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High capacity silicon anodes enabled by MXene
viscous aqueous ink
Chuanfang (John) Zhang 1,2, Sang-Hoon Park1,2, Andrés Seral�Ascaso1,2, Sebastian Barwich1,3, Niall McEvoy1,2,

Conor S. Boland 1,3,5, Jonathan N. Coleman1,3, Yury Gogotsi 4 & Valeria Nicolosi1,2

The ever-increasing demands for advanced lithium-ion batteries have greatly stimulated the

quest for robust electrodes with a high areal capacity. Producing thick electrodes from a high-

performance active material would maximize this parameter. However, above a critical

thickness, solution-processed� lms typically encounter electrical/mechanical problems,

limiting the achievable areal capacity and rate performance as a result. Herein, we show that

two-dimensional titanium carbide or carbonitride nanosheets, known as MXenes, can be used

as a conductive binder for silicon electrodes produced by a simple and scalable slurry-casting

technique without the need of any other additives. The nanosheets form a continuous

metallic network, enable fast charge transport and provide good mechanical reinforcement

for the thick electrode (up to 450µm). Consequently, very high areal capacity anodes (up to

23.3 mAh cm� 2) have been demonstrated.
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Utilization of Li-ion chemistry to store the energy electro-
chemically can address the ever-increasing demands from
both portable electronics and hybrid electrical vehicles1–4.

Such stringent challenges on the battery safety and lifetime issues
require high-performance battery components, with most of the
focus being on electrodes or electrolytes with novel nanos-
tructures and chemistries5–10. However, equally important is the
development of electrode additives, which are required to main-
tain the electrode’s conductive network and mechanical integrity.

Traditionally, electrode additives are made of dual components
based on a conductive agent (i.e. carbon black, CB) and a poly-
meric binder11,12. While the former ensures the charge transport
throughout the electrode, the latter mechanically holds the active
materials and CB together during cycling. Although these tradi-
tional electrode additives have been widely applied in Li-ion
battery technologies13, they fail to perform well in high-capacity
electrodes, especially those displaying large volume changes14.
This is because the polymeric binder is not mechanically robust
enough to withstand the stress induced during lithiation/deli-
thiation, leading to severe disruption of the conducting networks.
This results in rapid capacity fade and poor lifetime.

This issue can be solved by employing a conductive binder to
accommodate the large volume change of the electrodes15. This
strategy not only ensures good mechanical adhesion of the active
materials to the conductive agent but also decreases the inactive
volume/mass of the electrode, leading to improved battery per-
formance. Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic
acid) (PEDOT:PSS)15, polyaniline16 and polypyrrole17 etc.18,19

have demonstrated inherent electronic/ionic conductivity in the
Li+ -containing electrolyte and capability in preserving the
mechanical integrity of large-capacity materials, such as silicon
(Si,CSP= ~3500 mAh g� 1) anodes. However, while several novel
conductive binders have been reported for Si-based anodes20,21,
their achievable areal capacity, which should be more emphasized
in practical cases, is generally low (<4 mAh cm� 2)22,23. Revisiting
the electrode areal capacity (C/A = C/M × M/A, whereC/M is the
speci� c capacity (mAh g� 1) of the electrode andM/A is its mass
loading (mg cm� 2)) implies that one has to increase theM/A of
the Si-based anodes (while retaining high speci� c capacity). This,
in turn, requires the formation of a thick electrode using the
commercially available technology to cast the conductive-binder/
Si-based slurry. Unfortunately, this has proven to be quite dif� -
cult, as the critical cracking thickness (CCT), determined by the
viscosity and surface tension of the slurry, etc.24, greatly limits the
electrodes’ achievableM/A. This is especially true in the reported
conductive polymer solutions, where either concentration (or
viscosity) of the solution is fairly low or the capillary pressure in
the slurry drying process is too high14,15. This means that
developing an aqueous solution of conductive-binder with a high
concentration (and thus, high viscosity), and achieving highM/A
(or C/A) Si-based anodes, are quite important and urgent.

Here we show that the goals outlined above can be simulta-
neously achieved by using MXene nanosheets as a new class of
conductive binder to fabricate high-M/A Si/MXene anodes
without any additional polymer or CB. MXenes are an emerging
class of two-dimensional (2D) materials produced by selectively
etching the A-group element (typically Al or Ga) from the parent
MAX phase25–27. The as-obtained MXene can be expressed in a
general formula Mn+ 1XnTx, where M represents an early transi-
tion metal, X is C and/or N, Tx stands for various surface func-
tionalities such as–OH, –O, and/or–F, andn = 1, 2, or 328–30.
We take advantage of the excellent mechanical properties of the
nanosheets to facilitate the formation of thick electrodes while
their high conductivity yields a conducting network, which can
ef� ciently distribute charge. We demonstrate two types of MXene
inks, titanium carbide (Ti3C2Tx) and carbonitride (Ti3CNTx) as

the conductive binder for producing highC/A nanoscale Si/
MXene anodes. We also show graphene-wrapped Si micro-
particles embedded in the Ti3C2Tx network enable much higher
M/A with C/A compared to other Si/conductive binder systems.

Results and discussion
MXene ink characterization. We start by describing the synth-
esis of Ti3C2Tx (MX-C) and Ti3CNTx (MX-N). After etching the
MAX precursors (Supplementary Fig. 1a, b) in hydrochloric acid-
lithium � uoride solution31,32, multilayered MXenes, with a cer-
tain degree of delamination (Supplementary Fig. 1c, d)32, were
obtained. Upon vigorous manual shaking of the MXene/water
suspension, the clay-like m-MXenes further swelled and delami-
nated into MX-C and MX-N� akes, forming concentrated aqu-
eous inks. The viscous feature of the MX-C ink is shown in
Fig. 1a. Both MX-C/MX-N inks are made of clean� akes with a
hexagonal atomic structure (Fig.1b, c and Supplementary Fig. 2a,
b), agreeing with previous reports12,31. The atomic force micro-
scopy and height pro� les (Supplementary Fig. 2c) suggest these
nanosheets are predominantly single-layered. These two types of
inks possess a similar concentration (~25 mg mL� 1), and the
mean � ake size is in the range of 2.1–2.8 µm in both cases
(Fig.1d).

As mentioned above, the CCT of Si-based anode is directly
related to the viscosity of the slurry24. Therefore, the rheological
behaviours of MXene aqueous inks, together with a reference
sample made of traditional dual-component additives (PAA/
carbon black, CB) dispersed in water, were evaluated. All
specimens (with the same solid concentration) demonstrate
non-Newtonian characteristics and shear-thinning (pseudoplas-
tic) behaviour33; and the apparent viscosity (� , Pa·s) decreases
with shear rate (� , s� 1), as demonstrated in Fig.1e. Such
behaviour can be well modelled using the Ostwald-de Wael power
law:

� ¼ k� n� 1 ð1Þ

where k and n are the consistency and shear-thinning index,
respectively34. The empirical parameters of the studied suspen-
sions are summarized in Supplementary Table 1. The apparent
viscosity in the MX-C ink is one and two orders of magnitude
higher than that of the MX-N ink and PAA/CB-water,
respectively. In addition, the viscoelastic properties of the inks,
in particular, storage and loss moduli, are important. These can
be used to investigate regions of linear elastic deformation, yield
points and sample� uidization, and give insight into the
energetics of the sample network35. The storage and loss moduli
in these viscoelastic materials were plotted as a function of strain,
showing much higher storage and loss modulus in MX-C,
followed by MX-N and substantially higher than the PAA/CB-
water system (Fig.1f). Such a rheological behaviour in the MXene
inks should facilitate the formation of thick Si/MXene electrodes,
as will be discussed below.

Electrode fabrication and characterization. Commercial Si
powders, namely, nanoscale Si (nSi,CSP= ~3500 mAh g� 1, size
~80 nm, Supplementary Fig. 3a) and graphene-wrapped Si (Gr-Si,
CSP= ~2000 mAh g� 1, superstructure size ~10 µm, Supplemen-
tary Fig. 3b–d), were chosen as models for high-capacity
materials.

Si powders were ground with MXene aqueous inks to give
concentrated, homogenous and viscous slurry, which can be
coated onto Cu foil using an industry-compatible slurry-casting
technique without adding any polymeric binders or CB (Fig.2a,
Table 2 and Fig. 4). Importantly, the excellent rheological
properties of MXene inks, including high viscosity, storage
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modulus and loss modulus enable a thick coating of the slurry (up
to 650 and 2100 µm for the nSi and Gr-Si, respectively, as shown
in Fig. 2b and Supplementary Table 3). In the wet slurry, the
ultrathin MXene nanosheets distribute randomly and further
form a continuous network while wrapping the Si particles. Upon
evaporation, the capability of the nanosheet network to assimilate
stress and the excellent mechanical strength of MXene nanosheets

enable the formation of mechanically robust electrodes36, as
shown in Fig.2c. Indeed, the maximum achievable� lm thickness
is dependent on the viscosity of the MXene ink; increasing the
MXene ink concentration (or viscosity) results in thicker� lms
(Supplementary Fig. 5). In other words, the rheological properties
of the MXene ink greatly in� uence the electrode’s structural
stability. The surface of the dried electrodes remains smooth with
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thickness up to ~350 µm before cracking� rst occurs (Supple-
mentary Table 3), yielding a CCT much larger than the achievable
thickness with traditional binders (<100 µm)14,15,17,19,21,22. Top-
down and cross-sectional scanning electron microscopy (SEM)
images with energy-dispersive X-ray mapping con� rm that the
nSi particulates are uniformly wrapped by the MX-C skeleton
(Fig.2d, e, Supplementary Fig. 6). No phase changes of the active
materials are observed during the slurry processing, as indicated
by Raman spectra (Supplementary Fig. 7) and X-ray diffraction
(XRD, Supplementary Fig. 8). The nSi/MX-N exhibits a similar
porous morphology as that of nSi/MX-C (Supplementary Fig. 9).
On the other hand, the Gr-Si/MX-C showcases a hierarchical
nano-/macro-structure, in which the Gr-Si pseudo-spherical
superstructures (~10 µm) are uniformly coated with robust MX-
C nanosheets (Fig.2f and Supplementary Fig. 10). Such a
morphology provides extensive free volume that allows the
expansion of the nanoscale Si during the electrochemical
processes, which will be discussed below.

Electrical and mechanical characterization. To achieve high
thickness and so highC/A, the Si-based anodes should possess
high conductivity and mechanical toughness to ensure ef� cient
charge transport and structural stability, respectively37. Previous
studies revealed that the electrical conductivity issue becomes
more severe in highM/A electrodes, which limit the rate

capability of the electrode38. Here we employ MXenes to solve
this issue. We performed electrical measurements on a range of
Si/MXene electrodes as well as reference samples (see Supple-
mentary Methods). Figure3a reveals that by adding 30 wt%
MXene to the Si, the conductivity has been improved roughly by
×1200 times for the nSi/MX-C (3448 S m� 1), ×120 times for the
nSi/MX-N (336 S m� 1) and ×250 times for the Gr-Si/MX-C
(5333 S m� 1) compared to their respective traditional systems
(nSi/PAA/CB and Gr-Si/PAA/CB with 70:15:15 in weight ratio).
The conductivity of nSi/MX-C (70:30,� = 3448 S m� 1) was also
much higher than that of nSi/CB/PAA (55:30:15,� = 9.8 S m� 1),
nSi/CB/CMC (70:15:15,� = 2.5 S m� 1) and nSi/PEDOT:PSS
(70:30,� = 1909 S m� 1), demonstrating the advantage of MXene
in enhancing the electrical conductivity of the electrode (Fig.3a).
Moreover, the nSi/MX-C electrode conductivity scales with MX-
C mass fraction (Mf) and can be explained in the frame of per-
colation theory (Supplementary Fig. 11). Importantly, the high
electrical conductivity in the nSi/MX-C and Gr-Si/MX-C elec-
trodes can be well maintained upon repeatedly bending even in a
twisted con� guration (Fig. 3b), indicating the robust nature
inherited from the pure MX-C� lm (Supplementary Fig. 12). We
note this is signi� cant as the composite electrodes (nSi/MX-C and
Gr-Si/MX-C) combine highM/A, an advanced electron transport
network and mechanical� exibility, holding great promise for
future wearable power sources.
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To further demonstrate the mechanical reinforcement pro-
vided by MXene nanosheets, the mechanical properties of Si/
MXene composites (such as nSi/MX-C and Gr-Si/MX-C, nSi/
MX-N), nSi/PAA/CB as well as pure MXene electrodes (MX-C,
MX-N) were evaluated and compared by measuring the stress-
strain curves of the corresponding vacuum-� ltrated� lms. This is
justi� ed by the roughly similar morphologies of the samples
fabricated by the two methods (Supplementary Fig. 13). The
tensile toughness (area under the stress-strain curve) is of
particular interest and has been improved by ×40 and ×15 in the
nSi/MX-C and Gr-Si/MX-C, respectively from the traditional
electrode (nSi/PAA/CB) at the equivalent composition (SiMf =
70 wt%), as shown in Fig.3c, d. Even though the toughness and
Young’s modulus in the Si/MXene composites are lower than the
pure MXene � lms, as expected they are higher than the
traditional binder system. This allows a substantial improvement
of the CCT, whose magnitude depends on the mechanical
properties of the deposited materials24. Consequently, mechani-
cally robust electrodes with thickness up to 350 µm for the Gr-Si/
MX-C are produced. This is much higher than the achievable
thickness in the traditional binder systems. In addition, it’s worth
noting that the dried composite� lms cannot be peeled off from
the Cu substrate, indicative of a strong adhesion force in the Cu/
composite interface.

We note that other 2D conductive binders, in particular
graphene, graphene oxide and reduced graphene oxide, typically
suffer from either low ink concentration39,40, or poor mechanical
strength of the network41, or un-scalable, lengthy procedures42–44,
which greatly limit the achievable electrode mass loadings and
areal capacities44. The superiority of concentrated MXene aqueous
inks over traditional dual-component electrode additives can be
attributed to the excellent electrical and mechanical properties of
MXene nanosheets as well as the high ink viscosity. As a result, a
simple slurry-casting technique leads to the formation of
extremely thick electrodes free from any other post-treatments
or complicated procedures. In the Si/MXene electrodes, the
metallic conductivity of both MX-C and MX-N enables fast
electron transport45, and thus allows reversible electrochemical
reactions and high-rate performance. Furthermore, the contin-
uous MXene network results in effective mechanical reinforce-
ment, allowing the production of thick electrodes and potentially
preserving the structural integrity of the entire electrode upon
cycling. This means that the dual-functionalized MXene network
should render the Si/MXene composites with good Li+ storage
performance, as discussed below.

Electrochemical characterization of nSi/MXene anodes. We
begin by investigating the electrochemical responses of nSi/MX-
C electrodes. The dQ/dV and galvanostatic charge-discharge
(GCD) pro� les of nSi/MX-C electrodes (with various composi-
tions) indicate curves that are typical for Si (Supplementary
Fig. 14a and Fig. 15a–e). All electrodes show a high� rst Cou-
lombic ef� ciency (CE) of 81–84% (Supplementary Fig. 14b). The
speci� c capacity per nSi mass (C/MSi) at different current den-
sities suggests that by adding 30 wt% MX-C conductive binder,
both the rate capability (Fig.4a) and Si electrochemical utili-
zation are maximized, approaching the theoretical capacity
(dashed line, nSi= ~3500 mAh g� 1, Supplementary Fig. 16).
Therefore, 30 wt% MXene was chosen in all Si/MXene compo-
sites. To probe the potentially achievable capacities of nSi,
asymmetric charging-discharging was performed on the nSi/
MX-C (Mf = 30 wt%,MSi/A = 0.9 mg cm� 2); the composite was
lithiated slowly (1/20 C) then delithiated at different rates (from
1/20 to 1 C). Figure4b shows representative asymmetric GCD
curves with speci� c capacities presented in the inset. Almost

theoretical values are achieved and maintained up to 5 A g� 1,
suggesting that the high-rate response is enabled by the MX-C
conductive network. Such an ef� cient continuous network also
facilitates the production of highMSi/A electrodes (Fig.4c, left
panel and Supplementary Fig. 17), resulting in aC/A as high as
12.2 mAh cm� 2 (Fig. 4c, right panel). TheC/A of nSi/MX-C
electrodes scales linearly withMSi/A over the entire thickness
regime, leading to highC/MSi (~3200 mAh g� 1, dashed line)
agreeing quite well with Fig.4b. This indicates that even in the
high MSi/A electrodes, almost theoretical capacities have been
achieved due to the presence of MX-C conductive binder.

