University of Sussex
Browse
fcz013.pdf (1.04 MB)

Atomoxetine and Citalopram alter brain network organisation in Parkinson’s disease

Download (1.04 MB)
Version 2 2023-06-07, 08:28
Version 1 2023-06-07, 06:44
journal contribution
posted on 2023-06-07, 08:28 authored by Robin J Borchert, Timothy Rittman, Charlotte RaeCharlotte Rae, Luca Passamonti, Simon P Jones, Deniz Vatansever, Patricia Vázquez Rodríguez, Zheng Ye, Cristina Nombela, Laura E Hughes, Trevor W Robbins, James B Rowe
Parkinson’s disease has multiple detrimental effects on motor and cognitive systems in the brain. In contrast to motor deficits, cognitive impairments in Parkinson’s disease are usually not ameliorated, and can even be worsened, by dopaminergic treatments. Recent evidence has shown potential benefits from restoring other neurotransmitter deficits, including noradrenergic and serotonergic transmission. Here, we study global and regional brain network organization using task-free imaging (also known as resting-state), which minimizes performance confounds and the bias towards predetermined networks. Thirty-three patients with idiopathic Parkinson’s disease were studied three times in a double-blind, placebo-controlled counter-balanced crossover design, following placebo, 40mg-oral atomoxetine (selective noradrenaline reuptake inhibitor) or 30mg-oral citalopram (selective serotonin reuptake inhibitor). Neuropsychological assessments were performed outside the scanner. Seventy-six controls were scanned without medication to provide normative data for comparison to the patient cohort. Graph theoretical analysis of task-free brain connectivity, with a random 500-node parcellation, was used to measure the effect of disease in placebo-treated state (versus unmedicated controls) and pharmacological intervention (drug versus placebo). Relative to controls, patients on placebo had executive impairments (reduced fluency and inhibitory control), which was reflected in dysfunctional network dynamics in terms of reduced clustering coefficient, hub degree and hub centrality. In patients, atomoxetine improved fluency in proportion to plasma concentration (p=0.006, r2=0.24), and improved response inhibition in proportion to increased hub eigen centrality (p=0.044, r2=0.14). Citalopram did not improve fluency or inhibitory control, but its influence on network integration and efficiency depended on disease severity: clustering (p=0.01, r2=0.22), modularity (p=0.043, r2=0.14) and path length (p=0.006, r2=0.25) increased in patients with milder forms of Parkinson’s disease, but decreased in patients with more advanced disease (UPDRS-III >30). This study supports the use of task-free imaging of brain networks in translational pharmacology of neurodegenerative disorders. We propose that hub connectivity contributes to cognitive performance in Parkinson’s disease, and that noradrenergic treatment strategies can partially restore the neural systems supporting executive function.

History

Publication status

  • Published

File Version

  • Published version

Journal

Brain Communications

ISSN

2632-1297

Publisher

Oxford University Press

Department affiliated with

  • Psychology Publications

Full text available

  • No

Peer reviewed?

  • Yes

Legacy Posted Date

2019-09-10

First Open Access (FOA) Date

2019-09-20

First Compliant Deposit (FCD) Date

2019-09-06

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC