Liqui-pellet: the emerging next-generation oral dosage form which stems from liquisolid concept in combination with pelletization technology

Lam, Matthew, Ghafourian, Taravat and Nokhodchi, Ali (2019) Liqui-pellet: the emerging next-generation oral dosage form which stems from liquisolid concept in combination with pelletization technology. AAPS PharmSciTech, 20 (6). a231. ISSN 1530-9932

[img] PDF - Published Version
Available under License Creative Commons Attribution.

Download (1MB)

Abstract

In spite of the major advantages that the liquisolid technology offers, particularly in tackling poor bioavailability of poorly water-soluble drugs (i.e., BCS Class II drugs), there are a few critical drawbacks. The inability of a high liquid load factor, poor flowability, poor compactibility, and an inability to produce a high dose dosage form of a reasonable size for swallowing are major hurdles, hampering this technology from being commercially feasible. An attempt was therefore made to overcome these drawbacks whilst maintaining the liquisolid inherent advantages. This resulted in the emerging next generation of oral dosage forms called the liqui-pellet. All formulations were incorporated into capsules as the final product. Solubility studies of naproxen were conducted in different liquid vehicles, namely polyethylene glycol 200, propylene glycol, Tween 80, Labrafil, Labrasol, and Kolliphor EL. The scanning electron microscopy studies indicated that the liquid vehicle tends to reduce the surface roughness of the pellet. X-ray powder diffraction (XRPD) indicated no significant differences in the crystalline structure or amorphous content between the physical mixture and the liqui-pellet formulation. This was due to the presence of a high concentration of amorphous Avicel in the formulation which overshadowed the crystalline structure of naproxen in the physical mixtures. Flowability and dissolution tests confirmed that this next-generation oral dosage form has excellent flowability, whilst maintaining the typical liquisolid enhanced drug release performance in comparison to its physical mixture counterpart. The liqui-pellet also had a high liquid load factor of 1, where ~ 29% of the total mass was the liquid vehicle. This shows that a high liquid load factor can be achieved in a liqui-pellet without compromising flowability. Overall, the results showed that the poor flowability of a liquisolid formulation could be overcomed with the liqui-pellet, which is believed to be a major advancement into the commercial feasibility of the liquisolid concept.

Item Type: Article
Schools and Departments: School of Life Sciences > Chemistry
Subjects: R Medicine > RS Pharmacy and materia medica > RS0153 Materia medica > RS0192 Pharmaceutical technology
Depositing User: Ali Nokhodchi
Date Deposited: 11 Sep 2019 08:47
Last Modified: 11 Sep 2019 09:00
URI: http://sro.sussex.ac.uk/id/eprint/85778

View download statistics for this item

📧 Request an update