University of Sussex
Browse
GTP-19-1459.pdf (4.08 MB)

Sensitivity and forced response analysis of anisotropy-mistuned bladed disks with nonlinear contact interfaces

Download (4.08 MB)
journal contribution
posted on 2023-06-09, 18:49 authored by Adam Koscso, Yevgen PetrovYevgen Petrov
A new method has been developed for the analysis of nonlinear forced response of bladed disks mistuned by blade anisotropy scatter and for the forced response sensitivity to blade material anisotropy orientations. The approach allows for the calculation of bladed disks with nonlinear friction contact interfaces using the multi-harmonic balance method. The method uses efficient high-accuracy model reduction method for the minimization of the computational effort while providing required accuracy. The capabilities of the developed methods are validated and demonstrated using a two-blade model. A thorough study of the influence of the material anisotropy mistuning and its sensitivity on the characteristics of the forced response is carried out using finite element modes of anisotropy mistuned realistic bladed disk with nonlinear friction joints of blade roots and shroud contacts. The dependency of the nonlinear forced response on excitation level and contact pressure values has been carried out for anisotropy mistuned bladed disks.

History

Publication status

  • Published

File Version

  • Accepted version

Journal

Journal of Engineering for Gas Turbines and Power

ISSN

0742-4795

Publisher

American Society of Mechanical Engineers

Issue

10

Volume

141

Article number

a101025

Department affiliated with

  • Engineering and Design Publications

Research groups affiliated with

  • Dynamics, Control and Vehicle Research Group Publications

Full text available

  • Yes

Peer reviewed?

  • Yes

Legacy Posted Date

2019-09-12

First Open Access (FOA) Date

2020-09-26

First Compliant Deposit (FCD) Date

2019-09-27

Usage metrics

    University of Sussex (Publications)

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC