Introduction

Heart rate is the most important indicator of the clinical status of a newborn. It should be assessed as quickly and accurately as possible, as infants needing resuscitation require continuous and real-time heart rate monitoring, aiming to lower the incidence of long-term consequences of poor adaptation after birth such as brain damage or death.

The objective of this research is to design a solution to bring high resolution, real-time ECG data to the delivery room using non-contact electric potential sensors (EPS). Rapid and accurate acquisition of the neonatal heart and breathing rates, as well as the facility for non-obtrusive, autonomous, and continual monitoring during intervention, can inform clinical intervention leading to better survival and quality of life.

Current methods

- **Pulse oximetry**
 - Takes 3 minutes to get heart rate reading
 - Signal amplitude required
 - Underestimates HR, may not return HR if not breathing

- **Ag-AgCl electrodes**
 - Takes 2 minutes to attach sensor
 - Requires interface gel/paste which can irritate or damage skin

- **Auscultation**
 - Requires the experience of the attending staff at birth
 - No data recording
 - Resuscitation must be interrupted to acquire HR

- **Handheld doppler**
 - Application requires trained member of staff
 - Requires interface gel/paste which can irritate or damage skin

Neo-Sense mattress

The Neo-Sense mattress is capable of rapidly extracting heart rate and respiration data from a newborn in real time, without the need for attaching external sensors and without impeding resuscitation procedures.

- **4 X embedded EPS sensors**
 - Modified neonatal intensive care unit mattress
 - Design based on a qualitative study
 - Heart rate & respiration acquired in less than 30s
 - Non-contact EPS sensors
 - High signal to noise ECG signals

Clinician display unit

- Detachable cable

Results

- **Signal Path:**
 - BIP
 - V
 - ABC

- **Interface:**
 - Software interface based on C++ code
 - Runs from Linux shell
 - Graphics rendered in OpenGL
 - Hardware & software filtering stages
 - High precision instrumentation amplifiers
 - 12 bit discrete ADC

Conclusions

The prototype Neo-Sense mattress uses novel non-contact electric potential sensors, which overcome many of the limitations of traditional heart rate monitoring methods.

The real-time data processing and acquisition unit demonstrates the capacity for embedded portable neo-natal ECG recording in the delivery room with effective noise filtering and bio-signal display.

Future Directions

Planned improvements and developments for the system include:

- Up-scaling to multiple sensors
- Textile electrodes and flexible electronics
- Integration of additional metrics as required by clinicians

Regulatory approvals are in progress, and an expanded clinical trial will be performed in the delivery room at the Royal Alexandra Children’s Hospital with a cohort of 30 babies.

References