Conditional Reparametrization for the Plackett-Luce Distribution

We prove Proposition 1 in this section. We first discuss the properties of Gumbel distribution. Then we discuss the generative processes for the densities used for \(p(z \mid b, \theta) \) in Eq. 20. Then we show that \(p(b \mid z)p(z \mid \theta) = p(b \mid \theta)p(z \mid b, \theta) \) for the unconditional Gumbel density \(p(z \mid \theta) \) and the Plackett-Luce distribution \(p(b \mid \theta) \).

Density for the Gumbel distribution and the truncated Gumbel distribution

The density function of the Gumbel distribution with location parameter \(\mu \) is
\[
\phi_\mu(z) = \exp(-z + \mu) \exp(-\exp(-z + \mu))
\]
and the cumulative density function is
\[
\Phi_\mu = \exp(-\exp(-z + \mu)).
\]

Our derivation of the conditional distribution \(p(b \mid z, \theta) \) relies on the additive property of the cumulative density function of the Gumbel distribution
\[
\Phi_\mu(\exp(\mu + \exp v)) = \exp(-\exp(\mu + \exp v)) = \Phi_\mu(\Phi_\nu(v)),
\]
which we enfold in the following auxiliary claim.

Lemma 2. For permutation \(b \in S_k \), score vector \(\theta \in \mathbb{R}^k \) and \(i = 1, \ldots, k \) and the argument vector \(z \in \mathbb{R}^k \) we have
\[
\phi_{\theta_i}(z_{b_i})\Phi_\log(\sum_{j=i+1}^k \exp \theta_j)(z_{b_i}) = \frac{\exp \theta_{b_i}}{\sum_{j=1}^k \exp \theta_{b_j}} \phi_\log(\sum_{j=i+1}^k \exp \theta_j)(z_{b_j}).
\]

Proof. For brevity, we denote \(\exp \theta_i \) as \(p_i \). Then we rewrite the density \(\phi_{\log(p_{b_i})}(z_{b_i}) \) through the exponent \(\exp(-z_{b_i} + \log(p_{b_i})) \) and c.d.f. \(\Phi_{\log(p_{b_i})}(z_{b_i}) \) and apply the additive property in Eq. 38:
\[
\phi_{\log(p_{b_i})}(z_{b_i})\Phi_\log(\sum_{j=i+1}^k \exp \theta_j)(z_{b_i}) = p_{b_i} \exp(-z_{b_i})\Phi_{\log(\sum_{j=i+1}^k \exp \theta_j)}(z_{b_i}) = p_{b_i} \sum_{j=1}^k p_{b_j} \exp(-z_{b_i})\Phi_{\log(\sum_{j=1}^k \exp \theta_j)}(z_{b_i}) = p_{b_i} \sum_{j=1}^k \phi_{\log(\sum_{j=1}^k \exp \theta_j)}(z_{b_j}).
\]

The last step collapses the exponent and the c.d.f. into the density function \(\phi_\log(\sum_{j=i+1}^k \exp \theta_j)(z_{b_i}) \).

Finally, to define the density of conditional distribution \(p(b \mid z, \theta) \), we define the density of the truncated Gumbel distribution \(\phi_\mu^\alpha(z) \propto \phi_\mu(z)[z \leq z_0] \):
\[
\phi_\mu^\alpha(z) = \frac{\phi_\mu(z)}{\Phi_\mu(z_0)}[z \leq z_0],
\]
where the superscript \(z_0 \) denotes the truncation parameter.

Reparametrization for the Gumbel distribution and the truncated Gumbel distribution

The reparametrization trick requires representing a draw from a distribution as a deterministic transformation of a fixed distribution sample and a distribution parameter. For a sample \(z \) from the Gumbel distribution \(G(\mu, 1) \) with location parameter \(\mu \) the representation is
\[
z = \mu - \log(-\log v), \quad v \sim \text{uniform}[0, 1].
\]

For the Gumbel distribution truncated at \(z_0 \) (Maddison, Tarlow, and Minka 2014) proposed an analogous representation
\[
z = \mu - \log(-\log v + \exp(-z_0 + \mu)) \quad - \log \left(-\log v + \exp(-z_0) \right) \sim \text{uniform}[0, 1].
\]

In particular, the sampling schemes in Eq. 10 and Eq. 20 generate samples from the truncated Gumbel distribution.

The derivation of the conditional distribution

We now derive the conditional distribution and the sampling scheme proposed in Proposition 1.

The joint distribution of the permutation \(b \) and the Gumbel samples \(z \) is
\[
p(b, z \mid \theta) = p(b \mid z)p(z \mid \theta)
\]
\[
= \phi_{\theta_b}(z_b) \prod_{i=2}^k \left(\phi_{\theta_i}(z_{b_i}) \mathbb{I}[z_{b_{i-1}} \geq z_{b_i}] \right)
\]

We first multiply and divide the joint density by the c.d.f. \(\Phi_{\log(\sum_{j=1}^k \exp \theta_j)}(z_{b_i}) \) and apply Lemma 2
\[
\frac{\Phi_{\log(\sum_{j=1}^k \exp \theta_j)}(z_{b_i})}{\Phi_{\log(\sum_{j=2}^k \exp \theta_j)}(z_{b_i})} \phi_{\theta_b}(z_b) \prod_{i=2}^k \frac{\Phi_{\log(\sum_{j=1}^k \exp \theta_j)}(z_{b_i})}{\Phi_{\log(\sum_{j=2}^k \exp \theta_j)}(z_{b_i})} \frac{\phi_{\theta_i}(z_{b_i})}{\phi_{\theta_{b_i}}(z_{b_i})} \mathbb{I}[z_{b_{i-1}} \geq z_{b_i}]
\]
\[
= \exp \theta_{b_i} \phi_{\log(\sum_{j=1}^k \exp \theta_j)}(z_{b_i}) \frac{\phi_{\theta_i}(z_{b_i})}{\phi_{\theta_{b_i}}(z_{b_i})} \mathbb{I}[z_{b_{i-1}} \geq z_{b_i}]
\]
Next, we apply Lemma 2 to combine the c.d.f. in the denominator \(\Phi_{\log(\sum_{j=1}^k \exp \theta_j)}(z_{b_{i-1}}) \) and the term \(\phi_{\theta_{b_i}}(z_{b_i}) \mathbb{I}[z_{b_{i-1}} \geq z_{b_i}] \) inside the product
\[
\frac{\Phi_{\log(\sum_{j=1}^k \exp \theta_j)}(z_{b_{i-1}})}{\Phi_{\log(\sum_{j=1}^k \exp \theta_j)}(z_{b_{i-1}})} \frac{\phi_{\theta_i}(z_{b_i})}{\phi_{\theta_{b_i}}(z_{b_i})} \mathbb{I}[z_{b_{i-1}} \geq z_{b_i}]
\]
\[
= \exp \theta_{b_i} \phi_{\log(\sum_{j=1}^k \exp \theta_j)}(z_{b_i}) \frac{\phi_{\theta_i}(z_{b_i})}{\phi_{\theta_{b_i}}(z_{b_i})} \mathbb{I}[z_{b_{i-1}} \geq z_{b_i}]
\]
and obtain the truncated distribution \(\phi_{\log(\sum_{j=1}^k \exp \theta_j)}(z_{b_{i-1}}) \) along with one factor of the Plackett-Luce probability \(\frac{\phi_{\theta_i}(z_{b_i})}{\phi_{\theta_{b_i}}(z_{b_i})} \). Also, after the transformation the summation index in the denominator c.d.f. changes from \(i \) to
This gives us an induction step that we apply sequentially for \(i = 2, \ldots, k - 1 \). For \(i = k \) the denominator c.d.f. \(\Phi_{\log \exp \theta_k}(z_{b_{k-1}}) \) and the product term \(\phi_{\log \exp \theta_k}(z_{b_k})I[z_{k-1} \geq s_k] \) combine into the truncated Gumbel distribution with density \(\phi_{\log \exp \theta_k}(z_{b_k}) \).

As a result, we rearrange \(p(b, z \mid \theta) \) into the product of the truncated Gumbel distribution densities \(p(z \mid b, \theta) \) and the probability of the Plackett-Luce distribution \(p(b \mid \theta) \):

\[
\phi_{\log \sum_{j=1}^{b_i} \exp \theta_{b_j}}(z_{b_i}) \prod_{i=1}^{k} \frac{\exp \theta_{b_i}}{\sum_{j=1}^{b_i} \exp \theta_{b_j}} \prod_{i=2}^{k} \phi_{\log \sum_{j=i}^{b_i-1} \exp \theta_{b_j}}(z_{b_i}).
\]

(52)

Finally, to obtain the claim of Proposition 1 we replace the sum of exponents with a normalized sum \(\Theta_i = \frac{\sum_{j=1}^{b_i} \exp \theta_{b_j}}{\sum_{j=1}^{b_i} \exp \theta_{b_1}} \) and apply the reparametrized sampling scheme defined in Eq. 43.