University of Sussex
Browse

File(s) under permanent embargo

SCAI promotes DNA double-strand break repair in distinct chromosomal contexts

journal contribution
posted on 2023-06-07, 07:30 authored by Rebecca Kring Hansen, Andreas Mund, Sara Lund Poulsen, Maria Sandoval, Karolin Klement, Katerina Tsouroula, Maxim A X Tollenaere, Markus Räschle, Rebeca Soria, Stefan Offermanns, Thomas Worzfeld, Robert Grosse, Dominique T Brandt, Björn Rozell,, Evi SoutoglouEvi Soutoglou, others
DNA double-strand breaks (DSBs) are highly cytotoxic DNA lesions, whose accurate repair by non-homologous end-joining (NHEJ) or homologous recombination (HR) is crucial for genome integrity and is strongly influenced by the local chromatin environment1,2. Here, we identify SCAI (suppressor of cancer cell invasion) as a 53BP1-interacting chromatin-associated protein that promotes the functionality of several DSB repair pathways in mammalian cells. SCAI undergoes prominent enrichment at DSB sites through dual mechanisms involving 53BP1-dependent recruitment to DSB-surrounding chromatin and 53BP1-independent accumulation at resected DSBs. Cells lacking SCAI display reduced DSB repair capacity, hypersensitivity to DSB-inflicting agents and genome instability. We demonstrate that SCAI is a mediator of 53BP1-dependent repair of heterochromatin-associated DSBs, facilitating ATM kinase signalling at DSBs in repressive chromatin environments. Moreover, we establish an important role of SCAI in meiotic recombination, as SCAI deficiency in mice leads to germ cell loss and subfertility associated with impaired retention of the DMC1 recombinase on meiotic chromosomes. Collectively, our findings uncover SCAI as a physiologically important component of both NHEJ- and HR-mediated pathways that potentiates DSB repair efficiency in specific chromatin contexts.

History

Publication status

  • Published

File Version

  • Accepted version

Journal

Nature Cell Biology

ISSN

1465-7392

Publisher

Nature Research

Issue

12

Volume

18

Page range

1357-1366

Department affiliated with

  • Sussex Centre for Genome Damage Stability Publications

Full text available

  • No

Peer reviewed?

  • Yes

Legacy Posted Date

2020-07-13

First Compliant Deposit (FCD) Date

2020-07-10

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC