Measuring the proportion of and reasons for asthma-related school absence in England

Article (Accepted Version)

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/89963/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

http://sro.sussex.ac.uk
Measuring the proportion of and reasons for asthma-related school absence in England

Jones CJ1, Mabbitt J2, Kissling E3, Gilchrist K4, Scanlon T5, Thomas G4, Wooler E6, McFarlane R7, Mukhopadhyay S6,7

1School of Psychology, Faculty of Health & Medical Sciences, University of Surrey, Guildford, UK
2Studybugs, Brighton, UK
3EpiConcept, Paris, France
4Brighton & Hove City Council, Brighton, UK
5Department of Public Health & Primary Care, Brighton & Sussex Medical School, Brighton, UK
6Brighton & Sussex University Hospitals NHS Trust, Brighton, UK
7Academic Department of Paediatrics, Royal Alexandra Children’s Hospital, Brighton & Sussex Medical School, Brighton, UK

Corresponding author:
Dr Christina Jones
University of Surrey
School of Psychology
Guildford
GU2 7XH
Email: c.j.jones@surrey.ac.uk
Tel: 01483 689436

Keywords: Asthma; Children; School absences; Exacerbations; Triggers

Funding: This project was funded by a Research Development Grant from the University of Sussex

Word count: 1611
To the Editor,

Asthma affects 300 million people across all age-groups and ethnicities and is the most common chronic condition affecting children. In the UK, the health care costs associated with asthma are estimated at £1.1 billion, however this amount typically excludes some societal costs (e.g. absence from work to care for children). The total number of days missed from school in England in the 2017/18 academic year was 59.1 million of which 54.7% were due to illness although the reasons for those illness-related absences are unknown. Given the high proportion of children with asthma and the fact that school absences are associated with low levels of achievement, the primary aim of this study was to measure the proportion of asthma-related absences in school children and describe the factors reported by parents that predispose their children to these school absences. The secondary aim was to explore parents’ and school staff views on extending an app currently used for reporting school absences to one that might also provide tailored interventions.

Studybugs (studybugs.com) is a unique free online service and app currently used by parents of 60,000 children across 1,250 UK schools and rising. Registered schools can connect Studybugs to their systems and invite parents to register at their choice. Parents are able to report their child’s absence via Studybugs even if a school has not registered, and this is delivered to the school by email. Once registered, parents are able to record the reason for their child’s absence via Studybugs and are provided with information based on Public Health England recommendations on the need to remain off school dependent on the symptoms or illnesses provided. Studybugs complies fully with all applicable privacy laws including General Data Protection Regulation (GDPR) which also applies to health information. Personal health data is processed and shared with schools with parents’ explicit consent. The Studybugs app was adapted for the purposes of this study to prompt parents to answer questions about the triggers for their child’s asthma exacerbation and subsequent school absence, and whether they planned to visit a General Practitioner. With parents’ consent, answers were collated by the project team in an anonymised form. A sub-sample of parents (n=8) and teachers (n=6) consented to semi-structured telephone interviews to explore their views on the acceptability and possible benefits of extending Studybugs to provide tailored interventions with the aim of improving the management of their child’s asthma.

This study analysed Studybugs 2017/2018 academic year (September to July) data from 492 schools in England; 17% of which are based in largely rural constituencies (slightly lower than the 21% reported in the most recent census), 63% of the schools are primary, 30% secondary with the remainder preschools or colleges. For the purpose of reporting, an illness episode is defined as any
absence reported within 14 days of each other. There were 323 children who reported at least one
absence for asthma in the 2017-18 school year. Asthma accounted for 0.98% (n=454) of overall
episodes affecting 1.84% (n=323) of children (Figure 1). The majority (74%) of children reporting
asthma as a reason for school absence had only one episode (n=239), but 9% (n=30) had at least
three episodes over the academic year. Almost two-thirds of children reporting asthma absences
were male (64%) and half were of primary school age (52%).

Among the parents reporting their child absent with asthma, 138/323 (43%) responded to the
questionnaire sent automatically by Studybugs (Table 1). The most frequently reported trigger for
the asthma exacerbation and consequent school absence was due to the child having a respiratory
infection (37%) followed by hayfever (17%) (Figure 2). The top three triggers were the same for
those reporting multiple asthma-related episodes (23% respiratory infection, 23% cold air, 16%
hayfever). However, for 9% of children with 3 or more absences, parents cited stress as the trigger.
Almost half of all parents (47%) reporting asthma-related school absence said their child would visit
their GP due to this exacerbation.

Semi-structured interviews with parents and staff were transcribed verbatim and analysed by
thematic analysis by two authors independently (supplementary file 1 for topic guide). Three major
themes were identified. Although parents were aware of their child’s asthma triggers, reminders
were seen to be beneficial from a preventative perspective: “I think it would be useful, if there was a
reminder that there was a high pollen count today….you know that you could do a preventative
puff… you could say to a teacher at drop-off, I think she might need a couple of blue puffs before she
goes outside”. Staff also thought that information on asthma triggers would improve their
understanding: “I don’t know much about asthma myself, nobody in my family has it… it would be
really helpful for me to know triggers, especially if, I have got children in my class, as I would
understand more why they would be continuously going off sick or why they become more wheezy on
certain days”. Some teachers reported that this sort of information would help them understand the
authenticity of the symptoms “especially in tech, the fumes can be quite strong and the kids
complain about it all the time, and they will sometimes specifically say, it is because I have got
asthma, but you know, I’d like to know if that is genuine or not”. Parents reported that medication
prompts via the app would improve unintentional non-adherence: “It is easy to forget these things,
so a gentle little reminder I think would be really helpful” and “We are terrible on checking whether
the inhaler is in date, so that’s something that is massively important”.

Parents and staff also reported that an app could improve relationships between parents and schools specifically in terms of managing sensitive conversations about attendance: “his report mentioned his absences, except there was no understanding or empathy he had had asthma” and “I think that would be useful as a teacher to understand... as a teacher you don’t always find out why are they are off sick”. This was identified by both parents and staff as a factor which might improve communication and trust between parents and schools with the ultimate aim of improving attendance: “Maybe they’d feel the school would understand it better. Sometimes parents are quite nervous that the school won’t take it seriously... so they keep the kids off as they are too worried the school won’t send them home if they are ill as schools are so worried about their absences”.

To our knowledge, this is the first study to look at school data in England on the proportion of asthma-related school absenteeism and the precipitating factors which led to the exacerbation. Further analysis could begin to address some of the research priorities identified by the European Asthma Research and Innovation Partnership on triggers and exacerbations (for example, to understand the impact of exposure to substances known to trigger asthma and develop tools to assess self-management)8. Despite asthma being highly prevalent, from our data it is encouraging that less than 2% of parents report that their children experienced an illness episode and missed school because of asthma.

One potential limitation of the study is the use of illness episodes rather than total days absent. This was used because despite prompting, not all parents report each day a child is unwell. The use of illness episodes may underestimate the total number of days absent. In this study parents reported a total of 659 days absent due to asthma, which equates to 2.04 days per child; less than the global estimates of 4-5 days9. Another explanation for lower estimates could be that the children in our sample have well-controlled asthma. It could also indicate selection bias or uncertainty around the use of the diagnostic label of “asthma”. Despite lower estimates, almost half of our sample intended visiting their GP indicating potentially high NHS resource implications, when asthma already accounts for 6.3m primary care consultations3.

The strengths of this project are that data were collected over a full academic year to account for the seasonal variation in asthma. A wide distribution of schools use Studybugs although possible reporting bias needs to be acknowledged; individual-level data on social determinants of health such as race, ethnicity, parental education level or socioeconomic status are not recorded which may be possible in future research, nor do all parents in all schools have smartphones, which may affect the
representativeness. However, in many schools the proportion of pupils where at least one parent has the app is greater than 90% meaning that data from these schools are likely to be highly representative.

As evidence in the qualitative data, the Studybugs app could be used to provide tailored advice/interventions to parents and staff based on specific symptoms or exacerbations recorded, to help prevent further school absence. Examples could include automated interventions alerting parents of high pollen counts, pollution levels, reminders to ensure asthma medication is taken and information on community prevalence of significant respiratory illnesses. The bidirectional functionality of the Studybugs app means it could be used as a communication tool for school staff (including school nurses) to alert parents to their child’s school-based asthma exacerbation or need for rescue medication. The Studybugs app could also help identify children who repeatedly miss school and target advice and potential healthcare resources, such as school nurse or asthma nurse care, towards this more vulnerable population. Nurses and other health care professionals could use the information on triggers to tailor advice and guidance, such as reviewing medication and inhaler technique. This project demonstrates the potential for Studybugs to collect community-wide data on school absence, to identify triggers and potentially to deliver tailored interventions that could improve children’s health and reduce illness-related school absence.
Figure 1. Respondent flow through data collection period for 2017-2018 academic year

<table>
<thead>
<tr>
<th>Total sample</th>
<th>Reporting asthma</th>
<th>Reporting asthma and completed questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>78317 days reported absent</td>
<td>659 days reported absent using the term "asthma"</td>
<td>247 days reported absent using the term "asthma"</td>
</tr>
<tr>
<td>46225 illness episodes</td>
<td>454 episodes</td>
<td>169 episodes</td>
</tr>
<tr>
<td>17517 individual children</td>
<td>323 individual children</td>
<td>138 individual children</td>
</tr>
</tbody>
</table>

- Total sample: 78317 days reported absent, 46225 illness episodes, 17517 individual children
- Reporting asthma: 659 days reported absent using the term "asthma", 454 episodes, 323 individual children
- Reporting asthma and completed questions: 247 days reported absent using the term "asthma", 169 episodes, 138 individual children
Figure 2. Parent-reported reasons for asthma-related school absence (Totals: 138 parents; 253 reasons)

Multiple choice; parents could select more than one option
Table 1. Demographics of children with asthma-related school absences responding to the questionnaire

<table>
<thead>
<tr>
<th></th>
<th>N (n = 138)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age groups</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(in years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-4</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>5-7</td>
<td>47</td>
<td>34</td>
</tr>
<tr>
<td>8-10</td>
<td>25</td>
<td>18</td>
</tr>
<tr>
<td>11-13</td>
<td>35</td>
<td>25</td>
</tr>
<tr>
<td>14-16</td>
<td>22</td>
<td>16</td>
</tr>
<tr>
<td>17+</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>87</td>
<td>63</td>
</tr>
<tr>
<td>Female</td>
<td>51</td>
<td>37</td>
</tr>
<tr>
<td>Region</td>
<td></td>
<td></td>
</tr>
<tr>
<td>East of England</td>
<td>23</td>
<td>17</td>
</tr>
<tr>
<td>London</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>South East</td>
<td>98</td>
<td>71</td>
</tr>
<tr>
<td>South West</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>Yorkshire and the Humber</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
References

9. Braman SS. The global burden of asthma. Chest 2006;130:4S–12S