Approximation hardness of Travelling Salesman via weighted amplifiers

Chlebík, Miroslav and Chlebíková, Janka (2019) Approximation hardness of Travelling Salesman via weighted amplifiers. International Computing and Combinatorics Conference (COCOON 2019), China, 2019. Published in: Du, D Z, Duan, Z and Tian, C, (eds.) Computing and Combinatorics. 11653 115-127. Springer, Cham, Switzerland. ISBN 978-3-030-26175-7

[img] PDF - Published Version
Restricted to SRO admin only
Available under License All Rights Reserved.

Download (280kB)


The expander graph constructions and their variants are the main tool used in gap preserving reductions to prove approximation lower bounds of combinatorial optimisation problems. In this paper we introduce the weighted amplifiers and weighted low occurrence of Constraint Satisfaction problems as intermediate steps in the NP-hard gap reductions. Allowing the weights in intermediate problems is rather natural for the edge-weighted problems as Travelling Salesman or Steiner Tree. We demonstrate the technique for Travelling Salesman and use the parametrised weighted amplifiers in the gap reductions to allow more flexibility in fine-tuning their expanding parameters. The purpose of this paper is to point out effectiveness of these ideas, rather than to optimise the expander’s parameters. Nevertheless, we show that already slight improvement of known expander values modestly improve the current best approximation hardness value for TSP from 123/122 ([9]) to 117/116 . This provides a new motivation for study of expanding properties of random graphs in order to improve approximation lower bounds of TSP and other edge-weighted optimisation problems.

Item Type: Conference Proceedings
Schools and Departments: School of Mathematical and Physical Sciences > Mathematics
Subjects: Q Science > QA Mathematics
Depositing User: Amelia Redman
Date Deposited: 23 Sep 2019 11:22
Last Modified: 03 Feb 2020 13:35

View download statistics for this item

📧 Request an update