Editorial: the role of heat shock proteins in neuroprotection

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/93191/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
Editorial: The Role of Heat Shock Proteins in Neuroprotection

Miklos Santha¹, Heather D. Durham², Laszlo Vigh¹ and Chrisostomos Prodromou³*

¹ Biological Research Centre, Hungarian Academy of Sciences (MTA), Szeged, Hungary, ² Montreal Neurological Institute, McGill University, Montreal, QC, Canada, ³ Biochemistry and Biomedicine, University of Sussex, Brighton, United Kingdom

Keywords: heat shock protein, neuroprotection, neurodegeneration, chaperone, protein aggregation

Editorial on the Research Topic

The Role of Heat Shock Proteins in Neuroprotection

This Research Topic covers an increasingly important topic on the “Role of Heat Shock Proteins in Neuroprotection”. With a growing elderly population and an ever-increasing amount of resources required to treat neurodegeneration, there is a growing demand for solutions. Chaperone systems represent the major pro-survival strategy for cells of living organisms in response to stress. Heat shock proteins are associated with neurological disease because they can suppress or promote the aggregation of misfolded toxic proteins. This Research Topic brings together a number of selected articles that show how diverse heat shock proteins impact on neurodegenerative disease.

The review by Webster et al. discusses the role that misfolding, aggregation, and aberrant accumulation of proteins play as a central component in the progression of neurodegenerative disease. While molecular chaperones are normally protective, they can also promote the stabilization of toxic protein aggregates, which can lead to neurodegenerative disease. The authors review the role by which sHsps modulate neurodegenerative disease-relevant protein aggregation.

The manuscript by Gracia et al. looks at the therapeutic potential of the Hsp90/Cdc37 interaction in neurodegenerative disease, such as Alzheimer’s, Huntington’s, and Parkinson’s. This article presents evidence that client proteins, and in particular kinases, may be differentially affected when modulating the Hsp90/Cdc37 chaperone system, depending on the strength of their interaction with this chaperone complex. Consequently, this may allow therapeutic intervention by targeting Hsp90/Cdc37-client protein complexes, which are currently underexplored.

The role of heat shock protein’s in neuroinflammation is discussed by Dukay et al. Apart from the classical molecular chaperoning of heat shock proteins, they are shown to play a role in neurological disorders by modulating neuronal survival, inflammation, and disease-specific signalling processes. Although the processes of neuro-inflammation are not yet fully understood, the authors explore the existing literature on the inflammatory function of heat-shock-proteins within the central nervous system.

Cristofani et al. then investigates the role of HSPB8 on the protein quality control system of cells. This system prevents the deleterious effects of misfolded proteins of which HSPB8 is a component. Elevated levels of HSPB8, activated by misfolded proteins through transcription, contribute to preventing the aggregation of misfolded proteins, facilitate autophagy, and enable the efficient clearance of the misfolded proteins.

In conclusion, the Research Topic brings together some important topics showing how heat shock proteins are central to many neurological disease processes and how intervention by modulating...
the expression of the chaperone system can be used for therapeutic treatment. It stands as an introduction to an emerging field to stimulate research on chaperones as targets for neuroprotection.

AUTHOR CONTRIBUTIONS

CP wrote and all authors edited the editorial. All authors contributed to the article and approved the submitted version.

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Santha, Durham, Vigh and Prodromou. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.