Reassess the law and ethics of heritable genome editing interventions: lessons for China and the world

Article (Published Version)

Bu, Qingxiu (2019) Reassess the law and ethics of heritable genome editing interventions: lessons for China and the world. Issues in Law & Medicine, 34 (2). pp. 115-144. ISSN 8756-8160

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/88971/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

http://sro.sussex.ac.uk
ABSTRACT: The current ethical and legal standards for human subjects research do not adequately address human gene editing technologies, because scientific advancements in this field have outpaced regulatory policy. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technique allows the rewriting of life's code, but is fraught with scientific and ethical quandaries. In particular, the genetic alteration of human embryos in vitro in China has caused worldwide repercussions. It is hard to predict the long-term effects of proposed edits, which raises an inquiry about whether it is appropriate for humans to purposely alter any aspect of their genetic future. Genome editing is moving too quickly for processes of critical reflection, such as law and regulation, to keep pace. The ethical, legal and social implications of the use of these technologies in humans remain uncertain.
The resultant tension within the existing framework calls into question the underlying values on which moral and legal norms repose. This article explores the implications for law, ethics, regulation and health policy. Balancing potential benefits against the risk of unintended harms will shape perspectives on whether and how to use these technologies. Responsible engagement with decision makers and stakeholders, among other things, will promote transparency, confer legitimacy, and improve policy making.

Introduction

The crossover between ethics and adequate governance in science seems particularly acute in the case of genome editing. The emerging technology has revolutionised genetics and marked a new generation in biomedical sciences. China has launched ground-breaking human clinical trials making use of the CRISPR gene editing tool. A Chinese scientist, Jiankui He, claimed to have used the technology to alter the DNA of two new babies in China. The practice exacerbates uncertainties that exist in applying governance systems and existing norms. The use of CRISPR puts pressure on the normative judgements enshrined in moral and legal codes. He’s claims highlight the immediate need to develop strong global consensus and legal frameworks on the ethical use of human genome editing. Given the unprecedented growth of technology and the current inadequacy of scientific governance, an inquiry arises as to whether societal values will be reflected in how genome editing is eventually applied in practice.

In response to this rapidly shifting global concern, this study proceeds in five parts to address challenges arising from questions about the ethical, legal and social implications (ELSIs) of genome editing. Part I looks at CRISPR's pros and cons and ascertains theoretically whether He's conduct represents a game changer or opens a Pandora’s Box. Part II explores ethical and social implications of using CRISPR, considers the theory of social licence underlying the relevant governance, and looks at the ethical and regulatory concerns that CRISPR has raised. This section also examines how ethical reflection and governance systems can engage effectively with the technology, and whether equitable access to technology is both warranted and available. Part III provides a critical analysis of the current legal framework on this topic in the Chinese context. China’s lax regulation and enforcement results inevitably in ethical arbitrage. A variety of contributing factors will be discussed as well. Part IV refers to international norms in respect to the global challenge. Notably, enforcement makes a significant difference apart from the need for reaching international consensus. Part V considers how the implementation of germline procedures will interact with current and future societal discourse, institutions,

and law. Some regulatory models are examined herein, which can address the ensuing scientific, socio-ethical and legal challenges. This section then moves to analyse the different levels and scope of regulation and the challenges of a global situation in which varying approaches to legislation express diverse ethical values. A model that might suit China’s situation will be explored.

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR): Pros and Cons

A lab in the Massachusetts Institute of Technology (MIT) has managed to genetically alter human embryos. A new tool of CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) acts like molecular scissors, enables targeted genomic editing and more precise and efficient genetic modifications. It is considered as “the hallmark of a bacterial defence system,” serving as the immune system in bacteria. As a commentator asserted, the revolutionary technology has vast potential for improving human life, as “the biggest biotech discovery of the century.” An international consensus says that it is ethical to improve gene editing, but that it should not be used to establish a pregnancy. It is essential to evaluate whether the anticipated benefits are reasonable with respect to the risk of adverse effects.

Pros and Cons

Genome editing holds conceptually transformative medical potential. There are implications arising from the scope and scale of the techniques. Rewriting genes is fraught with scientific and ethical quandaries. The safety of gene editing on human beings has not been confirmed, and the treatment cannot be withdrawn if adverse effects are identified. Its mistakes would be amplified by their extension to innumerable future generations. It is the magnification of genetic harm that distinguishes germline editing from other types of intervention. While CRISPR has shown significant promise for treating disease, little is known about its long-term risks. The most obvious safety concerns are called ‘off-target’ mutations, representing unintended changes to the ge-

5 Carl Zimmer, ‘Breakthrough DNA Editing Born of Bacteria’ Quanta Magazine (6 February 2015).

7 John Loike, ‘Don’t Ban the Use of CRISPR in Embryos’ TheScientist (29 November 2018).

9 Matthew Campbell, ‘China Shrinks from the Gattaca Age’ Bloomberg (5 December 2018).
Irresponsible practice might bring about unforeseen disastrous outcomes in the long run. Unwanted genetic conditions might be permanently removed, any unintended consequences from altering the germ-line will be passed on through. Adverse effects might even be multiplied by reverberation across generations, which could be irreversible.

Potential precise medication. Genome editing is an exciting technology to improve human health, given its nature in transformation. CRISPR can be used to treat genetic diseases and prevent extremely severe conditions being passed on to their descendants. Using it to selectively insert, delete or replace DNA is conducive to far greater precision. The ability to make precise changes to the genes of humans offers new ways to tackle global challenges in health. It is an attempt at an ultimate cure, since it treats disease at its very root. It might eliminate the root causes of hereditary human diseases, and even correct genetic errors or reduce the risk of disease. With the potential to permanently eradicate certain genetic disorders, some assert CRISPR could bring about an end to some of humanity’s worst diseases. Instead of temporarily fixing defective cells through the introduction of corrected or functional genes, CRISPR promises to correct the defect in the reproductive cells, producing progenies that are free of the defective gene. Furthermore, genetic modification could open up possibilities to carry out preventative procedures before the body has even begun to exhibit symptoms of a given disease. However, explicit scientific standards have not been established to quantify off-target genome alterations.

14 ‘Explainer: CRISPR Technology Brings Precise Genetic Editing-And Raises Ethical Questions’ Conversation (26 March 2015).
15 ‘Explainer: CRISPR Technology Brings Precise Genetic Editing-And Raises Ethical Questions’ Conversation (26 March 2015).
16 Karin Christiansen, ‘Genome Editing: Are We Opening a Back Door to Eugenics?’ ScienceNodic (14 November 2017).
Furthermore, a theoretical issue remains unaddressed in the ambit of consequentialism. An action to be selected should be the one that produces the best consequences, with all factors taken into account. A major concern arises from uncertain consequences that germline changes could have on future generations. As some commentators observed:

Philosophically or ethically justifiable applications for this technology, should any ever exist, are moot until it becomes possible to demonstrate safe outcomes and obtain reproducible data over multiple generations.

It always takes years for a new discovery to be tested regarding its harms and benefits. The risks and benefits of technological interventions of such a kind should not be resolved as abstract moral issues by philosophers. In this regard, CRISPR might one day be useful for permanently eliminating genetic traits in the human species, but not without enormous risks.

Safety. Safety is paramount among the arguments against modifying the human germ line, which concern has not been adequately addressed. It is unrealistic to preclude some off-target effects, neither possible to avoid inflicting more harm than good on future humans. Changes in one gene that has been “knocked out” and replaced with another could have unforeseen and harmful effects elsewhere in the genome. In this vein, the genome editing may cause more damage to DNA, and its editing process may disrupt healthy genes. Likewise, the prospect of enhancements for future generations may be viewed as problematic, because it could change the properties of healthy embryos. Adding genes instead of repairing them might interfere with the normal expression of other genes. It is necessary to demonstrate that the editing procedures will not lead to any significant increase in unintended variants. Governing the rapidly emerging technology through adequate assessment will reduce its associated risks. Higher safety

22 ‘Genome Editing: Are We Opening a Back Door to Eugenics?’ ScienceNordic (14 November 2017).
standards need to be applied to gene editing research.26 However, for safety to be assessed requires years if not decades of studying how genes play out in a lifespan.

Germline interventions make changes that are heritable.27 Accordingly, it has sparked serious debate about the ethical implications of the heritable changes to human genetic code. Affecting all cells in an organism, the method allows precise editing of genes for targeted traits, which can be passed down to future generations.28 It is going to deeply affect the future generations, and even affect the make-up of species of the human being. The issue is that the standard of scientific governance varies across jurisdictions. Heritable genome editing interventions should only be permitted provided that legitimate and effective mechanisms are in place to redress those effects.29 The technology is so new that the potential risks to human subjects cannot possibly justify the hypothetical benefits. Scientists do not fully understand the scope of the unintended damage CRISPR may do to DNA elsewhere in the genome or how deactivating C-C chemokine receptor type 5 (CCR 5) might leave people vulnerable to other diseases.30 Disproportionate risks of editing the germline may outweigh the potential benefits. The benefits are at best hypothetical whereas the risks are high, which is partly unknowable.31 It is essential to weigh up the potential benefits, risks and harms, and evaluate off-target events and other potential side effects.32 A recent Chinese scandal has escalated the concerns.

\textit{The China Case}

China was first out of the block testing CRISPR on humans.33 A Chinese researcher, Jiankui He, recently claimed that he had created the first genetically engineered human babies in November 2018.34 He’s conduct would potentially alter the genetic makeup

\begin{thebibliography}{99}
\bibitem{27} Ainsley Newson and Anthony Wrigley, ‘Being Human: The Ethics, Law, and Scientific Progress of Genome Editing’ (2016) 87 (1) The Australian Quarterly 3, 8.
\bibitem{28} Mary Todd Bergman, ‘Perspectives on Gene Editing’ The Harvard Gazette (9 January 2019).
\end{thebibliography}
of the human race.35 He's development of the technique and the capability will result in that capability becoming widely available across borders. Germline mistakes made in China and inherited indefinitely will, in all probability, filter into the worldwide human genome affecting future generations. As such, it should be of concern to the whole world since people will be even more genetically interconnected in the future. Given a largely-unresolved dimension of science ethics, the use of CRISPR to modify human embryos has prompted a debate on the ethics of human genetic technologies.36

\textit{Responsible use of the CRISPR: More inquiries than answers.} Responsible research will actualise CRISPR's potential to cure those most devastating genetic diseases.37 However, a question of unethical use has been perceived from the outset of the technology. He flouted conventions of safety and research ethics.38 Due to the absence of thorough oversight, his act constitutes a departure from a variety of ethical and legal norms that prevent use of this technology in human reproduction.39 Risks in the case have not been properly assessed. Many safety issues may have unintended irreversible effects that may not be known for years,40 and could even spark a dangerous immune reaction. He ignored the complex ethical problems related to creating and destroying human embryos. As Collins said:

\begin{quote}
the concept of altering the human germline in embryos for clinical purposes has been debated over many years from many different perspectives, and has been viewed almost universally as a line that should not be crossed.41
\end{quote}

Similarly, a statement by an International Summit42 convened by the Science and Medicine Academies of the United States, the United Kingdom and China provides that:

\begin{quote}
It would be irresponsible to proceed with any clinical use of germline editing unless and until
\end{quote}

36 Alice Park, ‘Experts Are Calling for a Ban on Gene Editing of Human Embryos. Here’s Why They’re Worried’ \textit{Time} (13 March 2019).
37 John Loike, ‘Opinion: Don’t Ban the Use of CRISPR in Embryos’ \textit{The Scientist} (29 November 2018)
39 Jeanne Snelling and Mike King Jeanne Snelling and Mike King, ‘Rogue Scientist: The Human CRISPR Experiment’ (Blog: \textit{Journal of Medical Ethics}, 29 November 2018).
40 Preetika Rana, Amy Dockser Marcus and Wenxin Fan, ‘China, Unhampered by Rules, Races Ahead in Gene-Editing Trials’ \textit{The Wall Street Journal} (21 January 2018).
(i) the relevant safety and efficacy issues have been resolved, based on appropriate understanding and balancing of risks, potential benefits, and alternatives; and

(ii) there is broad societal consensus about the appropriateness of the proposed application. Moreover, any clinical use should proceed only under appropriate regulatory oversight.43

The above approaches demonstrate that there is a considerable need to address the social and ethical implications of inherited genetic modifications. To establish safety and ethical consensus is the first imperative. It is sensible to demand strong evidence of safety and reasonable risk/benefit ratios before new technologies are made available clinically.44 He’s case heightened the global awareness about the uncertain risks and the need to regulate powerful new human biotechnologies. Of the utmost importance is to make responsible use of human germline modifications, in order to treat or cure human diseases.

A Game Changer vis-à-vis A Pandora’s Box. The concern is mainly focused upon the core of the ethical prohibition on modification of the human germline. The safety and efficacy have not been demonstrated sufficiently through research in human embryos.45 Regalado observed that:

The genetic editing of a speck-size human embryo carries significant risks, including the risks of introducing unwanted mutations or yielding a baby whose body is composed of some edited and some unedited cells.46

Once it becomes scientifically safe to proceed with human gene editing, the legitimate ethical concern is likely to be outweighed by the ethical imperative to avoid disease.47 Given grave concerns regarding the ethical and safety implications, the clinical application in human embryos could have unpredictable effects on future generations, which is dangerous and ethically unacceptable. Problematically, there is no adequate pre-clinical data to justify a first-in-humans trial.48 The Chinese case raises questions

44 ‘Why Treat Gene Editing Differently in Two Types of Human Cells?’ _The Conversation_ (7 December 2015).
46 Antonio Regalado, ‘Chinese scientists are creating CRISPR babies’ _MIT Technology Review_ (25 November 2018).
about humanity, human identity, integrity and dignity. A new boundary in unethical behaviour has been crossed. The risks extend not only to the health and safety of the children, but also to the integrity of the social relationships. As discussed above, the potential harms may outweigh the benefits of altering the genome of an embryo. Germline editing changes reproductive cells, meaning that any alterations will remain in the gene pool and be passed to each subsequent generation. The changes are riskier because early mistakes could have lasting consequences on future generations, altering the inheritance permanently. It is implied that ethics are clearly not keeping pace with the development of the gene editing technologies in China. There is potential for marginalisation of persons, and the ways in which social inequalities could be reinforced by limited access to them. The Chinese trial practice should not proceed until a more equitable approach to setting the terms of debate is achieved. They should come up with guidelines at the international level, and avoid any possible large-scale negative implications for future generations. It is worth exploring how to address the issue from moral and ethical perspectives.

Moral and Ethical Responses to Genome Editing

The process of human germline modification has been the subject of ethical debates long before the technology existed. There has been little research of the critical ethical issues involved with the unknown risks in resulting future generations. An ethical approach to risk calls for revaluations of the possible consequences. In addition, societal-level concerns are particularly acute with respect to genome-editing interventions aimed at enhancing human capabilities. Wider issues of social justice remain unaddressed in terms of the equity in distributing its benefits. It is vital to give special consideration to possible negative effects that could cause discrimination, injustice or disadvantage in society.

Social Licence Theory

Any innovation has an implicit responsibility towards society.\(^{57}\) The Universal Ethical Code for Scientists recognises the responsibility corresponding to the ‘social licence to practise’ as one of its three cardinal principles.\(^{58}\) There is theoretic hazard in genome editing though. The concept of inherent dignity proposes to supply an objective ground for making distinctions between acceptable and unacceptable uses of technology.\(^{59}\) The use of these technologies must be regulated through ethical oversight. As a leading ethics watchdog,\(^{60}\) the Nuffield Council on Bioethics reiterates the value from a perspective of human rights as well. The effect of asserting human rights is essentially to mark out and defend limits of tolerable behaviour.\(^{61}\) People whose genomes have been edited should be entitled to the full enjoyment of human rights.\(^{62}\) In this sense, the processes of ethical oversight should ideally reflect society’s shared values and norms, not merely as they pertain to informed consent, but as they pertain to our sensibilities about the right ways to care for next generations.\(^{63}\)

Equitable Concerns: Exacerbating Social Inequities and Injustice

Benefits from CRISPR innovation raise concerns and controversies about fairness and distributive justice across all layers of society.\(^{64}\) Such interventions could be used not just for treatment, but also for enhancement, of which the latter is accessible only

\(^{60}\) ‘Ethics Backing for Tailored Drugs’ BBC (23 September 2003); The Nuffield Council on Bioethics was established in 1991, and funded jointly by the Nuffield Foundation, the Medical Research Council (MRC) and The Wellcome Trust. It examines and reports on the ethical questions raised by advances in biological and medical research.

to a few rather than to everyone.65 The ability to modify people’s genes could lead to disparities between genetic haves and have-nots66 and further result in systematic disadvantage. This could make the CRISPR product available to only the world’s elites,67 which, in substance, not only exacerbates existing social inequalities, but also creates new ones. There is an impact on social, intergenerational or even global justice, that is, fair distribution of advantages or opportunities among different groups in a society.68 It remains uncertain how to ensure that the most vulnerable or marginalised sections of the population are not to be disadvantaged.

Aside from using gene-editing to tackle medical issues, He’s research raises the spectre of gene-editing enhancements. An enhancement would be a modification to a normative non-disease trait to make an improvement to it.69 The distinction between treatment and enhancements and between normal functioning and disease remains vague.70 The lines between what are considered prevention and enhancement are not easily discernible in some cases.71 There is no clear line between disease treatment and enhancement.72 There is no ethical consensus as to how to define the blurry boundaries, particularly, in the case of nontherapeutic enhancement.73 Permitting the practice could result in the creation of super humans who have an unfair genetic advantage over those unenhanced ones. Savulescu defends by referring to the principle of Procreative Beneficence, arguing that there are significant moral reasons to select the finest child.74 Nevertheless, there is a range of moral arguments against selective technologies.75 The pursuit of the ‘perfection’ of human traits cannot be ethically justified, either. The ben-

66 George Church and Marcy Darnovsky, ‘Should Heritable Gene Editing Be Used on Humans?’ \textit{The Wall Street Journal} (10 April 2016).

72 Mary Todd Bergman, ‘Perspectives on Gene Editing’ \textit{The Harvard Gazette} (9 January 2019).

73 Saskia Nagel, ‘Enhancement for Well-being is Still Ethically Challenging’ (2014) 8 \textit{Frontiers in Systems Neuroscience} 72.

74 Julian Savulescu, ‘Procreative Beneficence: Why We Should Select the Best Children’ (2001) 15 (5) \textit{Bioethics} 413, 426.

75 Julian Savulescu and Guy Kahane, ‘The Moral Obligation to Create Children with the Best Chance of the Best Life’ (2009) 23 (5) \textit{Bioethics} 274, 290.
efits and harms of genome editing are not necessarily distributed equitably between all people.76 A variety of underlying factors, such as wealth may disproportionately affect certain group of people. It raises questions of social virtues, equity and justice, given that it would benefit the rich far more than the poor.77 Inevitably, commercialisation may extend many potential inequalities if patents through genome editing techniques take hold.78 As such, this technology could not be accessible to the vulnerable, which would increase existing undesired disparities. It could lead to new lines of discrimination between the genetically “perfected” and those left behind.79 This is against public policy that is justified to forestall negative personal and social consequences, such as exacerbating existing inequalities.80

It is essential to ensure that the interests of those potentially marginalised receive adequate protection in accordance with principles of social justice. At the current stage, it is more appropriate to use CRISPR to change a disease-causing genetic in the reasonable short term. Otherwise, efforts will lack legitimacy.81 The impact of social and health inequality needs to be considered to prevent uses which reinforce prejudice and worsen inequalities within societies.82 In certain circumstances, the ethical considerations need be settled by legal and regulatory authorities.

The Lax Regulation and Enforcement in China

There is a “regulatory asymmetry” between the West and China, of which the latter has inadequate regulation and serious oversight. Under the existing framework, China’s regulations governing research ethics are not as stringent as they are in other parts of the world. In principle, clinical trials of somatic gene modifications are legally permissible within the terms and conditions set out in regulations.83 The lax ethical environment has

\begin{thebibliography}{9}
\bibitem{77} Noah Smith, ‘Gene Editing Needs to Be Available to Everyone’ Bloomberg (25 January 2018).
\bibitem{78} Ainsley Newson and Anthony Wrigley, ‘Being Human: The Ethics, Law, and Scientific Progress of Genome Editing’ (2016) 87 (1) The Australian Quarterly 3, 8.
\end{thebibliography}
led many to consider China the “Wild East” in biomedical research. It is important to heed the warnings of the scientific community to develop legal and ethical parameters before the technology is developed. At such, China is supposed to regulate CRISPR in a manner that accounts for both the safety concerns and the ethical dilemmas.

Legal and Regulatory Frameworks

While gene editing technologies have been developed, the laws related to their use are outdated. There is a legitimate concern in terms of He’s clinical trial. In China, there are no clear laws but guidelines in place to prevent these actions. Regulations clearly stipulate that gene manipulation on the human gamete, zygote and embryo for the purpose of reproduction is banned in China. It is the weak enforcement that complicates the implementation of the regulations.

Regulatory Guidelines

The *Technical Norms of Human Assisted Reproductive Technologies* provides that “gene manipulation on human gametes and embryos is banned for the purpose of reproduction.” In 2003, China’s Ministry of Science and Technology (MoST) together with the Ministry of Health (MoH) issued the *Ethical Guidelines for Human Embryonic Stem Cell Research*. Similar to the UK’s Human Fertilisation and Embryology Act (HFEA 1990), it prohibits the conduct of research on embryos after a period of 14 days beginning with the day on which the process of creating the embryo began. The *Guideline* to in-vitro clinics bars clinical experiments which violate ethical or moral principles. In 2007, the MoH promulgated *Measures for the Ethical Review of Biomedical Research Involving the Human Body* (for Trial Implementation). The National Commission of Health and Family Planning (NCHFP) issued the *Ethical Review of Biomedical Research Involving Humans*. Notably, beneficence is to be addressed to promote patients’ welfare and consider the risk/benefit balance. It highlights that the risk should be controllable, and the patient’s benefits should be prioritised compared with the scientific research.

84 Yangyang Cheng, ‘China Will Always Be Bad at Bioethics’ *Foreign Policy* (13 April 2018).
90 *Measures for the Ethical Review of Biomedical Research Involving Humans* came into effect on 1 December 2016.
91 *Measures for the Ethical Review of Biomedical Research Involving Humans* 2016 Article 18.2.
Recently, the NCHFP issued the *Measures for the Administration of the Clinical Application of Medical Technologies* (2018).92 Medical technologies shall be prohibited from being applied clinically, if they have major ethical concerns.93

One of the regulatory issues is informed consent arising from the uncertain consequences that germline changes could have on future generations.94 Signed informed consent is considered a standard requirement ensuring that patients are fully informed of the benefits and adverse effects.95 The consent conditions are more complex, given the consent of the parents is not sufficient to exhaust the putative moral duty towards the future person.96 Any genetic manipulation of an embryo has to proceed with the understanding that the person who is affected cannot consent to the initiative.97 It is arguable that gene editing is unethical as the future generations that will inherit the altered DNA did not consent to the procedure nor its potential adverse effects.98 At present, the heritable gene editing may not involve fully-developed notions of informed consent. There may be little involvement of ethics review boards compared to practices within developed countries.99

Concerns Still Remain Unaddressed

Even though the Ministry of Health (MoH) has issued ethical rules, the legal responsibility is unclear and the penalties are lenient. While MoH’s *Guidelines* provides that ethical reviews are based upon the principles of ethics accepted by the international community, the implementation of China’s legal and regulatory system has proved ineffective in practice.100 The Chinese *Guidance* is ambiguous, although it prohibits clinical research that breaches ethical or moral principles. It lacks enforcement mechanisms and

92 *Measures for the Administration of the Clinical Application of Medical Technologies* came into effect on 11 November 2018.

94 Jon Heggie, ‘Should We Edit the Human Germline?’ *National Geographic* (17 December 2018).

97 John Mulvihill, Benjamin Capps, et al., ‘Ethical Issues of CRISPR Technology and Gene Editing through the Lens of Solidarity’ (2017) 122 (1) *British Medical Bulletin* 17, 29.

provides few instructions for investigators.\(^{101}\) Apparently, He’s work flouted the 2003 Regulations governing in vitro fertilisation, which bans the use of gene-manipulated embryos for reproduction. The approaches are silent on gene editing in adult humans where changes will not affect future generations.\(^{102}\) As a result, the ethics review process is often reduced to a formality, which is always considered as “a rubber stamp.” Furthermore, Nulla poena sine lege is a fundamental principle of criminal law, which is closely related to a basic understanding of criminal justice in China.\(^{103}\) Only the law can define a crime and prescribe a penalty. Accordingly, the offences and corresponding penalties should be clearly defined by law, that is, no punishment without law. There is no legal regime to prohibit the implantation into a human a genetically modified egg or sperm or human embryo. There might be some international regulations, being soft law in nature, which is not legally-binding in terms of enforcement. Given China does not recognise judge-made law, the nulla poena sine lege as principle is adopted in China’s judicial practice. There is no law in China that covers gene editing on human embryos, and none of the Chinese laws detail the consequences of violating them. Despite the above Guidelines, there are no adequate laws to be applicable in He’s case. Unsurprisingly, the NCHFP reported that He’s conduct had been in serious violation of relevant national regulations and creates a pernicious influence at home and abroad.\(^{104}\) China seems to rely primarily upon regulation, that is, the detailed administrative rules adopted pursuant to legislative direction and authority, which appears to be more responsive.\(^{105}\) However, technology develops faster than regulatory codes and legal instruments, which renders it difficult to keep up with the ethical and social implications. Although the above-mentioned regulations allude to ethical review committees and respect for human dignity, they do not refer to modification of the human germline or provide for coercive enforceability, active monitoring or sanctions. In this regard, it is hardly justified if He were to be prosecuted for criminal liability.

Contributing Variables to Inadequate Governance

China does not have efficient review and approval procedures in place. Its relatively lax legal frameworks could be exploited by rogue researchers. There are many deeply-rooted factors that contribute to the inadequate governance and control. Among

101 Yangyang Cheng, ‘China Will Always Be Bad at Bioethics’ *Foreign Policy* (13 April 2018).
other things, the lack of transparency and public engagement contribute to the inefficient governance of China’s development in gene editing.106

Transparency and Public Engagement

The changes brought about by gene-editing should not increase “disadvantage, discrimination or division in society” and such changes should not harm the welfare of the future person.107 It is essential to facilitate public engagement before any field testing.108 The ethical issues should be subject to a broad and inclusive societal debate on the framing, evaluation and prioritisation of societal challenges.109 Anyone subject to the jurisdiction has a legitimate interest in the debate, through which it can bring shared and competing values to the surface.110 Unlike the West where public debate tends to be more coherently orientated towards regulatory or parliamentary activities among a variety of stakeholders, there is little public engagement in China.111 On 26 February 2019, National Commission of Health and Family Planning (NCHFP) sought for public opinions about Regulations on Biomedical Experiments,112 which represents a meaningful beginning for public engagement in this controversial issue. Furthermore, the lax regulatory environment stems in part from lack of adequate awareness. More significantly, a top-down approach is well-proved efficient strategy to address the challenge. It is advised that China commit to transparency and public engagement in this scenario, which is indispensable for raising public awareness and fostering a coherent environment therein. It is viable to address a gap for policymakers in China who need to be well-informed about the ethical concerns and potential hazards of this technology.

112 NCHFP, *Regulations on Gene Editing and Other Potentially Risky Biomedical Technologies* (26 February 2019).
Plausible Perception

There are substantial implications over the potential competition in this cutting-edge area. He’s clinical trial is partly driven by international technological competition as well as China’s nationally-prioritised strategy. The trials align with China’s industrial policy. As part of its drive to place China on the global stage in a multitude of industries, China highlighted gene editing in a 2016 Five-Year-Plan. Such a systematic breach stems from a common perception that enforcement of stringent regulatory norms compromises research innovation. There is a regulatory asymmetry between the West and China, and the resulting legal playing field is uneven, ranging from essentially unrestricted to a complete ban. Another factor normally neglected is that economic costs have not been well weighed against the medical and social costs incurred by CRISPR’s mistakes. Even so, competitive advantage may come into being due to the uneven playing field in regulating genome editing. The economic advantages of genome editing may readily lead to a rapid expansion of application of the technique. China could beat its counterparts to apply CRISPR pioneered in the West. There would be substantial economic implications of health economics arising from heritable genome editing interventions for health services. Unsurprisingly, some Chinese scientists pursue a “calculative balance of observing and subverting institutional constraints” to circumvent those toothless regulatory initiatives. Thus, laws and regulations may not provide substantial deterrence in the control and monitoring of research. This may also undermine efforts to control immoral research based on the CRISPR technology. The research is sometimes faced with a catch-22 scenario where advancement is not likely without facing enormous moral and ethical challenges. In response, the West will have to commit to developing a regulatory regime that is flexible enough to allow

118 Oviedo Convention Article 15.

120 Hannah Brown, ‘Human Embryo CRISPR Advances Science but Let’s Focus on Ethics, Not World Firsts’ The Conversation (1 August 2017).
them to build competitiveness, while strict enough to prevent unintended societal and ethical consequences.121

Institutional Void in Oversight

The Chinese governance framework includes administrative measures, ethical guidelines, principles and technical norms and standards. Oversight is specified at three levels in China, that is, by laws, regulations and ministerial guidelines. The ministerial guidelines are most closely related to the issue under discussion, although they are enforceable only if mentioned in a law, regulation or administrative measure.122 The relevant governance is centralised under the National Commission of Health and Family Planning (NCHFP), which is responsible for laws, regulations and policies related to the gene ethics. China does not have adequate abilities to regulate CRISPR. The breach may even be considered as an unsuccessful product of China’s regulatory and legal landscape. It is the lax regulatory environment that may have contributed to He’s gene-editing experiments.123 The dispersal of the regulatory oversight of gene editing lacks integration among a large number of government agencies.124 Inevitably, the regulatory frameworks do not function properly at a lower level, such as the implementation by provincial departments. Furthermore, genome editing should be licensed for clinical use only once risks of adverse outcomes have been assessed by a national authority.125 However, the ethical governance has long been the Achilles’ heel of China’s scientific endeavour.126 In He’s clinical trial, the research even does not need national regulators’ approval. As Larson observed:

He took advantage of the loosely worded and irregularly enforced regulations and generous funding available today in China, in some cases skirting even local protocols and possibly laws.127

123 Rob Schmitz, ‘Gene-Editing Scientist’s ‘Actions Are A Product Of Modern China’ NPR (5 February 2019).
China’s inability to adhere to international ethical norms in the knowledge system ends up harming itself.\(^{128}\)

Ethical Arbitrage

Laws in China around this kind of research are more lax than in the West. There is a substantial gap between the practice in China and that under an international standard. Similar to the forum shopping, this unlevelled playing field makes it possible for ethically controversial practices to migrate to more accommodating regulatory environments, which is abused by some opportunists.\(^{129}\) They may take advantage of China’s toothless regulations and their ambiguity to undertake those heavily-restricted clinical trials in their home countries.\(^{130}\) As practices move between jurisdictions across ethical thresholds, one likely consequence is a form of ‘ethical arbitrage’ that may have the effect of eroding these differences.\(^{131}\) The ethical gap is likely to be exploited due to a technological advantage. It would be possible if a technologically-advantaged party could cooperate with a Chinese researcher for the gene editing trial of such a kind. A Western scientist could even gain financial support in China when he cannot secure grants or approval for this most controversial project.\(^{132}\) Therefore, some factors must be taken into account while forging an established framework for healthcare ethics of heritable gene editing, such as autonomy, nonmaleficence and beneficence.\(^{133}\) A benefit/harm balance needs to be maintained proportionate given all the gene editing involves some kind of harm inevitably. A scientist must avoid doing harm and endeavour to reduce risk reasonably. Patients’ welfare should be promoted with the risk-benefit ratio considered properly.\(^{134}\)

International Norms in Response to the Challenges

There is no international treaty that directly regulates the human genome or the possibilities for its modification. Given gene editing is not contained by borders, an

ethical debate is vital to the future viability of gene editing, particularly in an interna-
tional regulatory environment struggling to keep up. Effective regulatory oversight
mechanisms have sufficient legal authority and enforcement capability. It remains a
challenge to identify what principles or frameworks can provide effective oversight for
gene editing, and further to assess the prospect of international harmonisation of pol-
cies. China may learn from those best practices to govern the controversial research.
It is worth looking at the existing system of regulatory oversight and ethical norms
around the world.

Soft Law Without Teeth

The introduction of intergenerational genome editing needs to consider a much
broader range of norms and consequences. Global agreements are required as to exactly
how gene editing is to be managed, so as to avoid the putatively undesirable moral and
social consequences. Currently, there is a considerable need for international com-
community to work out a framework with viable spill-over effect on enhancing the national
legal and regulatory approaches. It is reasonable for the global community to consider
instantiating national and supranational regulations for the sake of future enforcement.

International Initiatives

There are a variety of universally accepted international documents including the
Nuremberg Code, Helsinki Declaration, and CIOMS/WHO International Ethical
Guidelines. The International Ethical Guidelines for Health-related Research Involving
Humans reiterates that scientific value and respect for the rights of participants underpins
the ethical conduct of research.

Article/NewDetail.aspx?ArticleUid=fc0bd200-63e1-472f-a6b9-c86440859b83>.

136 National Academies of Sciences, Engineering, and Medicine, *Human Genome Editing: Science, Eth-

137 Nuffield Council on Bioethics, ‘Genome Editing: An Ethical Review Section 3-Moral Perspectives’
tives.pdf> 27.

138 Carolyn Brokowski and Mazhar Adli, ‘CRISPR Ethics: Moral Considerations for Applications of a

139 The Nuremberg Code is a set of research ethics principles for human experimentation created as
a result of the Nuremberg trials in 1947.

140 The Declaration of Helsinki (DoH) is the World Medical Association’s (WMA) best-known policy
statement. The first version was adopted in 1964 and most recently at the General Assembly in October
2013.

141 Council for International Organizations of Medical Sciences (CIOMS) and World Health Organi-
zation (WHO), ‘International Ethical Guidelines for Health-related Research Involving Humans’ (Geneva,

(Geneva, Council for International Organizations of Medical Sciences (CIOMS), 2016) <https://cioms.ch/
CR) provides that: “Until further clarity emerges on both scientific and ethical fronts, the ISSCR holds that any attempt to modify the nuclear genome of human embryos for the purpose of human reproduction is premature and should be prohibited at this time.”

These international guidelines play an active role in ethical debate and establishment of international norms. As discussed above, the Oviedo Convention focuses on the integrity of the inheritance of genetic endowment, whereas the United Nations Educational Scientific and Cultural Organization (UNESCO) focuses on the integrity of the ‘human genome’. The latter imposes an international ban on any gene-editing research in human embryos. The Universal Declaration on the Human Genome and Human Rights (UDHGHR) refers to the principles of dignity, diversity and equality, and supports the concept of the human genome as a symbol of humanity’s heritage. UDHGHR mandates that practices contrary to human dignity should be forbidden. It suggests that practices like germ line interventions could be contrary to human dignity and should not be permitted. It is also worthy to put risk assessment and management into place adequately. Important mechanisms for securing that the freedom of scientific research does not violate the rights of others include requirements for favourable risk or impact assessments, linked to the requirement for due diligence. A principle of intergenerational equity is well elaborated in international law, which calls on states to take into account the rights of future generations when undertaking activities that may affect them. For instance, the Declaration on the Responsibilities of the Present Generations towards Future Generations contains a reference to the protection of the human genome linked with the preservation of the human species.

147 The Universal Declaration on the Human Genome and Human Rights Article 11.

148 The Universal Declaration on Bioethics and Human Rights Article 20.

150 UNESCO Declaration on the Responsibilities of the Present towards Future Generations 1997 Art. 1: “[t]he present generations have the responsibility of ensuring that the needs and interests of present
requires that states should take into account the need to preserve the human species in its diversity for future generations. International consensus is needed to reflect and affect the ‘moral fabric of society’ that should partly be reflected in norms of law and governance.151

Lack of International Standard

Heritability of germline changes is a novel form of risk not adequately accounted for in current regulatory frameworks.152 Currently, it is the jurisdiction of individual countries that decides what to allow when it comes to gene editing. Given the lack of an internationally agreed-upon regulatory framework, there is a need for regulations on a cross-border level. The Chinese case has prompted calls for international regulation of CRISPR research, which can serve to orientate moral action.153 As Nuffield Council on Bioethics observed, what counts as normal is therefore a legitimate question but often one that is highly contested with regard to the extent to which norms are related to medical intervention and enhancement.154 The international community should strive to establish norms concerning acceptable uses of human germline editing and to harmonise regulations, in order to discourage unacceptable activities while advancing human health and welfare.155 As such, a shared global standard for this purpose should be put in place as soon as possible.

International Framework vis-à-vis National Enforcement

It is significant to develop principles for editing reproductive cells, because the ethical and social issues posed by human genome editing transcend national boundaries.156 In principle, the use of CRISPR should live up to the existing norms and standards for normal functioning in a scientifically enlightened society.157 There are neither actual international rules covering specifically gene editing, nor international regulatory agencies

152 Owen Schaefer, ‘Why Treat Gene Editing Differently in Two Types of Human Cells?’ SciTech Connect (18 December 2015).

with the capacity to enforce legal and ethical use of genetic technologies. Although the legislative and regulatory frameworks have great normative value, no country has yet adopted CRISPR-specific regulations.

Forum Shopping in Scenarios of Medical Tourism: The Regulatory Heaven

A regulatory haven could emerge that would tempt providers or consumers to travel to jurisdictions with more lenient or non-existent regulations to access the restricted procedures. The phenomenon of medical tourism has thus come into being, which encompasses the search for faster and cheaper therapeutic options, as well as newer or less regulated interventions. Given this legal and regulatory asymmetry, it will be unlikely to control efficiently if the technical capabilities exist in more permissive jurisdictions. It is not viable to seek to address a transnational problem with national legislation, but it would be meaningful to reach international consensus on the use of this technology. Harmonisation across national borders is crucial to seek a prudent path forward for genomic engineering and germline gene modification. An optimum global governance purports to offer a procedurally legitimate solution to controversial inquiries in morally plural societies. This highlights significance of more proactive engagement with other countries and international institutions in the development of international norms. International dialogue along with governance should be promoted with particular regard to heritable genome editing research and innovation.

At Stake is Enforcement

Global efforts should be aimed at developing and integrating legal strategies for the prevention and penalisation of unacceptable research.\(^{167}\) It makes sense that an international platform can call for consensus regarding how to regulate the use of CRISPR. A purely regulatory approach will not suffice. The lack of functional enforcement system at international levels will inevitably slide into an institutional void. Such a regulatory framework relies largely upon whether the most effective enforcement will occur at a national or regional level ultimately. Otherwise, an international ban would only play a symbolic role, whereas a national one can regulate it through its direct control and levers.\(^{168}\) To a greater extent, it is up to national regulatory agencies to set up appropriate frameworks to govern the use of CRISPR. However, many countries lack the resources to enforce those well-established international regulations.\(^{169}\) Thus, the crucial question is not what rules were broken, but whose judgments about what is right and appropriate should rule the future.\(^{170}\) He’s case underscores the importance of Guidelines, rather than reactive prohibitions.\(^{171}\) A systematic overview of the embryo research performed on each national territory should be put in place, at least, at the current stage. During the implementation of the governance tools, ethical and regulatory considerations should distinguish clearly between clinical and research applications, and appreciate the particular set of ethical challenges surrounding research involving human embryos.\(^{172}\)

Legal and Regulatory Frameworks: A Comparative Perspective

Gene editing technology is moving ahead of society’s ability to assimilate its implications to normative frameworks.\(^{173}\) The legal and regulatory response to advances in CRISPR continues apace, with different jurisdictions having different levels of flexibility to accommodate the latest development.\(^{174}\) There are enormous implications over the potential competition in this scenario. It is imperative that China learn from best practices of other countries in both statutory and institutional approaches.

\(^{171}\) Bob Grant, ‘Genome Editing on Board’ TheScientist (1 January 2019).

\(^{172}\) Gholson Lyon and Jeremy Segal, ‘Practical, Ethical and Regulatory Considerations for the Evolving Medical and Research Genomics Landscape’ (2013) 2 (1) Applied & Translational Genomics 34, 40.

\(^{174}\) Tom Bangay, ‘Gene editing: Can the law keep up?’ IBA Global Insight (22 March 2017).
Criminal Offences

Germline human genome editing is a criminal offence in some countries which have specific statutes to robustly regulate the conduct. Australia has one of the strictest regulatory environments for gene editing research in the world.\(^{175}\) The Prohibition of Human Cloning Act (PHCA 2002) makes it illegal to alter the genomes of embryonic cells. The law permits certain types of embryo research subject to licence. Under the Regulation of Human Embryo Research Amendment Act 2006 (RHERAA, 2006) and PHCA 2002, germline modification is punishable by imprisonment for up to 15 years.\(^{176}\) Similarly, research and clinical trials on gene editing are illegal in Canada. The conduct is forbidden even if germ cells will not actually be used to create a new life. The Assisted Human Reproduction Act (AHRA 2004) forbids a wide range of research and in vitro and in vivo germ line alterations,\(^{177}\) including the creation of embryos\(^{178}\) or chimeras.\(^{179}\) It is a criminal offense for using gene-editing tools on cells that could lead to heritable genetic change in humans.\(^{180}\) The AHRA 2004 states that: “No person shall knowingly […] alter the genome of a cell of a human being or in vitro embryo such that the alteration is capable of being transmitted to descendants.”\(^{181}\)

Penalties by law may lead to heavy fines and potentially incarceration, which plays a more deterrent role.\(^{182}\) For instance, sanctions range from a fine up to $500,000 to imprisonment up to 10 years.\(^{183}\) The severe penalties chill the research environment, which inevitably compromise the countries’ global competitiveness in the arena of gene editing, let alone its potential commercialisation.

United States: Framework and Institutions

The United State has rather a cautious approach when it comes to the use of biotechnology in the context of human clinical trials.\(^{184}\) It does not have specific laws directly forbidding germline editing, but the country does have a robust regulatory machinery.

\(^{175}\) Christopher Gyngell and Julian Savulescu, ‘UK Gene Editing Breakthrough Could Land an Aussie in Jail for 15 Years: Here’s Why Our Laws Need to Catch up’ The Conversation (25 September 2017).

\(^{176}\) PHCA 2002 Article 15.

\(^{177}\) AHRA 2004 s. 5(1) (f)).

\(^{178}\) AHRA 2004 s. 5(1) (b).

\(^{179}\) AHRA 2004 s. 5(1) (i).

\(^{181}\) AHRA 2004 s.5(1) (f).

\(^{183}\) AHRA 2004 s.60.

A complicated regulatory scheme makes it difficult to perform germline modification.185 The Food and Drug Administration (FDA) and the Recombinant DNA Advisory Committee (RAC) at the National Institute of Health (NIH) are two main authorities that regulate gene transfer technology. The FDA has regulatory jurisdiction to deal with the controversial issue.186 First, the FDA regulations concerning the editing of somatic cells are implemented by the Recombinant DNA Advisory Committee (RAC).187 The NIH forbids federal funding of human germline editing, while the RAC only regulates organisations that receive NIH funding.188 Second, there are funding restrictions on embryo research that might have a strong effect on the underlying basic science.189 Under the FDA's comprehensive regulation and multiple laws, genome editing for embryos is not allowed for clinical use.190 The FDA does not accept applications for research in which human embryos are made to have heritable DNA changes. A Congressional Budget Bill 2015 stated: “None of the funds made available by this Act may be used...in research in which a human embryo is intentionally created or modified to include a heritable genetic modification.”191

Furthermore, the Consolidated Appropriations Act of 2016 prohibits federal funding for such kind of research.192 The National Academies of Sciences, Engineering, and Medicine (NASEM) set down a position on heritable genome editing, filling out the spectrum of positions seeking a pathway to eventual translation into the clinic, which finally led to a consensus report in February 2017.193 As such, heritable genome editing is subject to a complex framework of laws and regulations at both state and federal levels. In addition, appropriate consideration of social concerns is also resolved within the context of civil rights jurisprudence and legal decisions.194 The strong regulatory

185 Alta Charo, ‘The Legal and Regulatory Context for Human Gene Editing’ (2016) 32 (3) Issues in Science and Technology 39, 44.

187 Alta Charo, ‘The Legal and Regulatory Context for Human Gene Editing’ (2016) 32 (3) Issues in Science and Technology 39, 44.

188 Sarah Ashley Barnett, ‘Regulating Human Germline Editing in Light of CRISPR’ (2017) 51 University of Richmond Law Review 553, 559.

190 Katherine Drabiak, ‘Untangling the Promises of Human Genome Editing’ (2018) 46 (4) The Journal of Law, Medicine & Ethics 991, 1009.

194 National Academies of Sciences, Engineering, and Medicine, Human Genome Editing: Science, Ethics, and Governance (Washington DC, National Academies Press, 2017) 119.
framework effectively prohibits modification to heritable code, although the US does not have a legal ban.

The EU’s Approaches

Gene editing methods can have off-target events with still unknown consequences, so the European Union (EU) has put in place stricter safety regulations. In 1997, thirty-five countries signed and ratified the Convention on Human Rights and Biomedicine (Oviedo Convention), to limit alterations to the human genome.\(^{195}\) It provides that predictive genetic tests should be used only for medical purposes. Ambiguously, there is no consensus about whether genome modification should be permitted for the avoidance of serious disease.\(^{196}\) The Oviedo Convention does call for a prohibition below on the use of genetic engineering of the germline or changing the makeup of later generations: “an intervention seeking to modify the human genome may only be undertaken for preventive, diagnostic or therapeutic purposes and only if its aim is not to introduce any modification in the genome of any descendants.”\(^{197}\)

The Convention does not take a stand on the acceptability of research on in vitro embryos.\(^{198}\) It appears that Article 13 prohibits heritable genome editing interventions. In practice, there is no prohibition, although there are limits on the use of genome editing involving human embryos for research purposes.\(^{199}\) More specifically, it does not allow interventions that lead to the birth of children with a modified genome. However, Article 18 (1) provides that if national law allows such research, it shall ensure adequate protection of the embryo. As such, the editing and transplantation procedure would be governed by national quality and safety legislation implementing the EU Tissues and Cells Directive, which also concerns the traceability of cells used for human application.\(^{200}\)

The EU Clinical Trials Regulation also provides: “No gene therapy clinical trials may be carried out which result in modifications to the subject’s germ line genetic identity.”\(^{201}\) In May 2016, the EU revised its Clinical Trials Regulation (EU No 536/2014) and

\(^{201}\) Regulation 536/2014/EU on Clinical Trials on Medicinal Products for Human Use.
maintained the view that gene therapy trials that result in alterations to an individual’s germline should continue to be prohibited. There is no room for the gene editing to be compatible in the clinical trials regime in a reproductive context. In this vein, genome editing might well fall within the definition of a ‘clinical study’. There should be no move to implement heritable genome editing interventions. In addition, the EU Biotechnology Directive states: “there is a consensus within the Community that interventions in the human germ line and the cloning of human beings offends against ordre public and morality.”

Apart from the above official positions, there are some civil campaigns for a more responsible use of this technology. A group of European scientists founded the Association for Responsible Research and Innovation in Genome Editing (ARRIGE) to examine and provide guidance about the ethical use of genome editing. In addition, the Hinxton Group published a consensus statement in September 2015 calling, among other things, for a roadmap for research to establish the safety of genome editing for use in humans.

The UK’s Permissive But Tightly-Controlled Safeguarding Regime

The UK is often at the forefront of ethical reflection internationally, which regime is regulated but permissive. UK law does not currently permit any editing of heritable DNA-genetic information contained in an embryo, egg or sperm. Any gene-editing that would affect the germline would be unlawful. It is illegal to use genome editing on human cells and embryos that are intended for fertility treatments to result in pregnancy. All reproductive applications of gene editing are banned under the UK’s regulatory regime. However, it is allowed for strictly controlled research purposes. The laws make a distinction between the research and reproductive applications of gene editing. This

Clinical Trials Regulation Article 2 §2 (1).

Sarah Chan, ‘Regulating Human Genome Editing: Negotiating Ethical Concerns Through Science and Policy’ in Krishnarao Appasani (ed.) Genome Editing and Engineering: From TALENs, ZFNs and CRISPRs
is a similar approach to Australian laws that distinguish between the use of cloning for reproductive purposes and cloning for research. It bans such modifications for reproductive purposes, but regulates research purposes via a licensing process overseen by the Human Fertilisation and Embryology Authority (HFEA 1990). Institutional, the UK has a regulatory system established by legislation. The governance and oversight of human embryo research lies in the hands of authorities that are legally regulated. The use of genome editing in human embryos for research has been approved by the HFEA 1990. In principle, it is only permitted in practice if licensed by the HFEA. Activities that cannot be licensed include using an embryo in treatment that is not a ‘permitted’ embryo as defined in the Act. Genome editing can be used in humans where the genetic change cannot be inherited, or in embryos that are used in research with no intention of implantation. Scientists are “only allowed to genetically edit human embryos for 14 days for research purposes, after which they must be destroyed, and it is illegal to implant them into a womb.” This enables clearly beneficial research to proceed while preventing controversial applications. These mandatory requirements are enshrined in the HFEA 1990, which, when combined with the HFEA Code of Practice, sets out a framework for new technologies that is both flexible and unambiguous.

In sum, the UK has adopted a more permissive approach to germline modifications. Unlike Australia and Canada’s stringent laws, the UK takes a more regulatory approach to gene editing research. The framework offers guidance for establishing similar norms to Molecular Surgery (Cambridge, Cambridge University Press, 2018) 453-464.

211 Ewen Callaway, ‘UK Scientists Gain Licence to Edit Genes in Human Embryos’ Nature (1 February 2016).
212 Françoise Baylis, ‘Genome Editing of Human Embryos Broadens Ethics Discussions’ The Conversation (1 October 2017).
215 Human Fertilisation and Embryology Act (HFEA 1990) s3 (2).
216 Sarion Bowers, ‘Genome Editing in Humans’ (Wellcome Sanger Institute) <https://www.sanger.ac.uk/about/who-we-are/influencing-policy/genome-editing>.
217 Human Fertilisation and Embryology Act (HFEA 1990) s3.
and oversight mechanisms for genome editing of somatic cells.220 It takes a position that encourages prudence and transparency.221 The UK’s model provides an external structure and orientation. With regard to the Oviedo Convention 1997, the UK may have already gone beyond the prohibition in Article 13 by legalising and licensing mitochondrial donation.222 Notably, the UK has not signed the Oviedo Convention, which is the most relevant to heritable genome editing interventions. It is not a State Party to the Oviedo Convention and thus not bound by it. After all, it allows testing on embryos in the lab, but does not extend to allowing pregnancies to be induced via gene-editing.

\textbf{Which Model Suits China’s Situation?}

As discussed above, laws governing gene editing vary, with some countries banning it outright and others, including China, having no or less clear policies.223 Civil law may offer less flexibility than that in common law jurisdictions, which, may alternatively leave much work to be addressed through Guidelines and judicial interpretations.224 The gene editing has, de facto, been conducted as an open secret in China. A range of gene editing activities still goes on despite the existing governance frameworks. There is no clear law to regulate such attempts. In response to China’s case, legal and ethical checks on this erratic progression of science will be necessary now more than ever.225 To achieve adequate deterrence, a criminal liability scheme is indispensable, which is similar to those in the governance regimes of Australia and Canada. The imposition of criminal liability would not harm China’s competitive position in the world of biotechnology, but create a strong deterrent.226 He’s case also highlights the immediate need to develop strong international agreements on the ethical use of human genome editing, and the

\begin{itemize}
\item 225 Sireesh Ramesh, ‘Using CRISPR to Create Genetically Engineered ‘Superbabies’ Is An Ethical Nightmare’ The Daily Pennsylvanian (12 December 2018).
\item 226 Ana Nordberg, Timo Minssen, et al., ‘Cutting Edges and Weaving Threads in the Gene Editing () evolution: Reconciling scientific progress with Legal, Ethical, & Social Concerns’ (2018) 5 (1) \textit{Journal of Law and the Biosciences} 35, 83.
\end{itemize}
necessity of strong legal frameworks surrounding what modifications are permitted.227 At least, China should adopt and apply rigidly the 14-day rule, which draws a “legal and regulatory line in the sand” after which continued research on human embryos is forbidden.228 A new regulatory regime should be introduced to incorporate a licensing programme for human embryo research.229 Institutionally, China may take after the UK’s institutional innovation by creating a Chinese version of the HFEA, which works as an independent regulator of research involving human embryos and gametes.230

Conclusion

Genome editing has the potential to give rise to transformative technologies in the field of human reproduction. Ethical considerations with respect to the use of CRISPR arise predominantly. Heritable genome editing interventions may be inherited by future generations, which should be subject to strict regulation and oversight. There is a considerable need for more proactive rules governing such a transformative technology. Given the lack of an internationally agreed-upon regulatory framework, He’s case highlights the importance of instituting formal regulation of gene editing in China. Furthermore, a well-established system is highly demanded to define a global ethical code of conduct. It is similarly important to affirm and codify international principles for protecting human dignity. More significantly, regulatory oversight will need to include legal authority and enforcement capacity. It is essential to address the principles underlying governance, international governance perspectives and potential applications for germline editing. Notably, it is unrealistic to design a ‘one-size-to-fit-all’ mechanism though. In the direction toward global governance and shared responsibility, it would be prudent to allow heritable genome editing interventions to be initially licensed on a case-by-case basis, complemented with a criminal liability regime.

227 Alta Charo, ‘The Legal and Regulatory Context for Human Gene Editing’ (2016) 32 (3) Issues in Science and Technology 39, 44.

