to the diagonal eIementEEﬁ, which are the errors for each of the parameters,
from that of the rest of the matrix.

The expression in equatio®) shows that the uncertainty depends on three types of quan-
tities: (i) the number of repetitiong and the number of parameteds (ii) the combined
properties of state and generators through the correlation stréngtid the variancg, and
(iii) two quantities, Tr WV V and Tr WV XV , that are de ned in terms of the functions
encoded iV and the weighting matri¥V . The next step is to investigate the physical meaning
of these two quantities in (iii).

By relabelling the vector formed by the components ofjtheiinear function asf; (i.e.,

fi( )= id: 1Vij i f; ), we can rewrite the rst quantity in a more suggestive form as

I d [ d
Tr WVTV = (W)iijiji = W ijij
ij=1k=1 =1 k=1
| |
j: 1 j: 1
where the norm in the last term is de ned pg? =, vZ for a real vectow. This is the

weighted sum of the squared magnitudes of the vectors associated with the linear functions.
SinceVW VT is positive semi-de nitive, and excludirthe degenerate case where all the coef-
cients vanish, we have that TWVTV) = Tr(VWVT) > 0. In addition, when the functions

are normalised, that i$f;| = 1 for1 i I, and recalling that TW/) = !: Wi =1, we

have that TV VTV) = 1. Hence, we de ne thaormalisation term

|
N - Tr(wviv) = w|f (28)
=1

satisfying thalN > 0, withN = 1 for normalised linear functions.

9
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As for the second quantity, we can rewrite it as

Tr WV'XV =Tr WVT(IS 1)V = SN + (Wi Vil kmVmi
ij= 1km= 1

[ d [ d 2

= SN + Wi ijlklmvmj = SN + Wi ijlk
=1 k= 1 =1 k=1
| |

=8N+  wjf,1°=8N+d wjfcod
=1 =1

|
= wjfJ*dcos 45 S1, (29)

=1

where 4; is the angle between the vector associated withjtthéunction and the direction
de ned by the vector of ones, and we have used the fact that=  d.

Recalling thatjcos 1; | 1 and using equation2@), we see that TWVTXV s
bounded as

SN  Tr WV'XV  N(@dS1), (30)

and that the extremes are realised when either the functions are aligned with the direction of
the vector of oneg, or they lie in a subspace orthogonal to it and of dimendiéh{). So, for
sensor-symmetric networks with properties modelled by linear functions, there are two kinds
of global properties that play a special role: the sum of all the natural parameters with equal
weights, and any linear combination of them such that the sum of its coef cients vanishes.
Any other set of global properties will produce some value foVVTX V  lying within the
interval in equation30), and this will be given by the geometry of the transformation de ned

by VW VT, This motivates the introduction of tlggometry parameter

|
wjlf|> dcos 15 S1, (31)

1
G WTr WVTXV =
=1

1
N
which satisesthaS1 G (dS 1).

Inserting equations28) and @1) in equation 26), the asymptotic uncertainty nally
becomes

N
or = mh(‘J ,G,d), (32)

where [1+ (d$25G)]

ASJI)1+ (dS1)JI]

Given a sensor-symmetric network witth local properties, the factoh(J ,G,d) in
equation 83) codi es the interplay between the inter-sensor correlations of strehgémd

the geometry paramet&for any linear property, which may be local or global. A represen-
tation of this interplay can be found in gur2 The formulas in equation82) and @3) have

been obtained without imposing further restrictions on the functions, and this implies that this
formalism can be applied to any number of linear functions whose coef cients generate vectors
that can form any angle and have any length.

h(J ,G,d)=

(33)

10
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ECI“

h

Figure 2. Representation of the interplay between the correlation strehgiind the
geometry parametds in equation 83) for a quantum sensing network with @)= 2,

(ii) d = 3, (iii) d = 5and (iv)d = 10 parameters. We observe that, gizen (S1,(dS

1)), the minimum asymptotic uncertainty is achieved using a scheme with inter-sensor
correlations of strengtd  (1/ (1S d), 1). The quantitative characterisation of these
minima is provided in sectio8.2

3.2. The role of inter-sensor correlations |

Let us exploit the previous result to address the problem of selecting a sensor-symmetric net-
work state that is optimal to estimate a given set of linear functions. This amounts to nding
the values fow andJ that are optimal for a give®. One approach is to use the fact that, for
qubits,0 4v 1, which allows us to lower bound equatid@®j as

~ %h(J Gd (34)

We then search for thé that minimises this bound after having xe&8 d andp. In princi-
ple, there is no guarantee that the pairs of values<4.,J ) generated by this method will
correspond to any physical state, although the bounds on the asymptotic error constructed in
this way would still be valid. Nevertheless, later we will study an example that realises a large
portion of the pairs (¢ = 1,J ) that we will predict.

By minimising ; (see appendi&) we nd that, if 4v = 1, and restricting our attention to
therange (1S d) < J < 1 where the information matrix is invertible, the optimal strength
for the inter-sensor correlations of the network is

1 L& G+DUASISE)

G+ 2Sd dsS1 (35)

Jopt =
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\70pt

Figure 3. Optimal inter-sensor correlation strength,: versus the geomet@of a set of
arbitrary linear functions, fod = 2, 3, 5 and 10 parameters (lines (a)... (d) respectively).
These monotonic curves provide a quantitatispresentation for #auncertainty min-
ima identi ed in gure 2, and the associated analytical formula is in equatg5).(This
result shows that, the more a collection of functions is clustered around the direction of
sothatG= dS 1, the larger the amount of correlations must be in order to perform the
estimation optimally (provided that/4= 1), while the opposite is true if the functions
are instead clustered around the subspace orthogotiafdowhichG = S1. Remark-
ably, any amount of correlations is detrimental wi@r 0, even though a vanishing
geometry parameter casobe obtained for properties of the network that are global.

forS1< G< dS 1, whichis determined by the structure of the functions alon€\(anced
has been xed). This provides a map between correlation strength and geometry with one-to-
one correspondence (note ta:  (dS 2)/[2(dS 1)]whenG  dS 2), asisillustrated in
gure 3, and this is the central result of our asymptotic analysis.

The expression in equatioB%) reveals that, the more a collection of functions is clustered
around the vector of onek the larger the amount of positive correlations is required to be
in order to perform the estimation optimally (provided that= 1). Similarly, the amount
of correlations with negative strength needs to be large if the functions are instead clustered
around the subspace orthogonaltd he potential existence of this type of connection between
geometry and quantum correlations was precisely one of the general open questions identi ed
in [32].

Furthermore, equatiorBp) (and gure 3) shows that any non-zero pairwise correlation
strength is detrimental whenever the geometnap@ter vanishes. It is therefore interesting
to investigate which linear functions imply th@t= 0, as well as the form of the associated
optimal strategy. To achieve this, let us recall the original de nitionGan equation 81), that
is,G= Tr(WV XV)/N. If we choose the uniform weighting mati¥ = I/1, and ifVis an
orthogonal transformation (i.e/,V =V V = 1), then

1 1 1 o
G= TV X)= 5 TrX) = TS 1) = 0. (36)

12
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Now we observe that = 0, which is the optimal choice for the previous scenario, is always
achieved by a separable qubitstatg = ( al0 + IS a|l) 9 andby selecting= 1/2
we have that¥ = 1. Thus we can say that the estimation of a sétofd linear functions that
are equally relevant and orthogonal can be carried out optimally by preparing our scheme with
separable states. Moreover, since the estimation of the paramésseguivalent to choosing
V = |, our result implies that separable states also optimal in that case. So, our present
formalism is consistent with previous resul82[ 33, 37, 74].

The above conclusion is suf cient to af rm that while entangled pure states are generally
useful for the optimal estimation of global properties, it is not true thaal@ysneed entan-
gled probes in such case. However, a transformation that is orthogonal preserves angles and
lengths, and thus one may argue that, in a sense, the information encoded by a set of functions
that gives rise to an orthogonal transformation is equivalent to the information content of the
original parameters, provided that the weighting matrices are uniform. Hence, it is perhaps not
surprising that a local estimation strategy is preferred here, s8&&8] had already shown
that the estimation of local properties assbed with commuting genators can be performed
optimally with a local scheme. In view of this, it is important to establish whether there are
other global properties wit = 0 that instead select information that is not equivalent to esti-
mating all the original parameters. First we observe that the eigendecomposigmdiich
is a symmetric matrix, is (see appendix

Xp = Uy XUy = diag[(d S 1),S1,...,S1], (37)

where the eigenvector for the rst eigenvalueliand those for the other eigenvalues belong
to the orthogonal subspace. That implies that if we choose a single linear functidor as

f = Ux1, thenwewillhavethaB= 1 U, XUxl/d= 1 Xpl/d= 0.Now consider athree-
parameter network, so that

. 2 §_ 1 1 1 2+ §+1
f=Uxl=— 283 1 1 =— 25 3+1 . (39
2 0 S2 1 282

Clearly, this gives rise to a global property, as these are the coef cients of a non-trivial function
of three local parameters. Y&,= 0, and so, according to equati@B5], pairwise correlations

are detrimental. Thereforentnglement is sometimes nateded in scenarios where we are
estimating non-trivial global properties. Interestingly, the same argument fadso2, since

in that case

1 1 1 1 2
f‘le‘_zlél 1~ 0 (39)
and this is associated with a local property begai simply rescales the rst parameter.
Nonetheless, our conclusion above is still valid in general.

For the link between geometry and correlations in equatd®h to be truly relevant, it is
necessary thatthere are physical states with the properties that such alink predicts as optimal. In
[32] we studied the estimationof1 | d = 2 linear and normalised botherwise arbitrary
functions using the sensor-symmetric state

| o= —=—— |00 + |01 +]10 + |11 , (40)
21+ 2

13
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withS < < , and we provided a complete solutito this two-parameter estimation
problem. The fact that this is a particular case of the more general formalism that we develop
in this work suggests that, for tlile= 2 case, it may be possible to use the state in equatign (
to realise all the pairs (4= 1,J ) that are optimal according to our results. We will now show
that this is the case.

Recallingthat ,|i = (S1) |i , we see that, for the state in equatidf){ ,1 = .2 =
Oand ;1 .2 = 21 22 = (S ?/(1+ ?),sothatthe variance isid& 4v; = 4v, = 1
and the quanti er for the inter-sensor correlations can be written as a functioraefl =
(1S 3/(1+ 2. Thisfunction reaches the maximum= 1at = 0, while it tends mono-
tonically from such pointtd = S1when + . In other words, fod = 2 there is always
a physical state that satis es the condition imposed in equawmhen 4/ = 1.

Itis interesting to observe thatsplits the state into a part where the sum of the parameters
is encoded and a part that encodes the difference. More concretely,

eS3( 21 1% 22 | o = 1 S5t 2|00 + es( 1+ z)|11.
2 1+ 2
!
+ —— 52015201 + 215210 | (41)
21+ 2

A partial extension of this idea to tlikparameter case can be achieved by constructing a state
where the part that encodes functions aligned with the directi@msafolated in an analogous
fashion, i.e.,

1
| o = — |00...0 +]11...1 + (allotherterms)
2 1+ 245151 2
1 " # !
= _ @as )y %+ ¢+ o+ . @2
2 1+ 208181 2
For this probe, % = 18 , 2=1=4v for all i, and &= 4 S 2 o =
ziozj = (1S 2/[1+ (2951S 1) ] = 4c for all i = j, which veri es that the state in

equation 42) is also sensor symmetric. As a result, we can see that its inter-sensor correlations
are given by

1S 2
J = 1+ 28181 2 (43)
IfO || 1,thenwehavethatl J 0. This implies that there always exists a physi-

cal state associated with all the results in this section that require either positive inter-sensor
correlations, or the absence of them. On the other hand, the amount of negative correlations
that this state can cover lies in0J > S1/ (2951 S 1), which correspondstod | | <
Unfortunately, the amount of negative correlations that equa8gnngight predict can lie in
0>J >1@ASd),where1(1Sd) S1(@2®'S1)ford 2 and the inequality is only
saturated whed = 2. Thus there is a subinterval not covered by equad@ {Vhether there
are other physical states that may realise the missing values is an open question.

Finally, we note that the only entangled pure probes that may be asymptotically relevant
for sensor-symmetric networks are those that give rise to inter-sensor correlations, while any
other form of entanglement will be irrelevant in this type of scenario. To illustrate this idea, let

14
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us consider the state in equati@t®)for d = 3, and suppose that the functions to be estimated
give rise to the geometry parameter= 0. We have seen that, in that case, no inter-sensor
correlations are needed to perform the estinmatiptimally, which impies that, according to
equation43), = +1.By inserting these parameters in equatié?) (ve nd that the optimal
states are

1
2

= o+1 ° (44)

NI

and " # !
210 °%+11 80+ °.

=

(49)

N
NI

The rst state is separable, byt g is not. More concretely, if we tried to write the
latter as| 5 = (0|0 + x1|1)(Yol0 + y1|1)([0 + z |1 ), with [xo|* + [xa]* = [yol* +
Iy11? = |20]? + |z1]? = 1, we would nd contradictions such as

[(X0=x1) (X0=Sx)] [%l*+ [xa|*=1, (46)

which byreductio ad absurdurallows us to conclude that the state witlr S1 andd = 3 is
entangled. Hence, while heretanglement is not required teach the asymptotic optimum,
neither is it necessarily detrimental. The only requirement imposed by our formalism is the
absence of pairwise correlations, and the presence or absence of any other kind of correlation
does not affect the asymptotic uncertainty.

3.3. Optimal POVM in the asymptotic regime

The nal step of the asymptotic analysis is to nd some POVM that is optimal in the large-
regime, in the sense that it saturates the quantum &ranRao bound a§ym: "o, and we
can achieve this by requiring the{ ) = F4 [12, 13]. That the latter condition refers to the
parameters but not to the functions, together with the fact that the former can be estimated
optimally using a local strategy8p, 33] (see also sectio3.2), suggests that a local POVM
might be suf cient to make the classical and gtam information matrices equal. In fact,
this would be very useful, since then we cd@alssociate any enhancement derived from the
presence of correlations with the initial state alone. In the following we demonstrate this for a
network withd = 2 parameters.

Consider a local POVM with elements

IRk = [0 +(S1)"1 [0 + (S1)|1]/2, (47)

wheren, k= 0, 1. Furthermore, we have seen that] i 2, then the state in equatioaq) is
general enough to realise all the asymptotic results predicted by our theory. As such, this is the
probe that we will use in this calculation. Combining this POVM with the transformed state

| (1, 1) = €55(2117 222 o inequation 41), we nd the amplitude
nK (1 2) €201 24 (S1)rkedler 2
+ o (S1)eSi18 D4 (S1)er(S 2)!
cos{[ 1+ 2+ (k+n]/2}+ cos{[ 1S 2S (kSn)/2},
(48)
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$___
the modulus of the proportionality factor beinf 12(1+ 2). This allows us to arrive at the
likelihood function

Pk 1, 2)= nk (1, 2) 2= cosk.)+ cosks) /[21+ 2], (49)

where we have introduced the notation [ 1+ 2%+ (kx n)]/2.
The elements of the classical Festinformation matrix in equatioril@) for the quantum
probability in equation49) are

! 1 Pk 1 o) °
[FCla = ke 0 p(n, Kl 1, 2) 1
1 ! . . 2
= o i T sin(x. )+ sin(xg) "= 1, (50)
nk=0
! 1 Pk 1 o) °
[FO)lz2 = ke 0 p(n, Kl 1, 2) 2
B 1 S S intxe) 2= 1 51
= ﬁn'kzo sin(X: ) sin(xs) ~ = 1, (51)
and
B ! 1 p(n, Kkl 1, 2) p(nKl 1, 2)
[F()h2 = k= 0 p(n, Kl 1, 2) 1 2
1 s 2
s e, SRS Psifie) = 1o (52)

nk=0

with [F( )]21 = [F( )]12. Additionally, in sections3.1 and 3.2 we have seen that, for this
con guration,
1 1 1S 3»/a+ ?

Fq: =

J 1 1S ?/@a+ ? 1 ’ (53)

which is identical to the classical Fisher information matrix in equati®. ($2). We thus
conclude that the quantum strategy formed by the local POVM in equati§rafd the state

in equation 40) is asymptotically optimal. This completes our solution for the asymptotic
estimation of linear functions in a two-parameter network, and will be our starting point to
perform a Bayesian analysis.

4. Bayesian analysis of non-asymptotic quantum sensing networks

Now we turn to the more general problem of estimating linear functions when differentamounts
of data are available, which may include cases with a low number of trials. Thanks to the
simplicity of the asymptotic approach, in sectinve were able to discuss examples where

d = 2,3,5and 10, and many of the results there were valid fodadgwever, due to the more
challenging nature of the numerical calculati@ssociated with Bayesian estimation, in the
remainder of this work we will focus otwo-parametesensor-symmetric qubit networks.

16
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Figure 4. Posterior density functions for random simulationguof 100 trials, a at
prior and the quantum strategy represented by the likelihood in equa@na{th (i)

=1, (i) = 0.9, (i) = 0531 (v) = 0.334and(v) = 0. The simulated true
values of the parameters arg= 1 and , = 2. This gure shows that the potential
ambiguities in the estimation associated with scenarios (i)... (iv) can be generally avoided
if the prior area satis es ¢ 2. Onthe contrary, while the scheme (v) can be exploited
to estimate the sum of the parameters, in general it cannot provide good estimates for
other linear functions, independently of the value fay. We draw attention to the fact
that a similar pattern emerges as , but with the posterior peaks tending to the
direction orthogonal to that in (v).

4.1 Regions of unambiguous information

Our aim is to use the asymptotically optimal strategy in equatiéf)s (47) and @9) as a guide
to perform a non-asymptotic analysis. Following our discussion in se2t@rthis approach
is best justi ed when, ag grows, the likelihood function

u

p(n,kl 1, 2)=  p(ni,kl 1, 2), (54)
i=
with eachp(n;, ki| 1, 2) given by equation49), becomes concentrated aroungragueabso-
lute maximum within the prior areag. Indeed, this condition helps to prevent the estimation
process from giving ambiguous answe§][ Hence, before we proceed we need to nd how
large ( can be such that the above requirement is satis ed.
One way of estimating this size isto rst represent the posterior probap{lity 2|n, k)
p(n,k| 1, 2)asafunctionof (1, »), where the outcomes (k) come from a simulation with
true values (;, ,), and then visualise the regions with an asymptotically unique absolute
maximum in a direct fashion (seé1]).
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The previous method generates the results shown in gue several values of. First
we note that the simulations in guré have been restricted to the area,(,) [0,2 ] x
[0,2 ] because the single-shot likelihood in equatidf)(is invariant under i+ 2 m,
withm= 0,£1,£2,....andi = 1,2, andthus it suf ces to examine its symmetries within one
period. Depending on the value forwe see that the posterior probability in gurég)...(iv)
develops either two or four identical absolute maximg gsows, and that each of these peaks
is located within an extension of are& Therefore, in the presence of complete ignorance, i.e.,

o = 4 2, the quantum strategy under analysiemat select a unique answer, a phenomenon
already encountered in single-parameter metrold@y 61, 62, 75]. In view of this, to avoid
the ambiguities in gured(i)...(iv) we shall impose that the prior area satis es the condition

2

0 .
The situation for = 0 in gure 4(v) is, however, different. In that case, no single peak
can be selected evenyif 1, which implies that such scheme does not have an asymptotic
approximation in the sense of secti®r2. This is consistent with the fact that, if= 0, then
J =1, and this case must be excluded Fyrto be invertible (see sectiad1). Moreover,
the same type of behaviour would have been observed if we had examined tHe|limit ,
forwhichd S 1. Hence, we only need to impose the existence of a unique absolute max-
imum for 0< | | < . Crucially, this does not imply that the scheme witkr 0 is useless.
Figure4(v) shows that this scheme is giving information about the combinatien , = m,
withm= 0,£1,+2,..., thatis, about the sum of the parameters. In fact, this can be readily
seen by inserting = 0 in equation 49), since then the likelihood for a single shot is only
sensitive to the equally weighted sum of the parameters. The calculations in the next section
will reveal that while the asymptotic performance of this scheme is poor, it can be useful when
K is low.

4.2. The role of inter-sensor correlations Il

Given the quantum strategy in equatiodg)(and @7) for a two-parameter qubit network, we
wish to estimate two global properties of such network when the experiment operates both in
and out of the regime of limited data. In particular, consider the linear funcfigny= (2 1 +

) 4+ Zandfy( )= (2 1+ 2)/ 5, which can be encoded in the columns\ofs

$

_ 1 25 24+ 2 (55)
20+ 5 2 5 4+ 2

We assume that both functions are equally relevant, soWhat 1/ 2, and that our prior
knowledge is represented by the prior probabity,, ») = 4/ ?,when(1, »2) [0,/ 2]x

[0, / 2],and zero otherwise. The area associatighltlvis prior assignment s suf ciently small
for the square error to be a suitable gure of merit in phase estima@@ng7], and, thanks
to our analysis in sectiod.1, we know that it will allow us to perform the estimation unam-
biguously when the asymptotically optimal strategies are employed, sigpee 2/4< 2.

Let us start by comparing a local strategy with an entangled scheme that is asymptotically
optimal. The former assumes that #ageriment is arranged such that 1,J = 0, while to
nd the properties of the latter we need to recall our results in se@&iaifior the asymptotic
role of inter-sensor correlations. Equati@®b)indicates that, fod = 2,

s #
Jo= 18 18G? /G, (56)

18



J. Phys. A: Math. Theor. 53 (2020) 344001 J Rubio et al

whenG= 0, andJ ope = 0 if G= 0. In addition,d = (1S 2)/(1+ 2), and by combining
the latter expression with equatiddd] we nd that

1
GS1+ 1SG?2 °

G+ 1S 1SG? S

opt= T

whenG = 0, and o, = 1if G= 0. The normalisation term for the functions in equatibg)(
issimplyN = Tr(WV V) = 1, while the geometry parameter is

1 8+ 10 +2 2
G=  Tr WV XV = =" 7 0853 (58)

By inserting this result in equationS) and 67) we have that ., + 0.531 (we can choose
the positive solution without loss of generality) ahd= 0.561, where the latter veri es that
this state is indeed entangled (note that the two-sensor state in eqé@)iad¢nly separable
when 2= 1).

Next we perform the numerical caletion of the Bayesian uncertaintyscin equation 14)
for these two sensor-symmetric states, whose form as a functionsah equation 40); the
measuremert(n;, k) = |ni, ki ni, ki| in equation 47) for theith repetition in a sequence pf
trials; and the optimal estimators

fa(n, k) _ 4 2 5 g 5
fo(n, k) 2 20+52 2 4+ 2 4+ 2
/2 /2
x di  dopnkli, 2 * (59)
0 0 2

which arise from equatior2(l) after inserting equatiorbf). The results have been represented
in gure 5(i) as graphs (a) for the local scheme and (b) for the optimal entangled strategy. We
can observe that the local strategy performs worse than the entangled one for any number of
repetitions. Therefore, in this case we have that the prediction made by the asymptotic theory
is qualitatively preserved in the non-asymptotigiree. However, a closer analysis reveals that
the distance between the two lines is considerably less wheul 20 than whermu 1,
and this behaviour is reminiscent of that of a Mach...Zehnder interfero6#ténfleed, opti-
cal probes with a large Fisher information (and thus a good asymptotic performance) have
sometimes an error very close to that of a coherent laser beam in the regime of limited data,
and coherent probes can be seen as an optical analogue of the notion of local strategy in this
work. Moreover, the optical study ir6f] also demonstrated that a better asymptotic error is
sometimes associated with a wopformance in the regime of low. As a consequence, a
natural question is whether a similar phenomenon can be exploited here, so that we can obtain
an uncertainty that is lower than the error for the asymptotically optimal entangled state when
the network operates in the non-asymptotic regime.

To test this idea, let us select a third arrangement with an asymptotic error that lies between
those of the local scheme and the asymptotically optimal strategy. The asymptotic error for our
network can be written in terms ofas (see equation82) and 33))

_ 1+ 2 (1SG)+(1+G) ?

cr = 4y 2 _qbit( ). (60)
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Emse

Figure 5. (i) Mean square error for the estimation of the linear functitus) = (2 1 +

2)) 4+ Zandfy( )= (2 1+ ) 5 by means of the two-sensor qubit network
introduced in the main text, where ((a), blue line) is a local strategy, with1,J = 0;
((b), green line) is the asymptotically optimal entangled strategy, with0.531,J =

0.561; ((c), red line) is a strategy whose enhancement has been balanced between the

asymptotic and non-asymptotic regimes, witlke 0.334,J = 0.799; and ((d), purple
line) is a maximally entangled state, with= 0,J = 1. Figures (ii)...(iv) compare the
mean square error (solid lines) and the multi-parameter quantumeCrafRao bound

(dashed lines) for the strategiesin (a) ... (c), respectively, verifying that the latter is recov-

ered asymptotically. All the calculations assume the weighting mrix 1/2 and a
atpriorofarea o= 2/4 centred around/ 4, / 4).

Using this we can nd the value of for the strategy satisfying our desideratum above by
imposing that

% _qbit( loc = O)+_qbit( ent= 0.531) , (61)
and the solutions are * 0.334,+ 0.842. So we take our third strategy to be the state in
equation 40) with = 0.334 (and thug = 0.799), a choice motivated by the fact that this is
the option with the lower uncertainty for a single shot (in particulags(n = 1, = 0.334)
0.158 and msdt = 1, = 0.842) 0.173).

The uncertainty nse for the third scheme has been repented as a function of the num-
ber of trials in gure5(i), where it is labelled as (c). Axpected, this error lies equidistantly

_qbit( )=
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between the local and the asymiptally optimal strategies whem 1, but this is no longer

the case in the regime of limited data. More concretely, the graphs for the asymptotically opti-
mal strategy and the new scheme cross each other wher0, so that the former is optimal
whenpu > 40 and the latter is the preferred choice if Ju  40. Consequently, we may say
that trading a part of the asymptotic enhaneairis sometimes associated with an improved
performance in the non-asymptotic regime, whiodstitutes a multi-parameter generalisation

of the analogous phenomenon 6%] for a Mach...Zehnder interferometer.

Interestingly, the balanced strategy£ 0.334,J = 0.799), which provides a better pre-
cision in the non-asymptotic regime, is associated with larger inter-sensor correlations, and
in what follows we propose a potential expléioa for this. Let us rst recall that, whep is
large, the information about the global properties is essentially provided by the measurement
outcomes that we accumulate @grows, which contrasts with the non-asymptotic regime
where the information is a mixture of prior knowledge and experimental data. This implies
that the optimal correlation strength predicted by the asymptotic theory is implicitly assuming
a large amount of information, while the information available in the non-asymptotic regime
is poorer becausg is low and the prior in equatiorl(Q) is only moderately informative. It is
thus reasonable to expect that the asymptotically optimal amount of entangismenérally
inappropriatein the non-asymptotic regime. One can then try to compensate the low amount of
information in the regime with limited data by choosihgudiciously. In our case, we observe
that our functions are clustered around the equally weighted sum of the parameters, since the
geometry parameter of the former@ 0.853 and this is relatively close to the geometry
parameter of the latteG = 1. In turn, this motivates choosinglathat is closer to that associ-
ated withl, whichisJ = 1, in order to enhance the precision whers low, and this is what
(b) and (c) in gure5(i) show.

We may push this intuition further and consider a network with 0,J = 1, which makes
the state in equatiod() maximally entangled. Its graph has been labelled as (d) in §(ije
and upon comparing it with the three previous strategies we see that the maximally entangled
state is the best option when 1y 10. The price that we pay for this low-enhancement
is that the scheme ceases to be useful after20 trials, and it is asymptotically beaten by
the rest of schemes, including the local strategy. We notice that this result is consistent with
our analysis in sectiof.1, where we established that this probe is only sensitive to the equally
weighted sum of the parameters.

The maximally entangled state also illustrates how, despite the lack of an asymptotic approx-
imation in the sense of sectich2, we can still perform a Bayesian estimation using such
strategy, even when it has limited usefulness. On the contrary, for the local, asymptotically
optimal and balanced strategies we have thatBayesian mean square errors converge to
their respective Crabr...Rao bounds, as it may be veri ed by observing g&(#s..(iv). The
number of repetitions required for the relative error between these Bayesian uncertainties and
the asymptotic bounds to be equal to or less tHam&ns frompy 10top 107 (see tabld
for more details).

In summary, in this section we have demonstrated that the strength of the inter-sensor cor-
relations that is useful to estimate a given collection of global properties changes substantially
for different amounts of data, i.e., for different valuespofSince this is the same type of
behaviour that we had established for single-parameter schent, iw¢ conjecturehat the
novel effects associated with a limited numbétrials, which here have been uncovered using
speci c examples, are a general feature of non-asymptotic quantum metrology, and that they
are generally present in a wide range of experiments operating in the regime of limited data.

21



J. Phys. A: Math. Theor. 53 (2020) 344001 J Rubio et al

Table 1. Properties of different strategies based on a two-parameter qubit network,
where selects the state add is the amount of inter-sensor correlations. The POVM is
separable for all four schemes, but only the local strategy is based on a separable state.
The asymptotically optimal strategy minimises the quantum @ramRao bound. The
balanced strategy has also been enhanced via quantum correlations, but it is not asymp-
totically optimal because part of this enhancement has been traded to instead enhance
its non-asymptotic performance. Finally, the fourth strategy uses a maximally entangled
state. We note that the fourth column provides the number of repetjtionseded such

that the relative error between the Bayesian uncertainty and thee€raRao bound

is equal to or less than @&threshold (seefl]), and in general it depends on the
available prior information. Importantly, this calculation does not apply to the strat-
egy with a maximally entangled state, since the estimation uncertainty for the latter
does not have an asymptotic limit in the sense of se@i@nThese results demonstrate

the state-dependent nature of the conditions required to approach therCré&ao in
multi-parameter systems.

Strategy J u( o= %4

Local 1 0 458x 107
Asymptotically optimal 0.531 0.561 .2x 10
Balanced enhancement  0.334 0.799.37% 1C?
Maximally entangled 0 1

5. Summary and outlook

The central question addressed in this work has been that of the role of inter-sensor correla-
tions in the estimation of linear functions with arbitrary geometry, having exploited a sensor-
symmetric qubit network in the presence of different amounts of data. First we focused on the
asymptotic part of the problem, and by optimising the class of sensor-symmetric states, we
have established an optimal link between correlation strength and the geometry of the linear
functions. Thanks to this we have been able to demonstrate that, while entanglement is useful
for many geometrical con gurations, it is sometimes detrimental even with functions that are
non-trivial global properties. Furthermore, we have found that forms of entanglement other
than those of a pairwise nature are in fact irrelevant in this regime. Hence, our approach sig-
ni cantly extends previous studies in networked quantum sensing that had only considered the
estimation of a single function or a collectionlof d orthogonal ones.

Given that, in practice, the number of triglds always nite and possibly small, we have
also performed a non-asymptotic analysis of sensing networks. To this end we have intro-
duced ehybrid estimation technique combining asymptotic and non-asymptotic optimisations
in Bayesian estimation. This approximate but powerful approach has revealed that the correla-
tion strength that is optimal for sensor-symnienetworks crucially depends on the number
of times that we repeat the experiment. Additionally, we have demonstrated how the non-
asymptotic precision may be enhanced by tradirgision enhancements associated with the
asymptotic regime.

Admittedly, while many of our asymptotic results are valid fioparameters, our Bayesian
analysis has been restricted to the 2 case due to numerical complexity. Hence, developing
methods to overcome this limitation may have a major impact in the long run. For instance, it
would be interesting to examine whether the irrelevancy of forms of entanglement other than
those that generate pairwise correlations is also true for a low number of trials, which is a ques-
tion that requires simulations whede 3. One possibility is to modify the multi-parameter
algorithm in [45] that we have exploited in sectiagh such that the integrals associated with
the parameters are performed with Monte Carlo teclopuies. Alternatively, we could employ
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some other quantum bound whose calculation is simple enough to study cases where both
andd are unrestricted. One potential candidate ful lling the latter is the multi-parameter quan-
tum Ziv...Zakai bound i8], although, according to our ndings irlf], we cannot expect the
results derived using this type of tool to be tight in general.

