Distinct populations of neurons activated by heroin and cocaine in the striatum as assessed by catFISH

Article (Accepted Version)

Vassilev, Philip, Avvisati, Riccardo, Koya, Eisuke and Badiani, Aldo (2019) Distinct populations of neurons activated by heroin and cocaine in the striatum as assessed by catFISH. eNeuro. ISSN 2373-2822 (Accepted)

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/89022/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

http://sro.sussex.ac.uk
Distinct populations of neurons activated by heroin and cocaine in the striatum as assessed by catFISH

Philip Vassilev¹, Riccardo Avvisati¹, Eisuke Koya¹, Aldo Badiani¹,²

¹ Sussex Addiction Research and Intervention Centre (SARIC), School of Psychology, University of Sussex, United Kingdom; ² Department of Physiology and Pharmacology, Sapienza University of Rome, Italy.

Correspondence should be addressed to:
Aldo Badiani - Sussex Addiction Research and Intervention Centre (SARIC), School of Psychology, University of Sussex, Brighton, UK, BN1 9QH; aldo.badiani@gmail.com

Number of figures: 7
Number of tables: 2
Number of multimedia: 0
Number of words for abstract: 249
Number of words for significance statement: 95
Number of words for introduction: 664
Number of words for discussion: 1351

Acknowledgements: The study was supported by funding (Strategic Development Funds) to AB. We thank Dr. Sarah King and Dr. Hans Crombag for their expert advice. The authors report no conflict of interest.
Abstract

Despite the still prevailing notion of a shared substrate of action for all addictive drugs, there is evidence suggesting that opioid and psychostimulant drugs differ substantially in terms of their neurobiological and behavioural effects. These differences may reflect separate neural circuits engaged by the two drugs. Here we used the catFISH technique to investigate the degree of overlap between neurons engaged by heroin versus cocaine in adult male Sprague-Dawley rats. The catFISH technique is a within-subject procedure that takes advantage of the different transcriptional time-course of the immediate-early genes *homer 1a* and *arc* to determine to what extent two stimuli separated by an interval of 25 min engage the same neuronal population. We found that throughout the striatal complex the neuronal populations activated by non-contingent intravenous injections of cocaine (800 µg/kg) and heroin (100 and 200 µg/kg), administered at an interval of 25 min from each other, overlapped to a much lesser extent than in the case of two injections of cocaine (800 µg/kg), also 25 min apart. The greatest reduction in overlap between populations activated by cocaine and heroin was in the dorsomedial and dorsolateral striatum (~30% and ~22%, respectively, of the overlap observed for the sequence cocaine-cocaine). Our results point toward a significant separation between neuronal populations activated by heroin and cocaine in the striatal complex. We propose that our findings are a proof of concept that these two drugs are encoded differently in a brain area believed to be a common neurobiological substrate to drug abuse.

Significance statement

Despite significant advances in the substance use disorders field, effective prevention and treatment strategies are scarce and still under active development. Here we add to growing evidence indicating major differences in the neurobiological effects of opioid versus psychostimulant drugs, which is at odds with the still prevailing notion of a shared substrate of action for all addictive drugs. This suggests that, to be effective, development of prevention and treatment strategies should not look for a “silver bullet” solution to all drug addictions. Instead, they should be tailored to the specific drug preference of pathological users.
Introduction

Virtually all current theories of drug abuse posit that the addictive properties of drugs depend on common neurobiological processes, including hyper-reactivity of motivational systems (e.g., Wolf, 2010; Berridge and Robinson, 2016), impaired impulse control (e.g., Jentsch and Taylor, 1999), and aberrant learning (e.g., Everitt and Robbins, 2005). Regardless of the core process on which each theory focuses, the biological substrate of said processes involves the mesotelencephalic dopamine system projecting from ventral tegmental area (VTA) and substantia nigra (SN) to the striatal complex, including caudate and nucleus accumbens (NAcc), and to the prefrontal cortex (PFCx). Indeed, it is commonly assumed that all substances of abuse increase dopamine levels in the terminal regions of the dopaminergic system (Di Chiara and Imperato, 1988; Robinson and Berridge, 1993; Wise, 1996; Nestler, 2001, 2004; Hyman et al., 2006; Koob and Volkow, 2010; Berridge, 2012; Covey et al., 2014; Keiflin and Janak, 2015; Volkow and Morales, 2015; Berridge and Robinson, 2016; Keramati et al., 2017; Volkow et al., 2017) albeit via different mechanisms of action. Psychostimulant drugs, such as cocaine and amphetamines, produce dopamine overflow by binding the dopamine transporter (for reviews, see Kuczenski et al., 1982; Johanson and Fischman, 1989). Opioid agonists, such as heroin and morphine, are thought to increase dopamine concentrations indirectly by binding mu-opioid receptors located on inhibitory interneurons in the VTA, hence disinhibiting dopaminergic neurons (Gysling and Wang, 1983; Matthews and German, 1984; Johnson and North, 1992). Yet, the magnitude of drug-induced dopamine overflow differs enormously from one drug to another, even within the same pharmacological class. For example, some opioids produce dramatic increases in dopamine whereas others have very little effect (e.g., Gottas et al., 2014; Vander Weele et al., 2014). Furthermore, electrophysiological experiments have shown that neurons in the striatum respond in a very different manner to heroin versus cocaine self-administration (e.g., Chang et al., 1998; Wei et al., 2018), suggesting that the effects of the two drugs are encoded differently in this brain area.

