University of Sussex
Browse
0269881120965880.pdf (3.87 MB)

Dissociable contributions of mediodorsal and anterior thalamic nuclei in visual attentional performance: a comparison using nicotinic and muscarinic cholinergic receptor antagonists

Download (3.87 MB)
Version 2 2023-06-12, 09:28
Version 1 2023-06-09, 21:31
journal contribution
posted on 2023-06-12, 09:28 authored by Craig P Mantanona, Tadej Božic, Yogita Chudasama, Trevor W Robbins, Jeffrey W Dalley, Johan Alsiö, Ilse Pienaar
Background: Thalamic subregions mediate various cognitive functions, including attention, inhibitory response control and decision making. Such neuronal activity is modulated by cholinergic thalamic afferents and deterioration of such modulatory signaling has been theorised to contribute to cognitive decline in neurodegenerative disorders. However, the thalamic subnuclei and cholinergic receptors involved in cognitive functioning remain largely unknown. Aims: We investigated whether muscarinic or nicotinic receptors in the mediodorsal thalamus and anterior thalamus contribute to rats’ performance in the five-choice serial reaction time task, which measures sustained visual attention and impulsive action. Methods: Male Long-Evans rats were trained in the five-choice serial reaction time task then surgically implanted with guide cannulae targeting either the mediodorsal thalamus or anterior thalamus. Reversible inactivation of either the mediodorsal thalamus or anterior thalamus were achieved with infusions of the ?-aminobutyric acid-ergic agonists muscimol and baclofen prior to behavioural assessment. To investigate cholinergic mechanisms, we also assessed the behavioural effects of locally administered nicotinic (mecamylamine) and muscarinic (scopolamine) receptor antagonists. Results: Reversible inactivation of the mediodorsal thalamus severely impaired discriminative accuracy and response speed and increased omissions. Inactivation of the anterior thalamus produced less profound effects, with impaired accuracy at the highest dose. In contrast, blocking cholinergic transmission in these regions did not significantly affect five-choice serial reaction time task performance. Conclusions/interpretations: These findings show the mediodorsal thalamus plays a key role in visuospatial attentional performance that is independent of local cholinergic neurotransmission.

History

Publication status

  • Published

File Version

  • Published version

Journal

Journal of Psychopharmacology

ISSN

0269-8811

Publisher

SAGE Publications

Page range

1-11

Department affiliated with

  • BSMS Neuroscience Publications

Full text available

  • Yes

Peer reviewed?

  • Yes

Legacy Posted Date

2020-09-07

First Open Access (FOA) Date

2020-09-07

First Compliant Deposit (FCD) Date

2020-09-05

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC