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Abstract 

Printable stretchable devices, which can be used in a wide range of environments, are 

required for a range of flexible or stretchable electronics applications. Here we present an ink 

containing liquid exfoliated graphene and natural rubber, which can be printed onto a variety 

of elastomeric substrates and recover conductance after multiple strains of up to 15%. In 

addition, the printed composite acts as a strain sensor with a gauge factor of around 7. The 

robust character of these composites allows for operation at temperatures up to 150ºC. The 

combination of the effectiveness of the device, along with comparable performance at 

elevated temperatures while being relatively cheap makes this ideal for integration with 

automotive components. For applications that require superior conductivity, silver nanowires 

can be added. The enhanced conductivity composite cannot withstand higher temperatures 

due to the breakdown of the nanowires. However, at room temperature the material shows 

similar recovery of conductivity after cycling leading to a highly conductive, room 

temperature, printable, stretchable composite. 

 

1. Introduction 

Elastomeric materials are ubiquitous in modern domestic and industrial equipment. Prime 

examples of these being automobile components and medical devices, such as tyres and 

tubing. Recent research has turned towards integration in wearable electronics[1]. A material 

that resists conductance changes after straining is of interest for passive devices, for instance 

RFIDs, while the variation of conductance with strain allows for integration as a strain gauge. 

Importantly, the material should function with the practical strain range of the substrate to 

which it is adhered. 

 



Elastomeric nanocomposites are a class of materials that fit the requirements for such 

devices. These materials have been extensively studied as strain sensors[1–3]. Strain sensors 

operate by exhibiting a change in electrical resistance as the material is strained. For 

elastomeric composites with high aspect ratio conductive nanoparticulate fillers the 

mechanism is a combination of severing of conductive connections and tunnelling between 

the filler particles[1]. The gauge factor (G) is defined by equations 1 & 2.  
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Where R and ρ represent resistances and resistivities respectively, ε is the strain and υ is the 

Poisson’s ratio of the material. Traditional metal foil strain gauges have an operating range of 

below 2% and a gauge factor of 2-3. Elastomeric strain gauges have both higher operating 

strains and gauge factors and have recently been the focus of intensive research[1–3]. 

 

The most common and well-studied fillers for elastomeric composites in recent years are 

carbon nanotubes[4–6] (CNTs) and graphene[7–9]. Both materials have high conductivities 

and aspect ratios. This allows mechanical reinforcement at low mass fractions[5,8] and the 

addition of conductivity to the bulk at mass fractions exceeding a percolation threshold[9,10]. 

These materials have been utilised as strain sensors as both surface coatings and as composite 

materials[1,2]. Another material of interest are silver nanowires (AgNWs). AgNWs are high 

aspect ratio wires of silver synthesised by the reduction of silver salts in the presence of 

capping material to promote unidirectional growth[11]. The first major application of this 

material was as transparent conductors[12,13] and has since progressed to have significant 

applications in strain sensing and in conducting composites[14,15]. 

 

https://www.zotero.org/google-docs/?KpCS4G


Nanomaterials networks alone are not suitable for high strain applications due to both poor 

substrate adhesion and low strain at break[16]. This leads to the introduction of the elastomer 

matrix to address these issues. For elastomeric products that require conductive tracks and 

sensors a conductive ink is necessary to allow to bespoke device manufacture. This requires 

the materials to be processed and stable in a liquid phase to allow for printing. Graphene can 

be stabilised in liquids by a variety of methods[17–19]. In this work, an amphiphilic 

surfactant is used to stabilise the graphene particles in dispersion in water[19]. This allows 

for a reasonably low boiling point, printable ink to be produced; the only drawback being the 

presence of surfactant which has to be minimised for practical application. AgNWs have no 

issues with water dispersion as the capping material also acts as a surfactant[11]. 

 

Once the material is dispersed in a liquid, the printing onto the substrate is the final step. For 

graphene enabled inks the main methods of printing that are scalable are ink-jet printing, 

aerosol-jet printing and screen-printing[20,21]. The choice of printing technique mainly 

depends on the thickness of material required. Ink-jet and aerosol-jet printing typically are for 

printing thin films (<1μm) but for thicker films screen-printing is a preferable method. The 

viscosities required for screen-printing are also much higher in the range of 0.5-100 Pa.s. To 

achieve sheet resistances of less than 100Ω/□ with conductivities of order of 1000S/m[8] 

(typical of graphene polymer composites) thickness of at least 10μm is required and thus so is 

screen-printing. 

 

In this paper, we produce printed tracks of natural rubber composites with both graphene and 

AgNWs as the conductive filler. The materials’ static properties are optimised before printing 

conductive tracks on an array of elastomeric substrates and assessed as a strain-able 

conductor and strain gauge. 



2. Materials & Methods 

Graphite (CAS# 7782-42-5, D10 1.8μm, D50 6.3μm, D90 12.2μm) was obtained from 

Kibaran Resources Ltd. Silver nanowires (CAS# 7440-22-4,20 nm, 12 micron) were 

purchased from Sigma Aldrich. Natural Rubber Latex (60 wt.% solids) was purchased from 

Liquid Latex Direct. All other chemicals used were purchased from Sigma Aldrich (reagent 

grade). A commercially available rubber substrate (rubber band width 15mm, Office Depot) 

was used to demonstrate versatility of the process. 

 

Graphene was produced by high shear exfoliation in a Mini DeBEE homogenizer from BEE 

International at 35kpsi for 10 passes using 60g/L graphite to 4g/L Triton X-100 (CAS# 9002-

93-1). Full details of the dispersion procedure are published in previous work[22]. The 

material was centrifuged at 5000g for 6 minutes to remove large aggregates and then 

centrifuged at 5000g for 1 hour to remove the few layer graphene as well as leave unbound 

surfactant in the supernatant. The sediment formed a clay like paste which can subsequently 

be used as the base for the screen printing formulation. Natural rubber latex was added to the 

paste and homogenised by stirring and grinding. In the case of hybrid inks, AgNWs removed 

from solvent by centrifugation, is added to the paste in a similar manner. To elevate the 

boiling point of the paste and adjust viscosity (to the point that the clay became screen-

printable (i.e. having a viscosity of ~  1000-10,000cp) the paste was mixed with an equal 

mass of ethylene glycol (CAS# 107-21-1). The material was then screen-printed using a 

screen of mesh size 90T. Thickness of films was calculated using an encoded mechanical 

stage microscope. 

 

All dynamic electrical measurements were carried out using a Keithley 2614B sourcemeter 

providing a constant potential of 10V. Static electrical measurements were performed 



similarly but with voltage sweeps from -10 to 10V. To remove contact resistance from 2 

probe measurements the transmission line measurement was used. The mechanical cycling 

were performed using a Stable Micro Systems TA-TXplus texture analyser for this study all 

strain cycling was done at a rate of 40%/s and individual strain analysis was done at 4%/s. 

Mechanical Testing under a variety of temperatures was performed using a Stable Micro 

Systems Thermal Cabinet. 

 

 

3. Results & Discussion 

The design of inks for printable stretchable electronics require both a conductive and 

stretchable component due to the fact that traditional elastomers are generally not conductive 

and traditional conductive materials generally cannot sustain high strains. The combination of 

natural rubber, the archetypical elastomer, and graphene, a material with excellent conductive 

and mechanical properties can results in a material with the desired properties of both. 

Formulating an ink of these materials requires liquid suspensions of these materials that can 

be mixed. Natural rubber is available as a liquid latex dispersion with high mass fraction. 

Commercial formulations include crosslinking agents allowing for facile elastomeric 

composite fabrication. Graphene dispersions, which are stabilised by surfactant in water 

allow for a mixture of these two materials for printable elastomeric conductive tracks.  

 

In this work, a nano-particulate graphite paste (~30 wt.%), made by centrifugation of a 

dispersion containing few-layer and multi-layer graphene, is blended with a rubber latex to 

make material of given mass fractions. The graphene was characterised by UV-Vis 

spectrophotometry, Raman spectroscopy and dynamic light scattering shown in figure S1. 

From the UV-Vis data the material is shown to have an average layer number of 11.5 from 



metrics derived by Backes et al[23]. Raman spectroscopy shows graphitic character with a 

low D/G ratio typical of liquid exfoliated graphene with a low basal plane defect density[24]. 

The dynamic light scattering measurements clarify the material is on the length scale of a few 

hundred nm to 2μm. AFM (shown in figure S2) confirms this. To adjust the viscosity for 

screen-printing, the composite paste is mixed with an equivalent mass of ethylene glycol. The 

ink is then printed onto the substrate using a manual screen-printing table. In figure 1a a track 

of printed material is shown. The track is approximately 1.5mm across. The printing 

resolution and thickness is defined by the mesh size, thickness and ink volume fraction as 

well as the roughness of the underlying substrate. Bleeding of the ink in crevasses in the 

substrate is seen in figure 1(b) for example. Further examples of printing on the elastomeric 

substrate used is shown in figure S3. There is bleeding due to surface morphology and 

possibly due to surface energy differential between the rubber and water. Once the ink dries 

the graphene forms a random network embedded in the natural rubber matrix. An SEM of as 

deposited ink is available in fig S4 showing random distribution of Graphene in the natural 

rubber.   



To allow accurate readout of currents at low potentials to retrieve strain, the conductivity of 

the printed material must be sufficiently high given the geometry of the device due to it being 

printed. To understand the behaviour of conductivity of natural rubber/graphene (NR/Gra) 

composites films of different mass fractions of graphene are prepared and screen-printed onto 

a glass substrate. Percolation theory describes the formation of conductive pathways through 

an insulating medium. Once the material exceeds the percolation threshold the conductivity 

increases exponentially until it reaches the conductivity of the filler material following the 

equation 3. 
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Figure 1 a) Single pass screen print on paper substrate (scale bar = 2cm). (b) Micrograph of thinner track form (e) 
(scale bar = 200um) (c) Conductivity of Natural Rubber/Graphene composite with increasing graphene weight 
fraction. (d) Conductivity of silver nanowires forming percolating network in graphene 



Where σ and ϕ represent conductivities and volume fractions respectively, ϕc  is the 

conductivity of the filler material, ϕc is the percolation threshold at which a conductive 

pathway across the material is formed, and n is a percolation exponent which can be related 

to the dimensionality of the system. Figure 1c shows the percolation curve of graphene in 

natural rubber on glass substrate which has a percolation threshold of 0.0195 and an exponent 

of 2.62 which is appropriate for randomly oriented materials in a 2D matrix. The filler 

conductivity is around 5000 S/m. A 50 wt.% graphene composite was chosen for subsequent 

electromechanical applications as the conductivity (~3000 S/m), is with a factor of 2 of the 

graphene only sample resulting in minimal resistive losses. This is high for liquid exfoliated 

graphite composites but at the low end of many conductive composites[14,15,25,26]. These 

composites achieve high conductivities by using carbon nanotubes[25], graphene[27], metal 

nanomaterials[15,28] or conductive polymers[29] (See table 1 in SI for values). However, 

few of these systems are printable thus requiring further formulation to become suitable. 

Furthermore, once printed due to the roughness of the printed exhibited in figure 1(b) and the 

roughness of the substrate deviations in conductivity occur resulting in higher percolation 

thresholds, estimated to be around 10%, and lower conductivities due to finite size 

scaling[30]. 

 

Due to the high conductivity and aspect ratio of AgNWs, AgNWs may produce lower 

resistance printed tracks allowing for lower potentials for strain sensing. To understand the 

effect of addition of AgNW and graphene to natural rubber the mixing of silver nanowires 

into graphene first had to be understood. Adding silver nanowires to graphene produces as 

percolation curve similar to that of a conductor in another conductor due to the relative 

conductivities of the materials differing by only 3 orders of magnitude[31]. Figure 1d shows 

the increase in conductivity due to the addition of the nanowires with a higher percolation 



threshold of 25 wt.%. Below that threshold conductivity follows different behaviour 

described by the following equation. 
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Where σm is the conductivity of the matrix, in this case Graphene, and p is the percolation 

exponent. Due to the high cost of AgNWs a mass fraction of 15 wt.% was decided upon in 

order to balance performance and cost. Additionally, high fractions of AgNW composites 

could weld at nanowire-nanowire junctions that are susceptible to brittle fracture under strain.  

This ink produces a film with a conductivity of 30,000 S/m. The addition of the AgNWs 

dramatically reduced the resistance of the printed films as expected. Interestingly, however, 

the dependence of resistance on thickness as shown in figure 1f is now mostly scatter having 

minimised the interruption of conductive pathways using the silver nanowires. 

 

Percolative networks in elastomers have been reported as strain gauges[1]. Effective strain 

gauges are required in many current technologies and more robust, stretchable and sensitive 

strain gauges could enable new technologies. At low strains most materials exhibit linear 

resistance relationships with strain. A variety of NR/Gra composites also exhibits this low 

strain linearity as shown in figure 2a. The response of the NR/Gra/AgNW is shown in the 

inset. The resistance increases linearly until a critical point at which deviation resultant of 

deformation of the material occurs (shown in figure S5). This phenomenon has been linked 

with the yield strain of the material and is called the working factor[2].  Both gauge factor 

and working factor of the respective composites are shown if figure 2(b). The printed tracks 

with 50% weight graphene show significantly higher gauge factors of 117 and the best 

working factor. The sharp decay in gauge factor can be attributed to the effect of the lower 



conductivity as particle separation in low weight fraction composites allows for more 

dramatic conductivity changes. The NR/Gra/AgNW printed tracks displayed a lower gauge 

factor of 17 (shown in figure S5). The gauge factor of the first strain in these systems is 

typically on the order of 2-3 for metal foil resistors while graphene infused elastic bands 

exhibit gauge factors of 40[1] and further research has yielded successively higher gauge 

factors[2,3]. 

 

Generally, the practical operation parameters of strain gauges are not limited to a single strain 

or even strains below 2%. A main consideration of the material must be the ability to sustain 

a wide range of strains as well as multiple repetitions. Measuring the resistance of films 

before and after straining from low strains to up to 50% shows how the resistance of the 50 

wt% NR/Gra films recover up to 20% (figure 2c). However, the higher weight fraction of 

graphene results in irreversible damage at much lower strains and screen-printed graphene 

tracks noticeably peeled of the substrate even at very low strains. For the 50wt% sample once 

the limit of 20% strain was exceeded there was an increase in resistance after the material is 

returned to the unstrained state. The breakdown in resistance is due to irreversible breaking or 

deformation of the film as high mass fraction composites generally have reduced strain at 

break compared to composites of lower filler mass fractions[8]. To this end all further work 

was performed on either 50:50 NR/Gra or 50:33.33:16.67 NR/Gra/AgNW tracks printed on 

the elastomer composite. 

 



For many industrial applications elastomeric belts are close to engines which operate at 

elevated temperatures. Automotives may be outdoors in extremely low temperatures. Taking 

this into account any printable conductive track must be robust to storage and operation in a   

wide range of temperatures. The conductivity of graphene is robust to temperatures much 

higher than the breakdown of traditional elastomers, which is typically up to 200 °C, making 

these composites well suited to elevated temperatures in automotive vehicles. For such 

temperatures, the thermal expansivity mismatch between substrate and film is the main issue 

and can cause delamination. Figure 2d illustrates the impact of heating and chilling on 

NR/Gra films which generally stay within a factor of 2 after storage at 150 ºC. AgNWs, 

Figure 2 (a) ΔR/R0 variation with strain for composites of differing graphene loading.(Inset) ΔR/R0 of 

NR/Gra/AgNW Composite(b) Variation of gauge and working factors with graphene weight fraction(c) Recovery 

of resistance after 10 cycles to a maximum strain (d) Recovery of resistance after temperature treatment of 

unstrained samples. NR/Gra = (50:50) and NR/Gra/AgNW = (50:33.33:16.67) 

 



however, are not as robust under elevated temperature usually forming silver oxide particles 

when exposed to unfavourable conditions. This is observed in the NR/Gra/AgNWs 

composites under high temperatures with breakdown of electrical conductivity resulting in 

resistance increases by a factor of ~70 effectively the same conductivity of the NR/Gra 

composites. 

 

For low temperatures, only mismatch of thermal expansivity is considered as most processes 

which degrade conductivity are thermally activated. As such, most of the printed tracks on 

both the graphene and graphene/AgNW in natural rubber remain within a factor of 2 of the 

original resistance values after storage at -40 ºC for 3 hours (figure 2d). 

 

Many elastomeric materials are used in dynamic processes, belts in engines for example. This 

requires material that preserves performance over extended cycling. The combination of 

conductivity and the sustenance of high strains without degradation of performance suggests 

that the printed tracks are suitably placed to occupy this niche. Simultaneous mechanical 

straining with current monitoring allows tracking of the materials performance in the 

dynamic state. Figure 3a shows the typical behaviour of the resistance of films when the 

substrate is strained. When a material is strained the resistance increases due to separation of 

conductive fillers as stated previously. Similarly, the current levels return to a maximum 

when the material is unstrained. Under dynamic conditions, however, this maximum current 

does not correspond to the resistance of the unstrained state. This is due to the filler particles 

having mobility in the matrix requiring further relaxation. The resistance also undergoes a 

decay process, which we attribute to the mobility of the filler. Once cycling stops the material 

returns to a resistance close to the starting resistance, occasionally this resistance is lower. 

This suggests dynamic agitation allows for optimising of the orientation of the filler particles.  



The robust character of the material allows the resistance to return to values close to the 

initial resistance after many cycles even at high temperatures shown in figure S6(a&b). 

 

By observing the oscillations of the resistance in figure 3(a) at a point where the decay of 

resistance has ceased one can take the maximum and minimum resistance (Rmax and Rmin) 

and substitute them into equation 1. Where ΔR is Rmax - Rmin and R0 is Rmin. This yields a 

“dynamic gauge factor” (DGF) which allows for assessment of maximum strain value while a 

device is cycling. By analysing this DGF with strain as shown in Figure 3(b) it can be shown 

to be uniform over this strain range allowing for in situ diagnostics. The DGF for the NR/Gra 

composite is around 7 and the NR/Gra/AgNWs is higher at approximately 9. These DGF are 

significantly lower than the single strain measurements. This is due to the combination of two 

effects. The first being the rate dependence of the gauge factor. This is a poorly studied 

phenomenon. A rate change of an order of magnitude between the single strain and the cyclic 

strain measurements, as applied in this study, results in a different gauge factor. In addition to 

this figure 3(a) shows a dramatically higher change in resistance in the first strain compared 

to subsequent cycles from which the DGF is defined. 

 

 

After extensive cycling there are no macroscopic changes to the material and conductivity in 

some cases has even improved. On further examination, in figure 3(c), using scanning 

electron microscopy the onset of delamination is observed on a sample strained to 15% 

1,000,000 times with a comparison to the unstrained sample shown on the inset. However 

seeing as the resistance changes for 1,000, 100,000, and 1,000,000 cycles are similar, shown 

in figure S7(c), the major morphological changes happen within the initial strains and the 

material remains robust thereafter. 



 

Figure 3(d) provides benchmarking against a variety of stretchable materials that retain 

conductivity after straining. These conductors are fabricated using a variety of materials and 

generally are polymer composites   

 

or on a polymer substrate. The materials include CNTs, graphene and metal nanostructures. 

and conductive polymers. Materials that have had printing demonstrated are indicated with 

black circles. While excellent conductivity and stretchability is possible, all of these are 

conductive polymers and or a significant metal component. Full list of properties shown in 

table 1 in SI. In comparison, the NR/Gra printed track shows modest conductivity and 

Figure 3 (a) Real time straining to 5% of NR/Gra  and NR/Gra/AgNW for 1000 cycles (b) Peak to peak effective 

gauge factors for all films for a range of strains at room temperature (c) SEM of edge of composite after 100000 

strain cycles at 15% (inset) SEM of edge with no straining (scale bars = 1μm) (d) Comparison of conductivity and 

stretchability of various liquid processable conductors. Circles indicate a demonstration of printing.[1,6,14,24–

28,30–37]  

 



stretchability but has been demonstrated benefits from simplicity in fabrication as well as 

being comprised of relatively cheap materials. Addition of AgNWs improves the conductivity 

significantly for high tech applications where exposure to high temperatures is not a concern. 

 

 

4. Conclusions 

 

Using natural rubber to help bind and promote adhesion of conductive nanomaterials to 

elastomeric substrates allows for printed tracks that are conductive, stretchable with 

conductivity being sensitive to the strain. The materials are tested under a wide range of 

environmental and operational conditions and exhibited comparable performance at 

temperatures as high as 150⁰C. The combination of reasonable conductivity along with robust 

performance at high strains and temperatures allow for a range of applications and are 

particularly suited for printing onto automotive components. For high conductivity 

applications silver nanowires can also be added to these systems and similar performance 

under strain is reported. Silver nanowires, while effective, have limited performance at 

elevated temperatures due to oxidation limiting operation to devices that are not expected to 

diverge from room temperature. Otherwise the material studied shows promise as a printable 

solution for integrating electrical components onto a variety of elastomeric substrates as 

either strain sensors or components that need to survive straining.  
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