The cycling stabilities of nSi/MX-C electrodes with various
MSi/A were measured at 0.3 A g� 1 (Fig.4d). While the highMSi/A
electrode shows a relatively rapid capacity decay, reasonably
stable capacities are achieved in the electrodes with low-medium
rangeMSi/A (Fig. 4d and Supplementary Fig. 18). For example,
the capacity retention in theMSi/A = 0.9 mg cm� 2 is 84% after 50
cycles, in sharp contrast to 50% in the nSi/CB/PAA (70:15:15,
MSi/A = 0.8 mg cm� 2, Fig.4d). The nSi/MX-C also outperforms
other Si/conductive agent/binder electrodes, such as nSi/CB/CMC
(70:15:15), nSi/PEDOT:PSS (70:30) and nSi/graphene (70:30) in
cycling performance at a similarMSi/A (Fig.4d and Supplemen-
tary Fig. 19). While the phase separation of Si from CB and/or
PAA occurs upon repeated volume expansion/contraction.
MXene nanosheets well wrap the Si particles, forming a point-
to-plane contact and improving the electrochemical performance,
unlike the point-to-point contact between the nSi and CB
particles. The MXene skeleton conformally attaches to Si particles
during repeated expanding/shrinking of the latter, which
guarantees a better electron transport path, as demonstrated in
Supplementary Fig. 20. Post-cycling SEM images suggest that the
continuous MX-C scaffold has been preserved in the medium
MSi/A electrode (Fig.4e and Supplementary Fig. 21) but is
disrupted in the highMSi/A electrode due to the large volume
change (Supplementary Fig. 22). The degradation of Li metal
inside the cell is also part of the reason for the relatively poor
cyclability of theMSi/A = 3.8 mg cm� 2 electrode (see Supple-
mentary Fig. 22b). To further study the long-term stability of the
MSi/A = 0.9 mg cm� 2 electrode, a rapid charge/discharge rate was
applied. The reasonable stability, coupled with high CE over 280
cycles (Fig.4f and Supplementary Fig. 23a), can be credited to the
synergistic effect between the high-capacity Si particles and the
continuous MX-C network. Such a synergistic effect is not
con� ned to MX-C; indeed any other viscous ink composed of
concentrated, conductive MXene nanosheets should work as an
ef� cient conductive binder. As a quick example, the nSi/MX-N
anode delivers an initial capacity of 1602 mAh g� 1 at 1.5 A g� 1

and maintains 1106 mAh g� 1 after 70 cycles (Fig.4f and
Supplementary Fig. 23b). The inferior cycling performance of
nSi/MX-N anode can be possibly attributed to its lower fracture
energy (toughness) compared to that of nSi/MX-C (Fig.3d), by
which the latter can assimilate the stress/tension induced by Si
volume changes more ef� ciently. Moreover, the less thermo-
dynamically stable and less conductive MX-N network is more
prone to degradation. Despite that the cycling performance of
nSi/MXene electrodes are quite comparable to other reported Si/
conductive binder systems, as seen in Supplementary Table 4.

Performance of Gr-Si/MX-C anode. To further improve the
electrodeM/A, and thusC/A, we used microsized Gr-Si particles
as active materials. GCD pro� les (Fig.5a and Supplementary
Fig. 24a–d) of Gr-Si/MX-C electrodes with various compositions
reveal typical curves for Si46. The� rst CE in these electrodes is
reasonably high (81–83%, Supplementary Fig. 24e), sugges-
ting the lithiation/delithiation processes are reversible. The rate
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performance suggests that 30 wt% MX-C is capable of
maximizing the speci� c capacity at various current densities
(Supplementary Fig. 25). In addition, increasing the MX-CMf
gradually not only boosts the utilization of Gr-Si to the
theoretical value (CSP= ~2000 mAh g� 1, the dashed line in
Supplementary Fig. 25c) but will also dramatically improve the
mechanical properties of the electrode, according to
previous � ndings on carbon nanotubes37. Thus, Gr-Si/MX-C
electrodes, withMGrSi/A ranging from 1.3 to 13 mg cm� 2, were
fabricated at a constant composition (MX-CMf = 30 wt%). The
� rst GCD pro� les of these Gr-Si/MX-C electrodes are shown in
Fig. 5b, suggesting a high� rst CE (81–83%). TheC/A values
scale linearly withMGrSi/A and give a speci� c capacity per Gr-Si
(C/MGrSi) as high as 1850 mAh g� 1. The cycling
performance of these electrodes is alsoMGrSi/A-dependent,
being fairly stable in theMGrSi/A = 3.3 mg cm� 2 electrode
(C/A = ~5 mAh cm� 2, Fig. 5c) while less stable in theMGrSi/
A = 13 mg cm� 2 electrode. This sharp discrepancy can be
majorly attributed to the non-in� nite supply of Li as well as
the possible disruption of the MX-C continuous network in the
thick electrode (Supplementary Fig. 26). On the other hand,
intact MX-C nanosheets are well preserved and uniformly cover
the Gr-Si superstructures in theMGrSi/A = 3.3 mg cm� 2 elec-
trode, as demonstrated in Fig.5d, e.

Comparison with published data. To demonstrate the advantage
of high areal capacity Si/MXene composites for high-energy Li-
ion batteries, we compared theC/A in this work to other

reported Si/conductive-binder systems. TheC/A of Si/MXene
composites exceeds the literature results, which are generally
lower than 4 mAh cm� 2 (Fig. 5f and Supplementary Table 4)
14,17,18,20–22. The C/A of reported Si/conductive-binder systems
is typically limited by theMActive/A (<2 mg cm� 2). Even with a
high MActive/A (~4 mg cm� 2), graphite-Si/conductive-binder
electrodes display a much lowerC/A than the results reported
here due to the excessive graphite content in the electrodes21,47.
The ultrahighC/A of the Si/MXene electrodes can be attributed
to the advanced electrode architecture; (1) the viscous nature of
the MXene aqueous ink enables the formation of thick composite
electrodes (thus highMAcitve/A) using a simple/scalable manu-
facturing process; (2) the high aspect ratio and metallic con-
ductivity of MXene nanosheets endow the composite electrodes
with mechanical robustness, high strength and excellent con-
ductivity, facilitating fast electron transport; (3) the continuous
MXene scaffold ef� ciently accommodates the volume change and
stress induced by the Si lithiation/delithiation, and boosts the
utilization of active materials. Indeed, the thickness changes are
~34% in nSi/MX-C and ~20% in Gr-Si/MX-C, suggesting 30 wt%
of the MX-C nanosheet network has effectively accommodated
the volume change induced by 70 wt% of Si particles (Supple-
mentary Fig. 27).

We note that producing highMActive/A electrodes is of
technological signi� cance; it not only delivers a higherC/A to
the electrode but also decreases the mass portion of inactive
components, such as current collector (Cu foil for anode side)
and separator. Consequently, the cell-level performance of
the anode, which includes the mass of Cu foil (MCu-foil/
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A = 9 mg cm� 2), electrode and half of the separator (MSeparator/
A = 2 mg cm� 2), can be improved signi� cantly (Fig.5g). Taking
this into consideration, we calculated the true performance of our
electrodes along with other reported Si/conductive-binder
systems according to:

C=MTotal ¼
C=A

MActive
A þ MC� binder

A þ MCu� foil
A þ

0:5MSeparator

A

ð2Þ

TheC/MTotal was plotted versus the correspondingMActive/A, as
shown in Fig.5h. This comparison clearly suggests that our
electrodes exhibit much higher speci� c capacities on the cell level,
highlighting the advantages of MXene viscous inks over other
conductive binders. For example, the nSi/MX-C electrode
showcases aC/MTotal= 790 mAh g� 1 at MSi/A = 3.8 mg cm� 2,
while the Gr-Si electrode demonstrates 815 mAh g� 1 atMGrSi/A =
13 mg cm� 2. Importantly, our results are quite close to the
theoretical limit (dashed lines in Fig.5h) for all samples, indicating
that almost full utilization of Si active materials has been reached at
our highestMAcrive/A electrode. Moreover, the shape of the Gr-Si/
MX-C electrode is instructive; the theoretical curve (blue dashed
line) nearly saturates at highMGrSi/A > 14 mg cm� 2. In other
words, even if we further increase the electrode thickness, the
C/MTotal of the Gr-Si/MX-C anode will only increase marginally.
This means that the electrode architecture has allowed us to
reach the absolute maximumC/MTotal possible for the Gr-Si
material used.

Conclusion. In summary, the ef� cient utilization of 2D MXene
nanosheets as a new class of conductive binder for high volume-
change Si electrodes is of fundamental importance to the

electrochemical energy storage� eld. The continuous network of
MXene nanosheets not only provides suf� cient electrical con-
ductivity and free space for accommodating the volume change
issue but also well resolves the mechanical instability of Si.
Therefore, the combination of viscous MXene ink and high-
capacity Si demonstrated here offers a powerful technique to
construct advanced nanostructures with exceptional performance.
Of equal importance is that the formation of these high-mass-
loading Si/MXene electrodes can be achieved by means of a
commercially compatible, slurry-casting technique, which is
highly scalable and low cost, allowing for large-area production of
high-performance, Si-based electrodes for advanced batteries.
Considering that more than 30 MXenes are already reported, with
more predicted to exist, there is certainly much room for further
improving the electrochemical performance of such electrodes by
tuning the electrical, mechanical and physicochemical properties
of this exciting 2D MXene family.

Methods
MXene ink preparation. MXene viscous ink was prepared as follows: 15 mL of
deionized (DI) water was added to the as-etched, multilayered MXene (Ti3C2Tx or
Ti3CNTx), followed by vigorous shaking by hand/vortex machine for 15 min. Then
the mixture was centrifuged at 3500 rpm for 30 min. The top 80% supernatant was
collected and centrifuged at 5000 rpm for 30 min. After decanting the supernatant,
the sediment was re-dispersed in 15 mL of DI water by vigorous shaking for 10
min, resulting in viscous MXene ink denoted as MX-C (Ti3C2Tx) and MX-N
(Ti3CNTx), respectively. A detailed description of the preparation of multilayered
MXenes can be found in Supplementary Methods.

Electrode fabrication. Electrodes were prepared via a slurry-casting method using
MXene viscous aqueous ink without the addition of any other conductive additives
or polymeric binder. Typically, nanosized silicon powders, nSi, (or graphene-
wrapped Si, Gr-Si, Angstron Materials) were mixed with MX-C ink and ground
into a uniform slurry before casting onto Cu foil using a doctor blade. After drying
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at ambient conditions for 2 h, electrodes were punched (12 mm in diameter) and
vacuum-dried at 60 °C for 12 h to remove residual water. The MXeneMf in the
electrodes (ranging from 5 to 40 wt%) was controlled by changing the mass ratio of
Si powders to MXene during the slurry preparation. In addition, electrodes with
different mass loadings (M/A) were obtained by changing the height of doctor
blade (150–2100 µm) when casting a slurry with 30 wt% of MXene. The resultant
electrodes possessed various thicknesses and thus various mass loadings and were
denoted as nSi/MX-C (or Gr-Si/MX-C). We also similarly fabricated nSi/MX-N
electrodes by mixing nSi powder with the MX-N viscous aqueous ink. The mass
fraction of MX-N Mf in the electrodes was 30 wt%. Detailed compositions and
thicknesses of the Si/MXene electrodes can be found in Supplementary Tables 2
and 3, respectively (Supplementary Methods).

Material characterization. The rheological properties of MXene inks, as well as
the reference sample, were studied on the Anton Paar MCR 301 rheometer.
Morphologies and microstructure of the Si/MXene electrodes were examined by
SEM, Raman spectroscopy and XRD. The electrical conductivity of the electrodes
was measured using a four-point probe technique. The mechanical properties of
the electrodes were measured on a Zwick Z0.5 Pro-Line Tensile Tester (100N Load
Cell). A detailed description of characterization can be found in Supplementary
Methods.

Electrochemical characterization. The electrochemical performance of the Si/
MXene electrodes was evaluated in the half-cell con� guration (2032-type, MTI
Corp.). The coin cells were assembled inside an Ar-� lled glove box with Si/MXene
paired with Li metal disc. A unit of 1 M lithium hexa� uorophosphate (LiPF6) in
ethylene carbonate/diethyl carbonate/� uoroethylene carbonate (3:6:1 in v/v/v,
BASF) was selected as the electrolyte. GCD tests were performed within 0.005–1.2
V on a potentiostat (VMP3, BioLogic). For the post-mortem analysis, the cycled
cells were carefully disassembled inside the glove box and rinsed with dimethyl
carbonate. A detailed description of the electrochemical characterization can be
found in Supplementary Methods.

Data availability
The data sets generated during and/or analyzed during the current study are available
from the corresponding authors on reasonable request.
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