Anotherimportant direction for future work is to extend our analysis to include the potential
effect that decoherence may have in our conclusions. For example, it would be desirable to
establish whether, in such case, inter-sensor correlations are still generally detrimental for the
estimation of linear functions whose gaetry parameter vanishes, i.e., wi@r 0. Note that
our hybrid estimation technique can still be eoy#d here, but replacing the ideal quantum
Craner...Rao bound by its version for mixed states when such bound is applied to ed@ation (

Notwithstanding these limitations, our methodology has revealed new important aspects
of the role of entanglement in the simultaneous estimation of linear functions with net-
worked schemes, and these results could contribute decisively towards a powerful theoretical
framework for networked quantum sensing.
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Appendix A. Constructing the multi-parameter prior probability

Suppose that, according to our prior information about the network, we know thatp(yri
there is no reason to egpt that the parametersare correlated in any way with each other and
(b) we are ignorant of the magnitudes of thegraeters, although (c) only within a hypervol-
ume othatis centred around= ( 1,..., 4). The purpose of this appendix is to construct a
prior density that codi es this state of information.

Given (a), the parameters are initially thought of as independent in the statistical sense,
which in turn allows us to formalise (b) as thesartion that a displacement by an arbitrary real
vectorc does not change our state of information. Thatiand = + cgenerate equivalent
estimation problems.

At the same time, this invariance in our state of information is equivalent to imposing that
p( )d =p( )d = p( + c)d ,whichgivesrise tothe functional equatiph ) = p( + c),
and the latter can be satis ed witlf ) 1.

Finally, (c) indicates that the argument in the previous two paragraphs can only be approx-
imately ful lled in a portion of the parameter domain with hypervolumeg centred around

=(1,..., 4)- Sincea priori the parameters are thought of as independent, we may express
the hypervolume gas o= id: 1 Woj;, whereWp; is the prior width for thath parameter.
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Therefore, our multi-parameter prior will be
o)=LV o=1 Woi (A1)

for [ 1SWo/2, 1+ Woa/2]%---%x [ ¢S Woa/2, g+ Wog/ 2], and zero otherwise,
which is the prior introduced in sectiéghl and employed in the main text. We notice that this
is a multi-parameter application of a methmaposed by Jaynes to construct objective prior
probabilities B8, 76]. Other methods can be found i@7, 79].

Appendix B. Optimising the multi-parameter Bayesian uncertainty: review of
techniques

There are several ways of addressing the problem of optimising the uncertainty in eqidjtion (
with respect to the estimatorgm), the measurement scher&ém) and the initial sensor-
symmetric state,. One option is to perform a direct minimisatia 5], which is sometimes
possible in covariant estimatiof,[23, 47, 79] but generally intractable. Alternatively, one can
bound the estimation error and search for the strategy that better approaches that bound, which
may be attempted with tools such as the Yuen...Lax bdjyrtd¢ quantum Weiss... Weinstein
bound [L1], or some multi-parameter version of the quantum Ziv... Zakai b@uh@ [ among
others B, 47]. This method usually suffers from the lack of tightness of the bounds, although
this can be partially overcome with the Bayesian analogue of the Helstronme€raRao bound

that we recently constructed ih] (see also46, 47]), since it can be saturated in certain cases
and we showed how to exploit it for the estimation of local parameters ()eNeverthe-

less, we have followed the weaker but computationally simpler hybrid approach in s2@&ion
because the theory of estimating global pmies of a network is more challenging, and we
leave the application of more sophisticated methods to the estimation of linear functions for
future work.

Appendix C. Minimisation of the asymptotic uncertainty for linear functions

The optimal strength for the inter-sensor correlations in equaBisrc@n be found as follows.
If we look at t = Nh(J ,G,d)/u as a function ofl , where we recall that, according to the
discussion in sectio8.1,

[1+ (dS2SG)J]

hO.CD= e ms @197’ (©1)
then the equation for its extrema is
N h@,Gd) _ N (dS 1)(d§ 2S5 G)J 2+v2(dé 1)J SG -0, (€2
H J vl (1SJI )1+ (dS 1)J]?
whose solutions are
I

Since we need to restrict our study to the rangelB d) < J < 1 for Fq to be invertible,
onlyJ . is a valid candidate to nd a minimum. Next we examine the sign of the slope in the
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left-hand side of equatiorQ(2) for some values od aroundJ . . By noticing thatN /p> 0
and using the endpoints of the domain Jowe nd that

h(1$ ,G,d) h v@aSd+ ,Gd
- TS 0,
J J
for an arbitrarily small > 0 whenG= S1,G= dS 1, which we exclude to guarantee that

J =1/(1Sd),J = 1. Consequently] . gives rise to the minimum that we were looking
for.

<0 (C.4)

Appendix D. Eigendecomposition of X

The characteristic equation far = 1S | is
detX S N=det11 S+ ) (@8d+ )@+ )®'=0, (D.1)

giving the eigenvalues; = d S 1, with multiplicity 1, and » = S1, with multiplicity d S 1

(see the calculations associated with equat@@), (vhose eigenvalues are obtained in the same
way). By inspection we see thatis one of the eigenvectors. Since the latter satis es that
X1= (11 S1)1= (dS 1)1, the rest of the eigenvalues must be associated with the subspace
orthogonal tal, and this concludes the eigendecompositioX of
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