The aim of the two experiments reported here was to further explore this hypothesis using the catFISH technique, which is a within-subject technique that takes advantage of the different transcriptional time-course of the immediate-early genes (IEGs) *homer 1a* and *arc* to
detect the activation of partly distinct neuronal populations in response to two temporally distinct stimuli (see Fig.1, Guzowski et al., 1999; Vazdarjanova et al., 2002; Vazdarjanova and Guzowski, 2004). To date, a few studies have looked at the effects of cocaine on arc (Caffino et al., 2011) or homer 1a expression (Unal et al., 2009), whereas there is no information on the effects of heroin administration on the expression of these two IEGs. As in the case of the IEG c-fos, which is known to be transcribed across the striatum in response to heroin and cocaine administration (Harlan and Garcia, 1998; Paolone et al., 2007; Celentano et al., 2009), both arc and homer 1a are activated by the transcription factor CREB; that is, they are transcribed following activation of the ERK/MAPK pathway, elevated cAMP activity, or calcium influx to the cell (Impey et al., 1998; Sato et al., 2001; Kawashima et al., 2014). Considering these shared mechanisms of expression, we expected that arc and homer 1a would be suitable markers of neuronal activity produced by drug administration. We predicted that intravenous (i.v.) injections of heroin and cocaine will produce a rapid and transient IEG transcription in the striatum. Indeed, we found that intravenous administration of low doses (i.e., those typically used in self-administration experiments) of heroin and cocaine produce temporally distinct increases in the expression of homer 1a (h1a) and/or arc suggesting that both drugs induce neuronal activity across the striatum. In a second experiment, we used the catFISH technique to establish to what extent this activity occurs in overlapping vs. drug-specific neuronal populations. Based on electrophysiological evidence suggesting distinct neuronal activity produced by heroin vs cocaine (Chang et al., 1998), we predicted that administration of heroin following cocaine would activate non-overlapping neuronal populations across the striatum.

Methods

Subjects

A total of 66 male Sprague-Dawley rats (n = 37 in Exp. 1 and n = 29 in Exp. 2) from ENVIGO (Netherlands) were tested at a weight of 300-375 g. The rats were housed and tested in a temperature- and humidity-controlled room (21±1°C; 50%) with a reversed 12 h light/dark cycle (lights on at 19:00 hours). The rats were housed in groups of 3 or 4 until surgery and individually thereafter. Food and water were provided *ad libitum* except during testing sessions. All regulated
procedures were carried out in accordance with the UK 1986 Animal Scientific Procedures Act (ASPA) and received approval from the relevant Animal Welfare and Ethics Review Board. After their arrival in the animal facilities, the rats were given a period of at least 7 days before undergoing experimental procedures.

Drugs

Anesthesia was induced with 110 mg/kg of ketamine (Anesketin, Dechra) and 2 mg/kg of xylazine (Rompun, Bayer HealthCare). Cocaine and heroin hydrochloride (Johnson Matthey-MacFarlan Smith, Edinburgh, UK) were dissolved in sterile saline and infused i.v. at the doses specified in the next paragraphs. Each infusion consisted of a volume of 40 µl of the appropriate drug solution delivered over 4 s. Saline-treated rats received equivalent volumes of saline.

Intravenous catheter surgery

The surgical procedures were similar to those recently described by Avvisati et al. (2019). Briefly, after anesthesia, an 11 cm silicone catheter (0.37-mm inner diameter and 0.94-mm outer diameter), sheathed at 3.4 cm from its proximal end by a silicone bead, was implanted in the right jugular vein, externalised at the nape of the neck, and attached to a cannula secured to the top of the skull with dental cement. Following surgery, rats were allowed to recover for at least 7 days. Catheter patency was maintained by flushing the catheters daily with 0.1 ml saline.

Catheter patency test

At the appropriate time (see next sections) the rats were killed via an i.v. infusion of pentobarbital (120 mg/kg in 200 µl of saline) through the catheter. This also served as a catheter patency test: the rats that did not become ataxic and die within 5 s would be excluded from the data analysis. All catheters were found to be patent.

Drug administration procedures

Experiment 1. After recovery, the rats received, while briefly restrained, an i.v. infusion of either 400 µg/kg cocaine \((n = 18) \) or 50 µg/kg heroin \((n = 19) \) in their home cage. These doses were selected based on the findings of previous self-administration experiments (Caprioli et al., 2007b; Caprioli et al., 2008). The rats received the lethal pentobarbital injection and were then decapitated at different time points after the cocaine or heroin infusion: 0 min \((n = 3 \) for both the
cocaine and heroin group), 8 min (n = 3 for both the cocaine and heroin groups), 16 min (n = 4 for both the cocaine and heroin groups), 25 min (n = 4 for both the cocaine and heroin groups), and 35 min (n = 4 and n = 5 for the cocaine and heroin groups, respectively).

Experiment 2. After recovery, the rats were moved to testing chambers used for self-administration experiments (PRS Italia; see Avvisati et al., 2019). In order to reduce the potentially confounding effects of environmental novelty on drug-induced IEG expression (Uslaner et al., 2001; Paolone et al., 2007) we let the rats habituate to these chambers for 18 h before tethering them to the infusion lines. Food and water were available ad libitum during this habituation period and were removed immediately prior to tethering. The use of self-administration chambers allowed us to deliver drug infusions remotely via a computer-controlled infusion pump. The infusion pumps were programmed to start automatically, in the absence of the experimenter, 1 h after tethering. This way we avoided the confounding effects usually associated to signalled drug administration (Crombag et al., 1996) and/or handling. All rats received two i.v. infusions, 25 min apart, of: saline–saline (n = 4), cocaine 800 µg/kg–saline (n = 6), cocaine 800 µg/kg–cocaine 800 µg/kg (n = 6), cocaine 800 µg/kg–heroin 100 µg/kg (n = 6), or cocaine 800 µg/kg–heroin 200 µg/kg (n = 7). To administer two separate injections through the same catheter, the infusion lines were back-filled with the appropriate drug solutions, separated by a tiny air bubble, just before tethering of the rats. The rationale for using higher doses of cocaine and heroin in Exp. 2 was to boost the magnitude of IEG expression. These doses were still within the range of those used in self-administration experiments (e.g. Zito et al., 1985; Dai et al., 1989; Roberts et al., 1989; Pettit and Justice, 1991; Shaham and Stewart, 1994; Wise et al., 1995; Mantsch et al., 2001; Wee et al., 2007; Mandt et al., 2012).

Five minutes after the second infusion, the rats were given 120 mg/kg pentobarbital, i.v., and, after decapitation, their brains were snap-frozen in isopentane at -50°C.

Brain slicing

The brains were excised and snap-frozen in 400 ml of isopentane cooled to -50°C and later sectioned on a cryostat at 16- or 20-µm thickness. In Exp. 1, sectioning started from the tip of the olfactory bulbs and brain sections were removed until the Sylvian fissure no longer reached the midline (+3.70 mm from bregma). At this point, either 100 or 80 sections were removed.
(when sectioning at 16 µm and 20 µm, respectively) to reach +2.00 mm from bregma at which point the sections contained anterior dorsal striatum and NAcc core (Fig. 2A). Two coronal sections per rat (16 or 20 µm-thick) were obtained at this point. An identical procedure was used in Exp. 2 in order to collect two coronal sections containing NAcc core and shell, DMS, and DLS at +1.70 mm from bregma (Fig. 3A).

In situ hybridization

Immediately after cutting, the brain tissue sections were mounted on Superfrost Plus slides. On the first day of staining, the slides were incubated in 10% neutral buffered formalin (Sigma, cat. No. HT501128-4L) for 20 min at 4°C, followed by 2x1 min washes in 1xPBS, and then serial dehydration in ascending concentrations of ethanol (5-min incubation in 50%, 70%, and 2x 100%). Following this, the tissue was stored in 100% ethanol overnight. On day 2, the tissue was air dried, and then incubated with protease for 20 minutes, followed by 2x1 min washes in dH2O. Protease, probe and amplifier solutions were supplied by ACDbio as part of a commercially available RNAscope® kit (Advanced Cell Diagnostics, ACDbio). *Arc* and *h1a* hybridization probes (ACDbio, cat. No. 317071-C2 & 433261, respectively) were hybridized to fresh frozen brain coronal sections sliced on a Leica CM1900 cryostat. The signal was amplified with an RNAscope® Multiplex Fluorescent Reagent Kit (ACDbio, cat. No. 320850). The *arc* probe targeted the region spanning 1519-2621 base pairs of the *arc* gene mRNA, accession No. NM_019361.1. The *h1a* probe targeted the 3’ untranslated region of the *h1a* gene mRNA, spanning 5001-5625 base pairs, accession No. U92079.1.

The *arc* and *h1a* probes were applied (50 µl per section), and the sections were incubated for 2h at 40°C in a humidity-controlled oven. After incubation with the probes, the signal was amplified at 4 separate stages with 15 min, 30 min, 15 min and 30 min of incubation in between (respectively) at 40°C in the hybridization oven. The probe and amplifier solutions were applied to the sections with the help of a hydrophobic pen barrier. There were 2x2 min washes in wash buffer after each incubation (including after probe hybridization). Finally, sections were coverslipped and counterstained with DAPI mounting medium (Vector Laboratories, cat. No. H-1500) and left at 4°C overnight.
Image acquisition and analysis

Fluorescent signal was detected using a Zeiss Axioskop 2 plus epifluorescent microscope, and images were acquired using an Axiovision software (Zeiss). Greyscale images were taken from both hemispheres of 2 adjacent sections for each rat at 20x magnification. This yielded four images per brain area for each rat. Final counts of DAPI-, arc-, and h1a-positive nuclei were averaged from these four images. The resulting images represented a region of interest (ROI) of 700 x 550 µm. These images were analysed using the RIO Montpelier extension of the ImageJ software (Baecker and Travo, 2006). Greyscale images were analysed separately for each channel – DAPI, Alexa 488 (h1a) and Cy3 (arc) – as follows.

First, each DAPI image was analysed by applying a Gaussian blur filter (sigma = 2), then a “rolling ball” background subtraction algorithm (ball radius = 20), followed by the application of the default automatic global thresholding algorithm. This yielded a binary image which was then used to count objects selected on the basis of their size and circularity using the “analyse particles” function of ImageJ. The size criterion was set to 0.0045-0.045 square inches, and the circularity -to 0.7-1.00. This analysis resulted in a binary mask image containing only objects fulfilling the aforementioned criteria.

The images from the Alexa 488 and Cy3 channels were first adjusted for brightness so that the most visible signal was that coming from nuclear staining for arc and h1a. This was defined as any signal representing one or two bright dots close to each other, as opposed to cytoplasmic signal which is less bright and more diffused (Guzowski et al., 1999). A global threshold was then applied to the images (default algorithm), and the “analyse particles” function was used again to select only objects of 4-90 square pixels, and to create a binary image mask showing only the defined particles.

A Windows 10 Dell OptiPlex 7060 desktop computer ran a MATLAB script to overlay the three binary mask images and count instances where objects defined as DAPI nuclei coincided with objects defined as either arc mRNA, h1a mRNA or both. The MATLAB code will be made available on request. Thus, IEG expression was measured by counting DAPI-positive (DAPI+) cell nuclei also positive for h1a, arc, or both.
Statistical analyses

The data from Exp. 1 were analysed by two-way mixed ANOVAs with time and IEG as fixed factors. Amount of IEG-positive cell nuclei (as percentage of all DAPI-stained nuclei) was the dependent variable. The data from Exp. 2 were analysed using a two-way ANOVA with brain area and treatment group as fixed factors. The outcome variable was overlap (expressed as percent of the cocaine-cocaine group). All analyses were carried out in SPSS 25 (IBM) software. An alpha value of 0.05 or less was used for determining statistically significant effects.

Results

Experiment 1 (time course of arc and h1α expression following i.v. drug administration)

Figure 2B shows the amount of arc- and h1α-positive nuclei in the NAcc core and DMS expressed as a percentage of all DAPI-positive nuclei and as a function of time elapsed since i.v. injections of cocaine and heroin. Table 1 shows the same data before conversion to percentage.

Arc and h1α expression in the NAcc core. Cocaine administration increased both arc and h1α mRNA levels in the NAcc core, but at different time points. A two-way mixed ANOVA showed non-significant main effects of IEG $F(1,13) = 0.08$, $p = .782$, $η^2 = .006$, and time $F(4,13) = 1.62$, $p = .227$, $η^2 = .333$ but a significant time x IEG interaction, $F(4,13) = 7.93$, $p = .002$, $η^2 = .977$.

Heroin produced a similar pattern of mRNA expression, but the effect did not reach significance: a two-way mixed ANOVA showed non-significant main effects of IEG $F(1,14) = 2.32$, $p = .150$, $η^2 = .142$, and time $F(4,14) = 0.72$, $p = .596$, $η^2 = .17$, and a non-significant time x IEG interaction, $F(4,14) = 2.15$, $p = .129$, $η^2 = .38$.

Arc and h1α expression in the DMS. As in the NAcc core, cocaine treatment increased IEG levels in a time-dependent manner. A two-way mixed ANOVA showed significant main effects of IEG $F(1,13) = 18.93$, $p = .001$, $η^2 = .593$, and time $F(4,13) = 5.36$, $p = .009$, $η^2 = .623$, and a significant time x IEG interaction, $F(4,13) = 44.58$, $p < .001$, $η^2 = .932$.

Heroin produced a similar effect. A two-way mixed ANOVA showed non-significant main effects of IEG $F(1,14) = 3.17$, $p = .097$, $η^2 = .185$, and time $F(4,14) = 0.22$, $p = .924$, $η^2 = .059$, but a significant time x IEG interaction, $F(4,14) = 3.58$, $p = .033$, $η^2 = .506$.
Experiment 2 (overlap in neuronal populations activated by cocaine and heroin)

Table 2 shows the average number of arc-only, h1a-only and double-stained cell nuclei as a function of brain area and drugs administered in experiment 2. Figures 4-7 show representative images from all brain areas analysed using catFISH.

Figure 3B shows the extent of overlap between neuronal populations activated by cocaine and heroin as a percent change from the cocaine-cocaine group. Overlap was quantified as the number of nuclei co-expressing arc and h1a expressed as a percent of all mRNA-positive nuclei (single and double-labelled). In all four brain areas examined, there was a substantial reduction in overlap when cocaine and heroin were administered in succession, relative to the overlap seen when cocaine was administered twice, and regardless of heroin dose (figure 3). A two-way mixed ANOVA showed a significant main effect of treatment group $F(3,19) = 20.97$, $p < .001$, $\eta^2 = .768$ and brain area $F(3,57) = 3.40$, $p = .024$, $\eta^2 = .152$ but not treatment x brain area interaction $F(9,57) = 0.79$, $p = .619$, $\eta^2 = .112$.

Discussion

We have shown that intravenous injections of heroin and cocaine at doses typically self-administered by rats produce a quick and transient increase of homer 1a and arc expression across the striatum. More importantly, using the catFISH technique, we took advantage of the difference in timing of expression between the two IEGs to show that heroin and cocaine activate partly distinct neuronal populations in this brain area.

In line with our findings, previous studies have shown that heroin and cocaine increase c-fos levels in the ventral and dorsomedial striatum (Hope et al., 1992; Harlan and Garcia, 1998; Uslaner et al., 2001; Ferguson et al., 2004; Paolone et al., 2007; Celentano et al., 2009). The IEG c-fos is a marker of neuronal activity expressed under similar conditions of arc and homer 1a (Guzowski et al., 2001). In addition, our findings indicate that this activity occurs in separate neuronal populations and may explain why only a small proportion of neurons show similar electrophysiological responses to heroin and cocaine (Chang et al., 1998).

It is likely that drug-induced IEG expression represents glutamatergic activity modulated by DA, because NMDA and DA D1 receptors play a key role in IEG expression through activation
of CREB (Impey et al., 1998; Mattson et al., 2005; Surmeier et al., 2007; Guez-Barber et al., 2011; Tritsch and Sabatini, 2012), and both DA and glutamate levels are increased in the striatum following heroin and cocaine administration. Note, however, that DA release alone does not produce IEG expression in the absence of glutamatergic activity (Kreuter et al., 2004). In addition, NMDA receptor activity and DA transmission in the accumbens are necessary for food and cocaine self-administration, but not heroin self-administration (Ettenberg et al., 1982; Pettit et al., 1984; Pulvirenti et al., 1992; Kelley et al., 1997). Finally, D1 receptor-expressing MSNs in the dorsal striatum appear to be sufficient to sustain operant behaviour (Kravitz et al., 2012) and these neurons express IEGs (i.e. are activated) following cocaine administration. Thus, loss and gain of function studies have provided evidence that activity of cells in the striatum plays a key role for cocaine, but not heroin, reinforcement through DA and glutamate transmission. It remains to be determined what is the functional role of the distinct neuronal populations engaged by heroin relative to cocaine.

A case for drug-specific neural circuitries
Perhaps the most intriguing interpretation of the results presented here is that partly distinct neuronal populations activated by heroin and cocaine across the striatum are suggestive of dissociated circuitry processing the acute effects of the two drugs. There is already existing evidence that the striatum is functionally and structurally organised to accommodate circuits which operate in parallel but carry out separate functions. First, striatal medium spiny neurons (MSNs) are characterised by more or less excitable states, i.e. “up” and “down” states (Wolf et al., 2001; O’Donnell, 2003) and in order for MSNs to be excited (and to express IEGs), they must receive input from several sources which may include different combinations of amygdala, hippocampus, thalamus, PFCx and VTA/SNc afferent inputs (Pennartz et al., 1994). Each of the brain areas sending these afferent projections: i) is affected differently by heroin, cocaine, and natural rewards (Chang et al., 1998; Mukherjee et al., 2018); ii) contains neuronal ensembles involved in distinct functions (Zelikowsky et al., 2014; Warren et al., 2016), and iii) might be comprised of genetically distinct projection neurons. Thus, considering the integrative function of the striatum, the diverse connectivity and specialised functions of its input regions, and the necessity for synchronised excitatory input to elicit action potentials from MSNs, it is quite
possible that the activation of partly distinct neuronal populations in the striatum reflects the activation of dissociated circuitries. Here it must be noted that, although the afferent inputs of the striatum from limbic and cortical areas are topographically organised in a ventromedial-dorsolateral fashion, they are not constrained to perfectly defined striatal subregions, but are overlapping, with higher concentrations of certain afferents in, e.g., shell vs core (Voorn et al., 2004). It should also be considered that MSNs send collateral GABAergic projections to neighbouring MSNs. This mutual inhibition between MSNs is another functional-anatomical feature predisposing the accumbens and rest of striatum to accommodate neuronal ensembles embedded in distinct circuitries – whilst one ensemble is active, it can decrease the activity in other ensembles so that only one computation is taking place over others (Pennartz et al., 1994). The experiments presented here are only suggestive of distinct striatal circuitry engaged by heroin and cocaine. Future studies should address this hypothesis by expanding on our findings in three ways. First, single-cell quantitative PCR studies can further elucidate phenotypic differences between neuronal populations activated by heroin and cocaine in terms of their genetic make-up (Hrvatin et al., 2018). Second, retro- and anterograde labelling studies in conjunction with immunohistochemistry can reveal whether these neuronal populations connect to distinct up- and downstream targets. And third, selective loss- and gain-of-function studies can be used to test whether inactivation of neurons responding to cocaine in the dorsal striatum and accumbens core would impair heroin reinforcement. The Daun02 technique (Koya et al., 2009; Koya et al., 2016) would be a useful technique in this regard, as well as other techniques which manipulate neuronal ensembles such as the TetTag approach using the Fos-tTA mouse line combined with optogenetics (Reijmers and Mayford, 2009; Liu et al., 2012; Du and Koffman, 2017).

Methodological considerations
Two caveats to the experimental design used here are worthy of mention. There are known differences between the effects of non-contingent vs contingent exposure to heroin and cocaine (e.g. Galici et al., 2000; Lecca et al., 2007; Radley et al., 2015). In the present study we administered heroin and cocaine in a non-contingent but unsignalled manner as we were interested in comparing the acute pharmacological effects of these two drugs using IEG
expression as a marker of neuronal activation. Contingent administrations (e.g., self-administration) require repeated exposure to drugs over several test sessions which has been shown to produce habituation to IEG expression (Hope et al., 1992; Unal et al., 2009). Of course, we recognise the value of studying the encoding of drug-related information in the striatum during and after periods of drug self-administration. Future studies could employ in vivo imaging techniques such as the UCLA/Inscopix© miniscope to address this question directly. A second, somewhat related caveat is that our paradigm includes a multi-substance component. It is possible that circuit activity may differ following polysubstance versus single-drug use histories. However, electrophysiological evidence from rats self-administering both substances is congruent with our findings (Chang et al., 1998). Also, we administered only two injections of cocaine and/or heroin to drug-naïve rats so it is unlikely that any long-term polysubstance use effects would have influenced our observations.

Conclusion
In summary, we found a significant dissociation in the neuronal populations responding to self-administration doses of heroin versus cocaine, as indicated by arc and homer 1a expression. Our findings provide a proof of concept that heroin and cocaine effects on the brain must be studied as separate phenomena, adding to the evidence of major differences between the various drugs of abuse (for a review, see Badiani et al., 2011). Although the functional significance of these differences remains to be fully explored, they might have implications for both research and treatment. It is remarkable, for example, that the functional or anatomical integrity of the dopaminergic system is required for the reinforcing properties of cocaine but not of heroin (e.g., Ettenberg et al., 1982; Pettit et al., 1984; Pisanu et al., 2015), that distinct projections from the PFCx to the shell of the NAcc are implicated in the relapse to cocaine versus heroin seeking after abstinence (Peters et al., 2008; Bossert et al., 2012), and that basic environmental manipulations gate in opposite directions the reinforcing, affective, and neurobiological response to heroin versus cocaine in rats and humans (Uslaner et al., 2001; Ferguson et al., 2004; Caprioli et al., 2007a; Paolone et al., 2007; Caprioli et al., 2008; Caprioli et al., 2009; Celentano et al., 2009; Montanari et al., 2015; Avvisati et al., 2016; De Pirro et al., 2018; De Luca et al., 2019).
References

Table 1. Mean (SE) number of arc- and h1α-stained cell nuclei as a function of brain area and drug administered in Exp. 1. The brains were excised at different time points after drug administration: 0 min ($n = 3$ for both the cocaine and heroin groups), 8 min ($n = 3$ for both the cocaine and heroin groups), 16 min ($n = 4$ for both the cocaine and heroin groups), 25 min ($n = 4$ for both the cocaine and heroin groups), and 35 min ($n = 4$ and $n = 5$ for the cocaine and heroin groups, respectively).

<table>
<thead>
<tr>
<th></th>
<th>NAcc</th>
<th>DS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cocaine (400 µg/kg)</td>
<td>Heroin (50 µg/kg)</td>
</tr>
<tr>
<td>Arc</td>
<td>19.50 (1.52)</td>
<td>12.50 (4.44)</td>
</tr>
<tr>
<td>H1a</td>
<td>25.50 (5.36)</td>
<td>9.75 (2.38)</td>
</tr>
<tr>
<td>16 min</td>
<td>16.31 (3.35)</td>
<td>14.81 (1.22)</td>
</tr>
<tr>
<td></td>
<td>9.94 (2.78)</td>
<td>17.81 (0.82)</td>
</tr>
<tr>
<td>35 min</td>
<td>11.00 (1.67)</td>
<td>26.25 (5.13)</td>
</tr>
<tr>
<td></td>
<td>15.00 (3.89)</td>
<td>48.88 (5.99)</td>
</tr>
<tr>
<td></td>
<td>11.25 (1.44)</td>
<td>58.50 (1.52)</td>
</tr>
</tbody>
</table>
Table 2. Mean (SE) number of h1α-only, arc-only and double-stained cell nuclei as a function of brain area and drugs administered, 25 min apart, in Exp. 2: saline-saline (n = 4), and cocaine (800 µg/kg)-saline (n = 6), cocaine (800 µg/kg)-cocaine (800 µg/kg) (n = 6), cocaine (800 µg/kg)-heroin 100 µg/kg, (n = 6), and cocaine (800 µg/kg)-heroin 200 µg/kg (n = 7).

<table>
<thead>
<tr>
<th></th>
<th>NAcc core</th>
<th>NAcc shell</th>
<th>DMS</th>
<th>DLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st saline</td>
<td>h1a</td>
<td>4.94 (0.66)</td>
<td>4.44 (1.61)</td>
<td>5.98 (2.18)</td>
</tr>
<tr>
<td>2nd saline</td>
<td>arc</td>
<td>2.38 (0.94)</td>
<td>2.48 (0.75)</td>
<td>1.98 (0.95)</td>
</tr>
<tr>
<td></td>
<td>double</td>
<td>0.13 (0.07)</td>
<td>0.38 (0.16)</td>
<td>0.13 (0.07)</td>
</tr>
<tr>
<td>1st cocaine</td>
<td>h1a</td>
<td>21.5 (4.44)</td>
<td>8.67 (2.36)</td>
<td>51.1 (7.99)</td>
</tr>
<tr>
<td>(800 µg/kg)</td>
<td>arc</td>
<td>4.25 (0.77)</td>
<td>3.13 (0.68)</td>
<td>5.58 (1.77)</td>
</tr>
<tr>
<td>2nd saline</td>
<td>double</td>
<td>1.46 (0.25)</td>
<td>1.67 (0.35)</td>
<td>3.63 (0.43)</td>
</tr>
<tr>
<td></td>
<td>h1a</td>
<td>20.54 (5.45)</td>
<td>11.00 (2.87)</td>
<td>42.17 (8.65)</td>
</tr>
<tr>
<td></td>
<td>arc</td>
<td>8.08 (0.59)</td>
<td>5.13 (0.67)</td>
<td>12.54 (1.99)</td>
</tr>
<tr>
<td></td>
<td>double</td>
<td>5.46 (1.04)</td>
<td>3.33 (0.77)</td>
<td>14.17 (3.17)</td>
</tr>
<tr>
<td>1st cocaine</td>
<td>h1a</td>
<td>20.33 (3.72)</td>
<td>8.04 (2.36)</td>
<td>58.67 (16.42)</td>
</tr>
<tr>
<td>(800 µg/kg)</td>
<td>arc</td>
<td>23.29 (9.55)</td>
<td>18.92 (9.13)</td>
<td>3.63 (0.70)</td>
</tr>
<tr>
<td>2nd heroin</td>
<td>double</td>
<td>5.00 (2.07)</td>
<td>2.46 (0.87)</td>
<td>4.17 (1.19)</td>
</tr>
<tr>
<td>(100 µg/kg)</td>
<td>h1a</td>
<td>18.96 (4.33)</td>
<td>7.57 (1.75)</td>
<td>50.68 (7.34)</td>
</tr>
<tr>
<td></td>
<td>arc</td>
<td>12.11 (1.53)</td>
<td>12.61 (2.91)</td>
<td>5.17 (0.74)</td>
</tr>
<tr>
<td></td>
<td>double</td>
<td>3.14 (0.59)</td>
<td>1.75 (0.49)</td>
<td>3.11 (0.46)</td>
</tr>
<tr>
<td>1st cocaine</td>
<td>h1a</td>
<td>20.33 (3.72)</td>
<td>8.04 (2.36)</td>
<td>58.67 (16.42)</td>
</tr>
<tr>
<td>(800 µg/kg)</td>
<td>arc</td>
<td>23.29 (9.55)</td>
<td>18.92 (9.13)</td>
<td>3.63 (0.70)</td>
</tr>
<tr>
<td>2nd heroin</td>
<td>double</td>
<td>5.00 (2.07)</td>
<td>2.46 (0.87)</td>
<td>4.17 (1.19)</td>
</tr>
<tr>
<td>(200 µg/kg)</td>
<td>h1a</td>
<td>18.96 (4.33)</td>
<td>7.57 (1.75)</td>
<td>50.68 (7.34)</td>
</tr>
<tr>
<td></td>
<td>arc</td>
<td>12.11 (1.53)</td>
<td>12.61 (2.91)</td>
<td>5.17 (0.74)</td>
</tr>
<tr>
<td></td>
<td>double</td>
<td>3.14 (0.59)</td>
<td>1.75 (0.49)</td>
<td>3.11 (0.46)</td>
</tr>
</tbody>
</table>
Figure 1. The catFISH paradigm. Working hypothesis based on Guzowski et al. 2005: the expression of mRNA encoding for *h1a* and *arc* should be detectable at different time points after drug administration. **A)** *arc* mRNA expression in the nucleus should peak at about 5 min after drug administration, whereas *h1a* mRNA should peak at about 30 min. **B)** Overlap in the expression of Drug 1-induced *h1a* mRNA and *arc* mRNA should be observed at time 30 min (25 min after Drug 1 and 5 min after Drug 2).
Figure 2. Effect of single drug injections on IEG expression. Time-course of arc mRNA and h1a mRNA expression in experiment 1. A) Regions of interest (plate from Paxinos & Watson, 1986). B) Average number of arc- or homer 1a (h1a)-positive cell nuclei as a function of brain area and administered drug (expressed as a percentage of all DAPI-positive nuclei). The brains were excised at different time points after drug administration: 0 min ($n = 3$ for both the cocaine and heroin groups), 8 min ($n = 3$ for both the cocaine and heroin groups), 16 min ($n = 4$ for both the cocaine and heroin groups), 25 min ($n = 4$ for both the cocaine and heroin groups), and 35 min ($n = 4$ and $n = 5$ for the cocaine and heroin groups, respectively).
Figure 3. Overlap in the neuronal populations engaged by heroin and cocaine. Co-expression of arc and h1a mRNAs in experiment 2.

A) Regions of interest. (plate from Paxinos & Watson, 1986).

B) Overlap expressed as % of overlap in the cocaine-cocaine condition as a function of brain area and drugs administered, 25 min apart, in Exp. 2: saline-saline (n = 4), cocaine (800 µg/kg)-saline (n = 6), cocaine (800 µg/kg)-cocaine (800 µg/kg) (n = 6), cocaine (800 µg/kg)-heroin 100 µg/kg (n = 6), and cocaine (800 µg/kg)-heroin 200 µg/kg (n = 7).
Fig. 4. Representative microscope images taken from the NAcc core. DAPI-stained cell nuclei (blue) co-express either only h1a (green), only arc (red), or both. The columns show green and red channels separately and then merged. Taken from Nacc core. Scale bars correspond to 0.1 mm. Arrows point to mRNA-positive nuclei.
Fig. 5. Representative microscope images taken from the NAcc shell. DAPI-stained cell nuclei (blue) co-express either only h1a (green), only arc (red), or both. The columns show green and red channels separately and then merged. Scale bars correspond to 0.1 mm. Arrows point to mRNA-positive nuclei.
Fig. 6. Representative microscope images taken from the DMS. DAPI-stained cell nuclei (blue) co-express either only *h1a* (green), only *arc* (red), or both. The columns show green and red channels separately and then merged. Scale bars correspond to 0.1 mm. Arrows point to mRNA-positive nuclei.
Fig. 7. Representative microscope images taken from the DLS. DAPI-stained cell nuclei (blue) co-express either only $h1a$ (green), only arc (red), or both. The columns show green and red channels separately and then merged. Scale bars correspond to 0.1 mm. Arrows point to mRNA-positive nuclei.