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Predictive Top-Down Integration of Prior Knowledge during
Speech Perception

Ediz Sohoglu, Jonathan E. Peelle, Robert P. Carlyon, and Matthew H. Davis
Medical Research Council Cognition and Brain Sciences Unit, Cambridge CB2 7EF, United Kingdom

A striking feature of human perception is that our subjective experience depends not only on sensory information from the environment
but also on our prior knowledge or expectations. The precise mechanisms by which sensory information and prior knowledge are
integrated remain unclear, with longstanding disagreement concerning whether integration is strictly feedforward or whether higher-
level knowledge influences sensory processing through feedback connections. Here we used concurrent EEG and MEG recordings to
determinehowsensory informationandpriorknowledgeare integrated in thebrainduringspeechperception.Wemanipulated listenersÕ
prior knowledge of speech content by presenting matching, mismatching, or neutral written text before a degraded (noise-vocoded)
spoken word. When speech conformed to prior knowledge, subjective perceptual clarity was enhanced. This enhancement in clarity was
associatedwithaspatiotemporalprofileofbrainactivityuniquelyconsistentwitha feedbackprocess:activity in the inferior frontal gyrus
was modulated by prior knowledge before activity in lower-level sensory regions of the superior temporal gyrus. In parallel, we paramet-
rically varied the level of speech degradation, and therefore the amount of sensory detail, so that changes in neural responses attributable
to sensory information and prior knowledge could be directly compared. Although sensory detail and prior knowledge both enhanced
speech clarity, they had an opposite influence on the evoked response in the superior temporal gyrus. We argue that these data are best
explained within the framework of predictive coding in which sensory activity is compared with top-down predictions and only unex-
plained activity propagated through the cortical hierarchy.

Introduction
It is widely acknowledged that our subjective experience reflects
not only sensory information from the environment but also our
prior knowledge or expectations (Remez et al., 1981; Rubin et al.,
1997). A remarkable feature of the brain is its ability to integrate
these two sources of information seamlessly in a dynamic and
rapidly changing environment. However, the mechanisms by
which this integration takes place are still unclear. One proposal
is that perceptual processing is strictly feedforward, with sen-
sory information and higher-level knowledge integrated at a
postsensory decision stage in which multiple representations
are evaluated before a final interpretation is selected (Fodor,
1983; Norris et al., 2000). An alternative account argues that
sensory processing is directly modified by higher-level knowl-
edge through feedback connections (McClelland and Elman,
1986; Friston, 2010).

Here we explore how sensory information and prior knowl-
edge of speech content are integrated in the brain and modulate
the subjective clarity of speech. Speech perception is an ideal
context in which to study integration effects because in everyday
listening we constantly exploit prior information—such as a
speaker’s lip movements or semantic context—to interpret in-
coming speech signals (Sumby, 1954; Miller and Isard, 1963).
Furthermore, the cortical network supporting speech perception
is increasingly understood, showing a hierarchical organization
that progresses from sensory processing in the superior temporal
gyrus (STG) to more abstract linguistic and decision processes in
the inferior frontal gyrus (IFG) (Scott and Johnsrude, 2003;
Binder et al., 2004; Hickok and Poeppel, 2007). Given this ana-
tomical organization, long-standing debates concerning whether
speech perception is a purely feedforward process or includes
feedback mechanisms can be construed in terms of functional
interactions between the IFG and STG.

In the current study, listeners reported the subjective clarity of
degraded spoken words. We manipulated prior knowledge of
speech content by presenting matching, mismatching, or neutral
text before speech onset. We also parametrically varied the level
of speech degradation, and therefore the amount of speech sen-
sory detail, so that changes in neural responses attributable to
sensory information and prior knowledge could be directly com-
pared. Because subjective experience of speech clarity is similarly
enhanced by providing either more detailed sensory information
or prior knowledge of speech content (Jacoby et al., 1988), we
asked whether these two sources of enhanced subjective clarity
have equivalent effects on neural responses.
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A critical test that can distinguish be-
tween bottom-up and top-down accounts
is the timing of activity in sensory and
higher-level regions (cf. Bar et al., 2006).
We therefore combined high-density EEG
and MEG recordings to obtain precise
temporal and spatial measures of neural
activity during speech perception. If a
strictly bottom-up mechanism is involved
in integrating sensory information and
prior knowledge, sensory-related process-
ing in the STG should be modulated by
subjective clarity before abstract linguistic
or decision computations in the IFG.
Conversely, a top-down mechanism would
bereflectedby theoppositepattern,withab-
stract computations in the IFG being mod-
ulated before sensory-related processing in
the STG.

Materials and Methods
Participants.Eighteen right-handed partici-
pants were tested after being informed of the
procedure of the study, which was approved by
the Cambridge Psychology Research Ethics
Committee. All were native speakers of Eng-
lish, between 18 and 40 years old (mean� SD,
29 � 6 years) and had no history of hearing
impairment or neurological disease based on
self-report. Data from four participants were
excluded because of noisy EEG recordings
(from high impedances or excessive eye/move-
ment artifacts) resulting in 14 participants
(eight female) in the final dataset.

Stimuli and procedure.A total of 324 mono-
syllabic words were presented in spoken or
written format. The spoken words were 16 bit,
44.1 kHz recordings of a male speaker of south-
ern British English, and their duration ranged
from 317 to 902 ms (mean� SD, 598� 81 ms).

Prior knowledge of speech content was ma-
nipulated by presenting a written version of the
spoken word before speech onset (matching
condition) (Fig. 1A). Effects from matching
written text were assessed relative to two con-
trol conditions in which prior knowledge was
not informative with respect to upcoming
speech. In the mismatching condition, the
written word was different from the spoken
word, and in the neutral condition, written text
contained a string of “x” characters. Written
words for the mismatching condition were ob-
tained by permuting the word list for their spo-
ken form. As a result, each written word in the
mismatching condition was also presented as a
spoken word and vice versa. Mean string length
was equated across conditions. Written text
was composed of black lowercase characters
presented for 200 ms on a gray background.

The amount of sensory detail in speech was varied using a noise-
vocoding procedure (Shannon et al., 1995), which superimposes the
temporal envelope from separate frequency regions in the speech signal
onto corresponding frequency regions of white noise. This allows para-
metric variation of spectral detail, with increasing numbers of channels
associated with increasing perceptual clarity. Vocoding was performed
using a custom MATLAB (MathWorks) script, using two, four, or eight
spectral channels logarithmically spaced between 70 and 5000 Hz (Fig.

1B). Envelope signals in each channel were extracted using half-wave
rectification and smoothing with a second-order low-pass filter with a
cutoff frequency of 30 Hz. The overall RMS amplitude was adjusted to be
the same across all audio files. Pilot data showed that mean� SD word
report performance (across participants) at each of these sensory detail
conditions is 3.41� 1.93, 17.05� 1.98, and 68.18� 2.77%.

Manipulations of sensory detail (two-, four-, and eight-channel
speech) and prior knowledge of speech content (matching/mismatching/
neutral) were fully crossed, resulting in a 3� 3 factorial design with 72

Figure 1. Stimulus characteristics.A, Example writtenÐspoken word pairs used for matching, mismatching, and neutral con-
ditions.B,Examplespectrogramsfor thethreespeechsensorydetailconditions.Speechwithagreaternumberofspectralchannels
contained more sensory detail.C, Trial diagram showing the order and timing of events in each trial.
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trials in each condition. Trials were randomly ordered during each of
four presentation blocks of 162 trials. For each participant, each of the
spoken words appeared twice: either once as a matching trial and once as
a mismatching trial, or twice as a neutral trial. The first presentation of
each word occurred in the first two blocks of the experiment, and the
second presentation occurred in the final two blocks. The particular
words assigned to each condition were randomized over participants.

Stimulus delivery was controlled with E-Prime 2.0 software (Psychol-
ogy Software Tools). Trials commenced with the presentation of a writ-
ten word, followed 1050 ms later by the presentation of a spoken word
(Fig. 1C). Participants were instructed to rate the clarity of each spoken
word on a scale from 1 (“not clear”) to 8 (“very clear”). A response cue,
which consisted of a visual display of the rating scale, was presented 1050
ms after the onset of the spoken word. Participants used a four-button
box to navigate the rating scale and record their response. Subsequent
trials began 850 ms after participants entered their responses. All time
intervals were randomized by adding a random time of� 0–50 ms to
reduce unwanted phase-locking of non-experimental factors (e.g., antic-
ipatory responses). Before the experiment, participants completed a
practice session of 18 trials containing all conditions but using a different
corpus of words from those used in the main experiment.

Because of a software error, on� 40% of trials, the response cue dis-
playing the rating scale was presented at the offset of the spoken word.
Because the average duration of the spoken words was 598 ms, this meant
that the response cue was presented on average 598 ms after speech onset,
which is earlier than the intended timing of 1050 ms. We tested whether
this erroneous timing of the response cue had any consequences for the
speech-evoked neural response by including a factor of cue timing (“early
response cue ” or “late response cue”) for the 450–700 ms time window
(for how time-windows were selected, see below, Sensor-space statistical
analysis). This time window was tested because 97% of spoken words had
durations� 450 ms. Therefore, for the majority of trials, the erroneous
timing of the response cue could only have affected speech-evoked neural
responses during this time window. A main effect of response cue timing
was found over a small cluster of occipital MEG gradiometers (p � 0.01,
FWE corrected), but this did not interact with the experimental manip-
ulations of sensory detail and prior knowledge.

Data acquisition and pre-processing.Magnetic fields were recorded
with a VectorView system (Elekta Neuromag) containing a magnetom-

eter and two orthogonal planar gradiometers at
each of 102 positions within a hemispheric ar-
ray. Electric potentials were simultaneously re-
corded using 70 Ag–AgCl sensors according to
the extended 10–10% system and referenced to
a sensor placed on the nose. All data were dig-
itally sampled at 1 kHz and high-pass filtered
above 0.01 Hz. Head position and EOG activity
were continuously monitored using four head
position indicator (HPI) coils and two bipolar
electrodes, respectively. A 3D digitizer (Fastrak
Polhemus) was used to record the positions of
the EEG sensors, HPI coils, and� 70 additional
points evenly distributed over the scalp, rela-
tive to three anatomical fiducial points (the na-
sion and left and right pre-auricular points).

Data from the MEG sensors (magnetome-
ters and gradiometers) were processed using
the temporal extension of Signal Source Sepa-
ration (Taulu et al., 2005) in Maxfilter to sup-
press noise sources, compensate for motion,
and reconstruct any bad sensors. Noisy EEG
sensors were identified by visual inspec-
tion and excluded from additional analysis.
Subsequent processing was done in SPM8
(Wellcome Trust Centre for Neuroimaging,
London, UK) and FieldTrip (Donders Institute
for Brain, Cognition, and Behavior, Radboud
University, Nijmegen, The Netherlands) soft-
ware implemented in MATLAB. The data were
downsampled to 250 Hz and epoched� 100 to

800 ms relative to speech onsets. Trials contaminated by EOG artifacts
were removed by rejecting trials for which the amplitude in the 1–15 Hz
range exceeded a set threshold of SD units from the mean across trials
(established individually for each participant by visual inspection of the
data). The remaining trials were low-pass filtered below 40 Hz and base-
line corrected relative to the 100 ms pre-speech period, and the EEG data
were referenced to the average over all EEG sensors. Epochs were aver-
aged across trials to remove non-phase-locked activity and derive the
evoked response.

Sensor-space statistical analysis.We restricted the search space for sta-
tistical analysis to portions of the evoked response when the signal-to-
noise ratio (SNR) was high by averaging across time within each of four
windows centered on prominent deflections in the evoked global field
power (RMS amplitude over sensors). Those time windows are shown in
Figure 2 and include the N100 (90–130 ms) and P200 (180–240 ms)
components. For late latencies when there were no clear peaks, two broad
windows were defined (270–420 and 450–700 ms) that correspond ap-
proximately to the early and late portions of the N400 component (cf.
Desroches et al., 2009). After time averaging,F tests were performed
across sensor space while controlling the FWE rate using random field
theory (Kilner and Friston, 2010).

Before statistical analysis, the data were converted into 2D images by
spherically projecting onto a 32� 32 pixel plane for each epoch time
sample and smoothed using a 5 mm� 5 mm� 10 ms Gaussian kernel. In
the case of gradiometers, an additional step involved combining the data
across each sensor pair by taking the RMS of the two amplitudes. Results
(condition means and error bars) are displayed by mapping statistically
significant data points back onto the nearest corresponding sensor in the
original head array.

Source reconstruction.To determine the underlying brain sources of
the sensor data, a multimodal source inversion scheme was used to inte-
grate data from all three neurophysiological measurement modalities
(EEG and MEG magnetometers and gradiometers). This has been shown
to give superior localization precision compared with considering each
modality in isolation (Henson et al., 2009). To begin with, two separate
forward models were constructed: one for the MEG sensors and another
for the EEG. Both models had in common the use of a T1-weighted
structural MRI scan obtained for each participant from which meshes

Figure2. Timewindowsof thespeech-evokedresponseoverwhichthedatawereaveragedbeforeadditionalvisualizationand
statisticalanalysis.Waveformsrepresent theglobal fieldpoweracrosssensors(afteraveragingacrossconditionsandparticipants).
Time windows are depicted by the areas shaded in gray. Topographic plots display the evoked response at each sensor averaged
across time within each window.

Sohoglu et al.€Predictive Top-Down Integration of Prior Knowledge J. Neurosci., June 20, 2012¥32(25):8443Ð8453¥ 8445



(containing 8196 vertices) were generated for the scalp and skull surfaces.
Sensor locations and each participant’s scalp mesh were then aligned
using the digitized head shape. The MRI scan was also used to spatially
transform a canonical cortical mesh in standard Montreal Neurological
Institute (MNI) space to the individual space of each participant’s MRI.
To calculate the lead-field matrix, which specifies how any given source
configuration will appear at the sensors, single-shell and boundary-
element models were used for the MEG and EEG sensors, respectively. A
parametric empirical Bayes framework (Phillips et al., 2005) was used for
source inversion, using a LORETA (low-resolution brain electromag-
netic tomography)-like approach (Pascual-Marqui, 2002), which at-
tempts to minimize overall source power after initially assuming all
elements are active and spatially correlated over adjacent regions. Multi-
modal fusion of the data was achieved by using a heuristic to convert all
data to a common scale and by weighting each sensor type to maximize
the model evidence (Henson et al., 2009). An additional constraint was
imposed such that source solutions were consistent across participants,
which has been shown to improve group-level statistical power (Litvak
and Friston, 2008). Source power (equivalent to the sum of squared
amplitude) in the 1–40 Hz range was derived from the resulting solutions
and converted into 3D images.

Significant effects from sensor space were localized within the brain by
averaging the 3D source power estimates across time within each window
and mapping the data onto MNI space brain templates. Source estimates
were subsequently converted into SNRs operationalized as statistical sig-
nificance of pairwiset tests at the group level (i.e., mean signal divided by
cross-participant variability). Given that the goal of sourcereconstruc-
tion was to localize the neural generators of sensor-space effects pre-
viously identified as significant, SNR maps are displayed with an
uncorrected voxelwise threshold (p � 0.05).

Results
Behavioral results
Listeners’ subjective ratings of speech clarity for each condition
are shown in Figure 3. As expected, a repeated-measures ANOVA
revealed that increasing sensory detail significantly enhanced
speech clarity (F(2,26) � 298.62,p � 0.001). Critically, prior
knowledge of speech content provided by matching written text
similarly enhanced spoken word clarity, relative to mismatching
(F(1,13)� 91.72,p� 0.001) or neutral (F(1,13)� 62.36,p� 0.001)
contexts.Post hoccomparisons revealed that this occurred even
for two-channel speech, which contained the least amount of
sensory detail (matching� mismatching,t(13) � 10.18,p �

0.001; matching� neutral,t(13) � 6.71,p � 0.001; Bonferroni’s
corrected for multiple comparisons). In addition, there was a
small but significant decrease in clarity for mismatching com-
pared with neutral contexts (F(1,13)� 5.13,p � 0.04), indicating
that incongruent prior knowledge can reduce speech clarity.
However, the small magnitude of this effect suggests that incon-
gruent prior knowledge has a lesser impact on subjective clarity
than prior knowledge that is congruent with subsequent speech.

Sensor-space results
Sensors showing significant effects are shown in Figure 4, along
with whole-head topographies expressing critical condition dif-
ferences. Reported effects are all FWE rate corrected for multiple
comparisons across sensors using a threshold ofp � 0.05.

Significant main effects of speech sensory detail (Fig. 4A) were
present 180–240 ms and later (270–420 and 450–700 ms) in the
MEG (magnetometer and gradiometer) sensors but were absent
in the EEG. The pattern of the means suggest that increasing
sensory detail results in a larger evoked response.

To test for significant effects of prior knowledge from match-
ing written text (Fig. 4B), a conjunction contrast (matching–
mismatching AND matching–neutral) was used to detect
significant differences in the evoked response between matching
prior context and both mismatching and neutral contexts (Nich-
ols et al., 2005). This conjunction contrast was motivated by our
assumption that the effects of prior knowledge arise primarily
when prior knowledge is congruent with speech, an assumption
supported by our behavioral results showing that the main dif-
ference between our conditions lies between matching and the
remaining mismatching/neutral conditions. Using a conjunction
contrast also allowed us to control for expectation before speech
onset (with the matching–mismatching contrast) while at the
same time ruling out any minor effects from incongruent prior
knowledge (with the matching–neutral contrast). Controlling for
expectation before speech onset was a critical part of our design to
ensure that we assessed only those effects of prior knowledge
occurring after speech onset, because they reflect genuine inte-
gration of prior knowledge and incoming sensory information
(cf. Arnal et al., 2009). Effects of prior knowledge from matching
text were widespread in the EEG data, being present in all time
windows, including the earliest 90–130 ms period. There were
also effects in the magnetometers (270–420 and 450–700 ms)
and gradiometers (450–700 ms). Although the EEG evoked re-
sponse increased in the presence of matching written text, the
opposite was true for the MEG sensors (i.e., the evoked response
decreased). MEG effects of prior knowledge from matching text
were also opposite in direction to the MEG sensory detail effects
described previously (i.e., increased subjective clarity attributable
to prior knowledge resulted in reduction rather than enhance-
ment of the MEG response).

We additionally tested for effects of incongruent prior knowl-
edge with the contrast mismatching–neutral. No significant ef-
fects were found in any sensor modality or time window, which
further supports our decision to focus analysis on congruent ef-
fects of prior knowledge from matching text.

To further assess the relationship between neural and behav-
ioral changes attributable to prior knowledge we conducted a
single-trial analysis (Fig. 5) in which we correlated speech clarity
ratings with the amplitude of the MEG and EEG signals in peak
sensors showing an effect of prior knowledge (Fig. 5A; see also
Fig. 4B). To avoid floor and ceiling effects in clarity ratings, we
conducted this analysis only for responses to four-channel speech
because this produced a range of clarity ratings for all participants

Figure 3. Behavioral results showing speech clarity ratings averaged across participants.
The provision of increasing sensory detail and prior knowledge from matching text both led to
an enhancement in perceived speech clarity. Error bars represent SEM across participants cor-
rected forbetween-participant variability (LoftusandMasson,1994).Bracesshowsignificance
ofFtests comparing matching with mismatching and neutral conditions (***p� 0.001).
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