Prey speed influences the speed and structure of the raptorial strike of a ‘sit-and-wait’ predator


This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/92063/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

http://sro.sussex.ac.uk
Prey speed influences the speed and structure of the raptorial strike of a ‘sit-and-wait’ predator

Sergio Rossoni¹,² and Jeremy E. Niven¹

¹ School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, United Kingdom
² Current address: Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom

<table>
<thead>
<tr>
<th>Response</th>
<th>Fixed effects</th>
<th>Random effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strike duration</td>
<td>Extension + pause</td>
<td>Individual</td>
</tr>
<tr>
<td>Strike duration</td>
<td>Thrust + capture</td>
<td>Individual</td>
</tr>
<tr>
<td>Phase duration</td>
<td>Phase classification (extension/pause) + prey speed</td>
<td>Individual</td>
</tr>
</tbody>
</table>

Table S1. Summary of the linear mixed-effects models used for testing.
Figure S1. The experimental configuration for recording the strikes of praying mantids. (a) Top view of the experimental setup including a mantis sitting on a black platform attached to a raiseable metal plate. (b) Side view of the experimental setup. In (a) and (b), the prey shown as a black dot and its trajectory direction is shown as an arrow. Prey approached the mantis from either side.
Figure S2. Illustrative examples of forelimb joint angle calculation. (a) The joint angle was calculated between two adjacent limb segments, such as the femur (grey) and the tibia (orange). (b) Examples of angle measurements, with 0° meaning a complete overlap between two limb segments.
Figure S3. Sequential images of *P. aeruginosa* striking a fly, positioned in the top right corner of each frame.
Figure S4. *P. aeruginosa* can abandon a strike. (a) Sequential images of *P. aeruginosa* abandoning a strike. (b) The sequence of prothoracic limb movements during an abandoned strike. (c) The change in angles between the different prothoracic joints during an abandoned strike.