University of Sussex
Browse
2019JD032014.pdf (5.45 MB)

Contribution of IASI to the observation of dust aerosol emissions (morning and nighttime) over the Sahara desert

Download (5.45 MB)
journal contribution
posted on 2023-06-07, 07:42 authored by A Chedin, V Capelle, N A Scott, Martin ToddMartin Todd
Observing the planet at global scale, twice a day, and measuring the whole infrared atmospheric spectrum (8,461 channels at 0.50 cm-1 resolution), Infrared Atmospheric Sounder Interferometer (IASI)/METOP can concurrently detect clouds, determine the 3-D atmospheric structure (temperature, water vapor, ozone, etc.), surface properties (emissivity and temperature), as well as dust aerosol AOD and altitude. Observing morning (0930 hr) and nighttime (2130 hr), IASI is in relatively good phase with the most frequent times of occurrence of the main Saharan dust uplift mechanisms reported in the literature. Here we classify IASI dust observations according to both the dust loading (AOD) and the dust layer height, providing a more comprehensive picture of dust characteristics. This classification is analyzed at daily scale and its capability to detect dust uplift events is evaluated through comparisons with results from the particularly well documented June 2011 Fennec campaign. Then, a Dust Emission Index (DEI), specific to IASI, is constructed by selecting AOD-altitude bins with largest AODs and smallest altitudes likely indicative of freshly emitted dust. Applying this to the 12-year 2007–2018 period, we determine climatological DEI maps and comparisons are made with other equivalent existing results derived from ground-based or other satellite observations. Results of these comparisons demonstrate the capability of IASI to document the dust distribution over the whole Earth desert areas over a long period of time. The present approach is also suitable to the processing of the at least hourly observations of the coming Infrared Sounder instrument (IRS), planned on board Meteosat Third Generation (2021).

History

Publication status

  • Published

File Version

  • Published version

Journal

Journal of Geophysical Research: Atmospheres

ISSN

2169-897X

Publisher

American Geophysical Union

Issue

15

Volume

125

Page range

1-16

Article number

a2019JD032014

Department affiliated with

  • Geography Publications

Research groups affiliated with

  • Sussex Sustainability Research Programme Publications

Full text available

  • Yes

Peer reviewed?

  • Yes

Legacy Posted Date

2020-08-06

First Open Access (FOA) Date

2021-01-09

First Compliant Deposit (FCD) Date

2020-08-05

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC