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PRECONDITIONING NONLOCAL MULTI-PHASE FLOW

DAVID KAY� AND VANESSA STYLESy

Abstract. We propose an e�cient solver for saddle point problems arising from �nite element
approximations of nonlocal multi-phase Allen{Cahn variational inequalities. The solver is seen to
behave mesh independently and to have only a very mild dependence on the number of phase �eld
variables. In addition we prove convergence, in three GMRES iterations, of the approximation of
the two phase problem, regardless of mesh size or interfacial width. Numerical results are presented
that illustrate the competitiveness of this approach.

Key words. Allen{Cahn systems; nonlocal constraints; PDE-constrained optimization; primal{
dual active set method; saddle point systems; preconditioning; Krylov subspace solver

AMS subject classi�cations. 35K55, 65F08, 65K10, 90C33, 82C24, 65M60

1. Introduction. The aim of this paper is to combine preconditioning methods
for inde�nite problems and multigrid preconditioning developed for elliptic systems
to provide an e�cient preconditioner for the solution of systems of multiphase Allen{
Cahn variational inequalities of the form:
PQ: For given u(�; 0) = u0 2 GQ, �nd u 2 L2(0; T ;GQ) \ H1(0; T ; L2(
)) such

that

"
�
@u
@t
;�� u

�
+ " (ru;r (�� u))�

1
"

(Au;�� u) � 0;8 � 2 GQ:

Here 
 2 Rd, d = 1; 2 or 3 and u : 
 � (0; T ) ! RN denotes the vector-valued
phase �eld function which describes the fractions of the N phases, i.e. each component
of u describes one phase, A 2 RN�N is a symmetric constant matrix that has at least
one positive eigenvalue,

GQ := fv 2 H1(
) j v 2 GQ a:e:g with GQ := f� 2 RN j � � 0; ��1 = 1;�
R


 v dx = Qg:

We denote by L2(
) and H1(
) the spaces of vector-valued functions, (:; :) is the

standard L2 inner product for scalar functions, (v;w) =
NP

i=1
(vi; wi) for v;w 2 L2(
),

(A;B) =
NP

i=1

dP

j=1
(aij ; bij) for matrix-valued functions, � � 0 means �i � 0 for all

i 2 f1; :::; Ng, 1 = (1; :::; 1)T , � � 1 =
NP

i=1
�i and �

R

 f(x) dx := 1

j
j

R

 f(x) dx.

The system PQ arises from steepest descent dynamics with respect to the L2-norm
of the Ginzburg-Landau energy,

E(u) :=
Z




�
"
2
jruj2 +

1
"

	(u)
�

dx;

under the constraint �
R


 u dx = Q. Here 	 is the multi-obstacle potential

	(�) := �
1
2
�TA� + IG =

�
� 1

2�
TA� for � 2 G

1 otherwise
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2 D. KAY and V. STYLES

with IG denoting the indicator function for the Gibbs Simplex, G := f� 2 RN j � �
0; � �1 = 1g, and the symmetric constant matrix A has at least one positive eigenvalue
to allow for minima of 	 to exist, see [15].

Remark 1.1. Steepest descent dynamics with respect to the L2-norm of the
Ginzburg-Landau energy E(u), without the constraint �

R

 u dx = Q, yields the system:

P: For given u(�; 0) = u0 2 G, �nd u 2 L2(0; T ;G) \H1(0; T ; L2(
)) such that

"
�
@u
@t
;�� u

�
+ " (ru;r (�� u))�

1
"

(Au;�� u) � 0; 8 � 2 G

where G := fv 2 H1(
) j v 2 G a:e:g. Since P is a simpli�ed version of PQ
the solver we propose in this paper can be applied to the corresponding �nite element
approximation of P.

P is a generalisation of the scalar Allen{Cahn equation that was introduced by
Allen and Cahn [1] to describe the capillarity driven evolution of an interface sepa-
rating two bulk phases. The parameter ", with 0 < " � 1, is associated with the
thickness of the di�use interfacial layer in which the phase �eld variables rapidly
change their value. The N phase extension of the scalar Allen{Cahn model was in-
troduced in [8, 18]. The nonlocal problem PQ models interface evolution with mass
conservation.

Multiphase Allen{Cahn models have a variety of applications, including image
segmentation, see for example [25], and identi�cation of coe�cients in elliptic equa-
tions [12]. Applications arising from identi�cation of coe�cients in elliptic equations
include electric impedance tomography, [14, 23, 22], and 
ow in porous media with
unknown permeabilities [10, 13, 7]. Applications of mass conserving multiphase Allen{
Cahn models include structural topology optimisation [32, 3].

E�cient and reliable, i.e., fast and globally converging, multigrid methods for
solving implicit in time �nite element approximations of P are presented in [26, 27],
while an explicit in time �nite element approximation of PQ was introduced in [17].
In [4] (semi-)implicit in time �nite element approximations of PQ are considered in
which a primal-dual active set method, see [2, 21], is used to solve the �nite element
approximations. By using Krylov-subspace solvers and suitable preconditioners the
authors in [6] develop e�cient, mesh independent, solvers for the (semi-)implicit ap-
proximations of P and PQ that were derived in [4]. In this work we introduce an
alternative preconditioner to the ones in [6] resulting in a solver that is not only mesh
independent, but also is only mildly dependent of the number of phases N .

We note that in [19] globally convergent nonsmooth Schur{Newton methods are
introduced for the solution of discrete multicomponent Cahn{Hilliard systems with
logarithmic and obstacle potentials. These methods could also be used to solve the
multicomponent Allen{Cahn systems P and PQ.

When using iterative techniques to solve the linear system that arises when the
primal-dual active set method is used to solve a �nite element approximation of PQ,
the majority of the work to be undertaken within each iteration is in the solving of
the linear systems Kx = b

K =
�
K BT
B 0

�
;

where K is symmetric positive de�nite. Similar saddle point structures are common
place within 
uid dynamics, leading to much development of numerical solvers for
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Navier-Stokes equations, e.g. see [28, 24, 30]. In these papers, it is the choice of
preconditioning matrix, P , that leads to improved convergence of the chosen iterative
Krylov subspace scheme, e.g. see [29].

The preconditioning of the linear systems arising from P and PQ was initially
considered in [6], where a preconditioning technique building upon Stokes type sys-
tems is proposed. In this work we will use a similar structural approach to that of [6],
however, we provide an improved approximation to the Schur complement, BK�1BT ,
leading to a solver that is almost independent of the number of phases. Moreover,
this improvement does not lead to any signi�cant increase in computational e�ort per
iteration, ultimately leading to a more e�ective solver. In addition, when considering
the two phase problem, with N = 2, the minimal polynomial of the resulting pre-
conditioned system is of degree three and hence GMRES will converge within three
iterations, see Theorem 3.1.

The paper is organised as follows. In Section 2 we reformulate PQ with the help
of Lagrange multipliers, yielding the associated system RQ. We then introduce a
�nite element approximation of an implicit Euler-discretisation of RQ and we apply a
primal-dual active set algorithm to this discretisation. In Section 3 a preconditioner
for the primal-dual active set algorithm is developed and the implementation of the
numerical solver is presented. In Section 4 we present numerical computations that
illustrate the e�ectiveness of our approach, in particular they show how the iteration
number is independent of the mesh size and only mildly dependent on the number of
phases N .

2. Alternative Formulation and Finite Element Discretisation. In this
section we follow the authors in [4] in applying a primal-dual active set method,
[2, 21], to a �nite element approximation of PQ, this method is well known in the
context of optimisation with partial di�erential equations as constraints. To this end
we �rst reformulate PQ with the help of Lagrange multipliers, yielding the associated
system RQ, then we apply a Primal Dual Active Set algorithm to a �nite element
approximation of RQ.

2.1. Alternative Formulation of PQ. In [4] the following alternative formu-
lation of PQ is presented:
RQ: Let 
 � Rd be a bounded domain which is either convex or ful�lls @
 2

C1;1. For given u(�; 0) = u0 2 G, �nd u 2 L2 �0; T ; H2(
)
�
\ H1(0; T ; L2(
)), � 2

L2(0; T ; L2(
)), � 2 L2(0; T ;S) and � 2 L2(0; T ;L2(
)) such that

"
@u
@t
� "�u�

1
"

Au�
1
"
��

1
"

�1�
1
"
� = 0 a.e. in 
� (0; T );

u � 1 = 1 a.e. in 
� (0; T );
(u; 1) = Q; (�;u) = 0; for almost all t 2 (0; T );

u � 0; � � 0; a.e. in 
� (0; T ):

Here the Lagrange multipliers �;� and � are such that
(i) �(x; t) : 
� (0; T )! RN , is used to impose the constraint u � 0,

(ii) �(t) : RN � (0; T )! S, is used to impose the mass constraint �
R


 u dx = Q,
(iii) �(x; t) : 
� (0; T )! R, is used to impose the saturation constraint u �1 = 1,

and S :=
�

v 2 RN : v � 1 = 0
	
.

RQ is complemented with the the boundary condition @u
@� = 0, were � is the outer

unit normal to @
.
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Remark 2.1. The scaling 1
"� in RQ is introduced in order that � is of order one,

if we were to replace 1
"� by � we would observe a severe "-dependence of � which in

practice often results in oscillations in the discretised primal-dual active set method.

2.2. Finite Element Discretisation. For simplicity we assume that 
 is a
polyhedral domain. Let Th be a regular triangulation of 
 into disjoint open simplices,
i.e. in particular 
 = [T2ThT . Furthermore, we de�ne h := maxT2Thfdiam Tg the
maximal element size of Th and we set J to be the set of nodes of Th and fpjgj2J
to be the coordinates of these nodes. Associated with Th is the piecewise linear �nite
element space

Sh :=
n
’ 2 C0(
)

���’��
T

2 P1(T ) 8 T 2 Th
o
� H1(
);

where we denote by P1(T ) the set of all a�ne linear functions on T . Furthermore we
denote the standard nodal basis functions of Sh by f�jgj2J and we set Sh = (Sh)N .

The time domain (0; T ) is divided into NT uniform intervals (tn�1; tn), with
� := tn� tn�1, n = 1; 2; : : : ; NT . For simplicity of presentation we denote by uh 2 Sh
the discrete solution at time tn, while the solution at the previous time step will be
denoted by un�1

h 2 Sh, and similarly for �h, �h and �h.
We consider the following fully discrete approximation of RQ:
Rh;�Q Given un�1

h 2 Sh, �nd uh 2 Sh, �h 2 Sh, �h 2 RN and �h 2 Sh such that

"2

� (uh;�)h + "2(ruh;r�)� (�h;�)h � (�h;�)� (�h1;�)h
= "2

� (un�1
h ;�)h + (Aun�1

h ;�)h 8� 2 Sh;
(2.1)

NX

i=1

(ui)j = 1 8 j 2 J ; (2.2)

X

j2J

Mj((ui)j � (uN )j) =
X

j2J

Mj(mi �mN ) for i 2 f1; :::; N � 1g;

(2.3)

�N = �
N�1X

i=1

�i; (2.4)

�j � 0; uj � 0 8 j 2 J ; (uh;�h)h = 0: (2.5)

Here (ui)j denotes the i-th component ui of u at the j-th node, (f; g)h =
R


 Ih(fg)
denotes the lumped mass semi-inner product where Ih : C0(
) ! Sh is the stan-
dard interpolation operator such that (Ih f)(pj) = f(pj) for all nodes j 2 J and
Mj := (�j ; �j)h, j 2 J .

Remark 2.2. Due to the Au term in PQ, the problem is non-convex, in the above
discretisation we have chosen to treat this term fully explicitly. Alternative choices
would be to treat this term fully implicitly, or in a semi{implicit manner, neither of
which would a�ect the performance of our proposed solver.

2.3. The Primal Dual Active Set Method. We use the nonlinear primal dual
active set (PDAS) algorithm derived in [4] to solve Rh;�Q . The algorithm is obtained
by reformulating the complementarity conditions (2.5) using active sets based on the
primal variable u and the dual variable �. Here we use the notation (uki )j and (un�1

i )j
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where k denotes the k-th iteration in the PDAS algorithm and n� 1 is the (n� 1)-st
time step. This is of course a misuse of notation for k = n� 1. In addition for c > 0,
we set

Ak+1
i := fj 2 J : c � (uki )j � (�ki )j < 0g;

and we de�ne the lumped mass diagonal matrix M := (mij)i;j2J with mij =
(�i; �j)h and the sti�ness matrix L := (lij)i;j2J with lij = (r�j ;r�i). We de-
�ne the mass lumped vector m := (Mj)j2J , and the entries of the matrix A by aij ,
i; j = f1; : : : ; Ng.

Primal-Dual Active Set Algorithm (PDAS):
0. Set k = 0 and initialise A0

i � J for all i 2 f1; :::; Ng.

1. De�ne Iki = J n Aki for all i 2 f1; :::; Ng.
Set (uki )j = 0 for j 2 Aki , (uki )j = 1 for j 2 Iki n Dki and (�ki )j = 0 for j 2 Iki
for all i 2 f1; :::; Ng.

2. Set Dki := Iki \(
NS

j=1
j 6=i

Ikj ), Dk :=
NS

i=1
Dki . Solve the discretised PDE (2.1) on the

interface Dk with the constraints (2.2)-(2.4) to obtain (uki )j for all (i; j) such
that j 2 Dki ; i 2 f1; :::; Ng, �kj for all j 2 Dk, and �ki for all i 2 f1; :::; Ng.
More precisely we solve

"2

� (uki )j + "2

Mj

X

r2J

lrj(uki )r � �ki � �kj = "2

� (un�1
i )j +

NX

m=1

aim(un�1
m )j

for j 2 Dki and i 2 f1; : : : ; Ng ; (2.6)

NX

i=1

(uki )j = 1 for j 2 Dk; (2.7)

X

j2J

Mj((uki )j � (ukN )j) =
X

j2J

Mj(mi �mN ) for i 2 f1; :::; N � 1g ; (2.8)

where �kN = �
PN�1
i=1 �ki is used in (2.6).

3. De�ne �kj for all j 2 Iki n Dk as

�kj =
"2

�
(uki )j +

"2

Mj

X

r2J

lrj(uki )r � �ki �
"2

�
(un�1
i )j +

NX

m=1

aim(un�1
m )j :

4. Determine (�ki )j for j 2 Aki using (2.1) for all i = 1; :::; N as

(�ki )j = "2

� (uki )j + "2

Mj

X

r2J

lrj(uki )r � �ki � �kj � "2

� (un�1
i )j +

NX

m=1

aim(un�1
m )j :

5. Set Ak+1
i := fj 2 J : c(uki )j � (�ki )j < 0g for i 2 f1; :::; Ng.

6. If Ak+1
i = Aki for all i 2 f1; :::; Ng stop, otherwise set k = k + 1 and goto 1.
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Remark 2.3. In [4] the authors show local convergence of the Primal Dual
Active Set method, however as they mention in Remark 4.7, the convergence radius
is unknown. In practice the oscillatory behaviour of the method can occur if c is not
chosen appropriately, in Section 4D of [5] an example of the scalar case, N = 2, in
one space-dimension, with 
 = (�1; 1), is presented in which oscillatory behaviour
of the method is observed if c is chosen to be less than 1

h2 . In what follows we take
c = 2

h2 , which led to good convergence in all the computations presented in Section 4.

3. Preconditioning.

3.1. Schur Complement. The main computational cost in the above algorithm
is the solving of the system of equations (2.6), (2.8) and (2.7). To do this we �rstly
introduce some matrix notation. At the k-th iteration step we de�ne Kk, to be N
diagonal blocks with the i-th block, Kki , being associated with the active set, Dki , of
the i-th phase equation of (2.6). More precisely,

Kki := "2

� (mrj)r2J ;j2Dk + "2(lrj)r2J ;j2Dk :

We further de�ne,

Bk1 :=

2

6664

�
�
mk

1
�T 0 0 : : :

�
mk
N
�T

0 �
�
mk

2
�T 0 : : :

�
mk
N
�T

: : :
0 0 : : : �

�
mk
N�1

�T �
mk
N
�T

3

7775
2 RN�1�!k

;

where !k =
PN
i=1 jD

k
i j and

Bk2 :=
�
�Mk

1 ;�M
k
2 ; : : : ;�M

k
N
�
2 RjJ j�!

k
:

At the k-th iteration, we may write this linear system in the form; �nd xk :=
[uk;�k;�k] such that Kkxk = bk; where the coe�cient matrix is of the form

Kk :=

2

4
Kk (Bk1 )T (Bk2 )T
Bk1 0 0
Bk2 0 0

3

5 : (3.1)

For convenience, from here on we will drop the superscript k.
To develop a preconditioner for K, we write it in the factored form

K =

2

4
I 0 0

B1K�1 I 0
B2K�1 0 I

3

5

2

4
K BT1 BT2
0 S11 S12
0 S21 S22

3

5 ;

where Sij := �BiK�1BTj for i; j = 1; 2. Rearranging gives,
2

4
K BT1 BT2
B1 0 0
B2 0 0

3

5

2

4
K BT1 BT2
0 S11 S12
0 S21 S22

3

5
�1

=

2

4
I 0 0

B1K�1 I 0
B2K�1 0 I

3

5 :

Hence, if we choose the preconditioner

Pexact :=

2

4
K BT1 BT2
0 S11 S12
0 S21 S22

3

5 ;
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the eigenvalues of the preconditioned system have value one, and it can be shown that
only two GMRES iterations would be needed in this case, see [28].

Since each block of K consists of the standard �nite element matrix for a reaction-
di�usion type equation, there exists numerous practical preconditioners and solvers
for this block. In particular standard algebraic, or geometric, multigrid can e�ectively
be applied, see [20, 31]. Hence, we are left to �nd a fully practical approximation to
the action of the block matrix

Sexact :=
�
S11 S12
S21 S22

�
:

3.2. Approximate Schur Preconditioners. In [6] the authors consider a
block upper triangular preconditioner of the form:

P1 :=

2

4
K BT1 BT2
0 ~S11 0
0 0 ~S22

3

5 ; (3.2)

where the diagonal blocks ~Sii, i = 1; 2 are given by

~S11 :=
1
N
MK�1M and ~S22 :=

�
1 � 1T + I

�
;

where I is the identity matrix. This choice was shown to lead to the preconditioned
system

KP�1
1 =

2

4
I 0 0
0 I + E11 E12
0 E21 I + E22

3

5 ;

where Eii, i = 1; 2, are such that all eigenvalues are close to zero. Note that with this
choice of preconditioner, ~Sij = 0, i 6= j, and hence in [6] the e�ect of the o� diagonal
blocks is not considered.

In this work we propose an alternative approximation by building on the ideas
presented in [16]. We �rstly de�ne, B := [B1;B2]T , leading to Sexact = BK�1BT .
Following [16] we approximate this with

Sexact � (BBT )(BKBT )�1(BBT );

=
�
B1BT1 B1BT2
B2BT1 B2BT2

�
(BKBT )�1

�
B1BT1 B1BT2
B2BT1 B2BT2

�

:=
�
D11 D12
D21 D22

�
(BKBT )�1

�
D11 D12
D21 D22

�
:= D(BKBT )�1D: (3.3)

Note that,

D11 =

2

664

�1 + �N �N �N : : : �N
�N �2 + �N �N : : : �N
: : : : : : : : : : : : : : :
�N �N : : : : : : �N�1 + �N

3

775 2 RN�1�N�1;

where �i = mT
i mi; i = 1; 2; : : : ; N and

D22 =
NX

i=1

MiMT
i 2 RjJ j�jJ j:
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Remark 3.1. How well this preconditioner performs is closely related to how
well B commutes with K. We note that the matrix D22 is diagonal. Moreover, it is
a relatively large proportion of the matrix B, and will always be close to a constant
diagonal matrix in the regions Dn;ki . This will even be the case when an adaptive
mesh re�nement strategy is used to accurately capture the interfacial region, since in
this active region the elements are of similar size and shape. Hence, the commutator
of [D22; C], with any square matrix C is close to zero. This is a major factor in the
quality of the approximation used in (3.3).

We consider two preconditioners developed from the above methodology. Namely,
the block diagonal choice

P2 :=

2

4
K BT1 BT2
0 D11(B1KBT1 )�1D11 0
0 0 D22(B2KBT2 )�1D22

3

5 ; (3.4)

and the full approximation

P3 :=
�
K BT
0 D(BKBT )�1D

�
: (3.5)

3.3. Practical Preconditioning. The implementation of any of the precondi-
tioners Pi, i = 1; 2; 3, requires a practical and scalable method to calculate the action
of their inverses. All three preconditioners have inverses that may be written in the
form,

P�1
i :=

�
K�1 0

0 I

� �
I BT
0 �I

� �
I 0
0 S�1

i

�
; for i = 1; 2; 3

where

S1 :=
� ~S11 0

0 ~S22

�
; S2 :=

�
D11(B1KBT1 )�1D11 0

0 D22(B2KBT2 )�1D22

�

and

S3 := D(BKBT )�1D:

The main work in calculating the action of these inverses is in calculating the action of
the inverses of K and Si; i = 1; 2; 3. As mentioned earlier, for the matrix K numerous
e�cient iterative solvers exist. In the following numerical results section we chose to
apply three Algebraic Multigrid (AMG) V-cycles with simple Gauss-Seidel smoothing,
see [31].

For S1 and S2 we are only required to invert a small dense matrix ~S11 and in
�nding the action of the inverse ~S22 we only require the inversion of the diagonal
lumped mass matrix. Finally, for S3 we write,

D�1 =
�

I 0
�D�1

22 D21 I

� �
(D11 �D12D�1

22 D21)�1 0
0 D�1

22

� �
I �D12D�1

22
0 I

�
:

We note from earlier remarks that the construction of the matrix D11�D12D�1
22 D21 2

RN�1�N�1 and its inverse is inexpensive.
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3.4. The Two Phase Problem.
Theorem 3.1. When considering a two phase problem, the right preconditioners

P2 and P3 are identical. Moreover, the resulting preconditioned system, KP�1
i , i =

2; 3, is a lower triangular matrix with the diagonal consisting of 1’s and a solitary

a =
mT

1 K
�1
1 m1

�
mT

1 m1
� �

mT
1 K1m1

��1 �mT
1 m1

� :

Furthermore, the minimal polynomial of the resulting system is of degree three and
hence GMRES will converge within three iterations.

Proof. In the two phase case the system to be solved is of the form

K :=

2

4
K (B1)T (B2)T
B1 0 0
B2 0 0

3

5 ;

where

B1 =
�
�mT

1 mT
1
�
; B2 =

�
�M1 �M1

�
and K =

�
K1 0
0 K1

�
:

This leads to the exact Schur complement,

Sexact =
�
�2mT

1 K
�1
1 m1 0

0 �2M1K�1
1 M1

�
:

Moreover, since B1BT2 = 0,

S2 = S3 =
�
�2
�
mT

1 m1
� �

mT
1 K1m1

��1 �mT
1 m1

�
0

0 �2M1K�1
1 M1

�
:

Hence,

SexactS�1
i =

�
a 0
0 I

�
; i = 2; 3;

where a is a scalar. This leads to the full preconditioned system

KP�1
2 =

2

664

I 0 0 0
0 I 0 0

�mT
1 K
�1
1 mT

1 K
�1
1 a 0

�MT
1 K
�1
1 �MT

1 K
�1
1 0 I

3

775 :

Clearly, this system has only two distinct eigenvalues, �(KP�1
2 ) = f1; ag and the

minimum polynomial for this preconditioned system is of order three. Hence, when
using GMRES we would expect to obtain the exact solution in no more than three
iterations, see [9].

4. Numerical Results. In this section we present numerical results that show
the e�ciency of our proposed preconditioner P3, (3.5). We begin by using exact solves
for each matrix in the preconditioning system, then in later results we apply three
Algebraic Multigrid (AMG) V-cycles with simple Gauss-Seidel smoothing, see [31], for
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calculating the action of the inverse of K. We denote the approximate preconditioners,
in which we use the inexact AMG solver, by Pi;AMG, i = 1; 2; 3.

We note that the fully explicit discretisation of A in Rh;�Q leads to an uncondi-
tionally well posed discrete problem, allowing the use of large time steps when slow
dynamics are encountered, see [26]. Regarding time stepping, throughout we will use
a simple adaptive time stepping strategy whereby:

1. If the number of PDAS steps required to obtain un+1 are fewer than 5, we
set �n+1 = 1:1�n.

2. If the number of PDAS steps required to obtain un+1 is between 5 and 10,
�n remains unchanged.

3. If the number of PDAS steps required to obtain un+1 exceeds 10, we recal-
culate un+1 with a time step reduced by a half, �n = 0:5�n.

At time step n with initial time step �n and previous solution un using the PDAS
iteration scheme calculate un+1. This solution is taken when the active set size does
not change between iterations. We found that this led to a practical stable method.

In all computations we set c = 2
h2 . In two space dimensions we set 
 = [0; 1]2

and in three space dimensions we set 
 = [�0:5; 0:5]3.

Remark 4.1.
1. Since the interfacial thickness is proportional to ", in order to resolve the

interfacial layer, we need to choose the mesh size h such that h� ", see [11]
for details. In all computations, with the exception of those in Section 4.1.1,
the values of h that we used were su�cient to resolve the interfacial layer.
For the results in Section 4.1.1, in which successive uniform re�nements of
an initial coarse mesh were used to produce �ner meshes, it was not practical
to use a value of h that, in the case of the initial coarse mesh, successfully
resolved the interfacial region for all the speci�ed values of ". However when
performing the computations, the fact that the interfacial regions were not
fully resolved on the coarse mesh, did not appear to impact on the performance
of the solvers or on the interface dynamics.

2. During initial calculations, it was seen that the proposed PDAS scheme was
only reliable when a high tolerance was enforced on linear solve. Hence,
throughout the following results we will apply a tolerance on the relative GM-
RES error of 1e{10. Given this constraint on the PDAS scheme, it is critical
that a robust and e�cient solver is used.

4.1. Two Space Dimensions.

4.1.1. Grain Coarsening. The �rst problem we consider is that of grain coars-
ening in which we start with an initially well mixed mixture of N phases. The mixture
rapidly separates into bulk regions of each phase, with typically each phase having
multiple bulk regions. Once this fast dynamical process has taken place, the bulk re-
gions then slowly di�use, see Figure 4.1 where the motion of eight phases from T = 1
to T = 100 is presented.

We compare the performance of the three exact preconditioners P1, (3.2), P2,
(3.4), and P3, (3.5), with respect to: the number of phases, the interface width
parameter ", and the mesh size. In each case we use exact solves for each matrix
in the preconditioning system. The initial mesh, Mesh 1, has mesh size h � 1=32
and all other meshes are uniform re�nements of this mesh, the number of nodes of
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(a) T = 1 (b) T = 10 (c) T = 100

Fig. 4.1: Evolution of eight initially well mixed phases.

Two Phases
Mesh 1 (jJ j = 3765) Mesh 2 (jJ j = 14889) Mesh 3 (jJ j = 59217)

" P1 P2 P3 P1 P2 P3 P1 P2 P3
0.04 35=24 3 3 29=21 3 3 25=20 3 3
0.02 36=24 3 3 31=25 3 3 27=24 3 3
0.01 36=22 3 3 31=26 3 3 28=26 3 3

Four Phases
" P1 P2 P3 P1 P2 P3 P1 P2 P3

0.04 70=49 17=12 10=8 64=42 18=12 13=10 62=40 17=13 11=10
0.02 64=47 15=13 9=8 64=50 16=13 10=9 62=45 18=12 12=11
0.01 60=41 14=13 8=7 58=49 15=14 10=8 61=47 18=13 11=9

Six Phases
" P1 P2 P3 P1 P2 P3 P1 P2 P3

0.04 92=57 22=15 12=9 84=63 25=16 15=10 89=49 24=18 11=10
0.02 88=65 21=17 9=8 85=65 21=17 13=11 95=66 23=17 12=10
0.01 75=55 18=17 9=7 75=65 21=18 12=10 91=61 22=17 12=10

Table 4.1: Maximum GMRES iteration counts for the exact preconditioners P1, P2
and P3 when starting with a well mixed initial condition.

each mesh is given by jJ j. In Table 4.1 we display the maximum number of GMRES
iteration counts together with the average number, in the form a=b, where a is the
maximum number and b is the average number. We consider three meshes, three
values of ", and three values of N . From this table, for each of the three meshes
and each of the three values of ", we see the dependence of P1 on the number of
phases, N . A similar dependence can be seen for the choice P2, albeit a milder one.
It is P3 that outperforms the other two choices in this regard, as it shows almost no
dependence on phase number for each of the three meshes and each of the three values
of ". In addition, for the two phase problem, N = 2, we observe the three iteration
convergence, stated in Theorem 3.1.

In Figure 4.2 we further investigate how the number of phases, N , a�ects the
performance of exact preconditioners P1 and P3. We ignore P2 since P3 is computa-
tionally similar whilst having superior convergence rates. We display the number of
GMRES iterations throughout a simulation together with the percentage of the total
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(a) P1 with " = 0:01, two phases and Mesh 4
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(b) P3 with " = 0:01, two phases and Mesh 4
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(c) P1 with " = 0:01, four phases and Mesh 4
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(d) P3 with " = 0:01, four phases and Mesh 4
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(e) P1 with " = 0:01, six phases and Mesh 4
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(f) P3 with " = 0:01, six phases and Mesh 4

Fig. 4.2: Phase dependence of the exact preconditioners P1 (left) and P3 (right).

number of DOFs that the inactive sets make up. In addition we show the e�ect of
the active time stepping by displaying the time step size throughout the simulation.
We set " = 0:01 and use Mesh 4, which has jJ j = 236868. Similar to Table 4.1,
we see a strong dependence for P1 but a very weak dependence for P3. The results
in Figure 4.3 are displayed in the same format as those in Figure 4.2, but here we
investigate the e�ect that the mesh size has on the performance of preconditioners
P1 and P3. In particular we set " = 0:02 and N = 4 and we show results for Mesh
3, for which jJ j = 59217, and Mesh 4. We conclude with Figure 4.4 in which we set
N = 4 and use Mesh 4, with " = 0:02 and " = 0:01 to see the e�ect that " has on the
performance of preconditioners P1 and P3. In both Figures 4.3 and 4.4 we again see
a strong dependence for P1 but a very weak dependence for P3.

4.1.2. Quadruple Junction to Triple Junction. We now turn to an initial
condition of fully formed bulk regions. We set " = 0:005 and N = 5. For the initial
data we consider a square, consisting of four phases of bulk square regions, that is
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(a) P1 with " = 0:02, four phases and Mesh 3
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(b) P3 with " = 0:02, four phases and Mesh 3
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(c) P1 with " = 0:02, four phases and Mesh 4
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(d) P3 with " = 0:02, four phases and Mesh 4

Fig. 4.3: Mesh dependence of the exact preconditioners P1 (left) and P3 (right).

surrounded by a �fth phase. This unstable initial geometry rapidly evolves so that
the quadruple junction is replaced by two triple junctions with 120� angles, see Figure
4.5.

In Figure 4.6 we present the iteration counts and inactive set size when using the
inexact preconditioner P3;AMG. Given the maximum number of iteration counts for
a given time step is only 11, we conclude that the use of the inexact AMG solver on
the K block has little e�ect on proposed solver.
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(a) P1 with " = 0:02, four phases and Mesh 4
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(b) P3 with " = 0:02, four phases and Mesh 4
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(c) P1 with " = 0:01, four phases and Mesh 4

0 50 100 150 200 250

PDAS Iteration

4

6

8

10

12

G
M

R
E

S
 It

er
at

io
ns

GMRES Iteration Counts-Inactive Set Size

0

20

40

60

80

In
ac

tiv
e 

S
et

 C
ou

nt
 (

%
 o

f t
ot

al
 D

O
F

S
)

Time Step

0 100 200
0

5

10

(d) P3 with " = 0:01, four phases and Mesh 4

Fig. 4.4: " dependence of the exact preconditioners P1 (left) and P3 (right).

Two Phases - 3D
" Mesh 1 (jJ j = 17576) Mesh 2 (jJ j = 29791) Mesh 3 (jJ j = 68921)

0.04 3 3 3
0.02 3 3 3

Four Phases - 3D
0.04 13=7 11=7 10=7
0.02 11=6 9=6 9=6

Six Phases - 3D
0.04 14=9 10=7 8=6
0.02 10=5:5 9=7 9=6:5

Table 4.2: Maximum GMRES iteration counts when starting with a well mixed initial
condition, using the exact preconditioner, P3.

4.2. Three Space Dimensions.

4.2.1. Grain Coarsening. In Table 4.2 we present the GMRES iteration counts
when using the exact preconditioner P3. As in the two dimensional case, we see
that there is little dependence on any of the parameters, mesh size, ", or number
of phases, and again we observe the three iteration convergence of the two phase
problem. Turning to the fully practical inexact preconditiponer, P3;AMG, in Table 4.3
we present CPU timings for this problem. It is not clear how to measure how these
timings scale, since as the mesh is re�ned and more phases are added, the inactive set
size changes considerably. However, we feel that these non-optimized CPU timings
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(a) T = 0 (b) T = 1 (c) T = 5000

(d) T = 0 (e) T = 1 (f) T = 5000

Fig. 4.5: Time evolution of four bulk phases surrounded by a �fth phase, " = 1=200
and 236868 DOFs for each phase.
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Fig. 4.6: GMRES iterations for the inexact preconditioner P3;AMG and inactive set
size, for the simulation presented in Fig. 4.5 of four bulk phases surrounded by a �fth
phase.

are an excellent indicator of the scalability of the proposed approach.
Finally, for the well mixed problem we consider an initial problem of a well mixed

sphere of 8 phases surrounded by a �nal pure 9-th phase, we take " = 0:04. The mesh
used has over a half a million nodes, this leads to a system size of more than �ve
million degrees of freedom. The evolution of these phases can be seen in Figure 4.7,
while Figure 4.8 displays the iteration counts and inactive set size.

4.2.2. Quadruple Junction to Triple Junction. Finally, we consider a three
dimensional problem analogous to the two dimensional quadruple junction problem.
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" = 0:04
Mesh 1 (jJ j = 9261) Mesh 2 (jJ j = 29791) Mesh 3 (jJ j = 68921)

N = 2 72s 342s 1133s
N = 4 135s 824s 2961s
N = 6 284s 1324s 8356s

Table 4.3: CPU timings using the inexact preconditioner P3;AMG in three space di-
mensions. Initial condition is well mixed and T = 2.

(a) Phases 1-4, T = 0. (b) Phases 5-8, T = 0.

(c) Phases 1-4, T = 0:1. (d) Phases 1-4, T = 1. (e) Phases 1-4, T = 100.

(f) Phases 5-8, T = 0:1. (g) Phases 5-8, T = 1. (h) Phases 5-8, T = 100.

Fig. 4.7: Initial condition is a central sphere containing eight well mixed phases,
surrounded by a ninth pure phase.

This consists of four bulk phases surrounded by a �fth phase, see Figure 4.9. The
initial mesh has over half a million nodes and " = 0:04. We see the evolution into bulk
regions with spherical like minimal surfaces in contact with the �fth phase. Moreover,
the central region shifts, in a similar way to the two dimensional problem, to remove
any quadruple junctions. Figure 4.10 shows the iteration counts for the solver and
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Fig. 4.8: GMRES iterations for the inexact preconditioner P3;AMG and inactive set
size, for the simulation presented in Fig. 4.7 of a well mixed initial condition of nine
phases in three space dimensions.

inactive set size for the simulation.

5. Conclusions. In this work we have presented a robust practical precondi-
tioner for systems of multiphase Allen-Cahn variational inequalities. As mentioned
earlier, see Remark 4.1, the need for a reliable and e�cient solver is crucial when
using iterative methods to solve the linear systems arising in the PDAS algorithm,
where solve tolerances have to be small. Firstly, when exactly solving the matrices in
the preconditioning system, in the case of two phases, it was shown, in Theorem 3.1,
that GMRES will converge within three iterations. Secondly, in the case of multiple
phases, it was shown experimentally, that the use of the inexact precondioner P3;AMG
leads to low GMRES iteration counts on �ne meshes. Finally, given the standard
blocks used in this solver, i.e., Multigrid, GMRES and simple smoothers, the pro-
posed approach may immediately be applied in most of the software packages used to
solve multiphase variational inequalities.
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