Three-year follow-up study exploring metacognition and function in individuals with first episode psychosis

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/83694/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
Three-Year Follow-Up Study Exploring Metacognition and Function in Individuals With First Episode Psychosis.

Dr Abigail Wright^{abc*}, Dr Geoff Davies^d, Professor David Fowler^{ab}, Professor Kathryn Greenwood^{ab}.

^a University of Sussex, School of Psychology, Brighton, East Sussex, United Kingdom
^b Sussex Partnership NHS Foundation Trust, Swandean, West Sussex, United Kingdom
^c Center of Excellence for Psychosocial & Systemic Research, Massachusetts General Hospital
^d University of Surrey, Faculty of Health and Medical Sciences, Surrey, United Kingdom

Abstract word count: 221
Manuscript word count: 10146 (full text and reference)

Keywords: First Episode Psychosis; Metacognition; Functioning; Longitudinal; Cognition; Negative symptoms; Functional capacity

^{*corresponding author:}

Abigail Wright
Massachusetts General Hospital
Center of Excellence for Psychosocial & Systemic Research
151 Merrimac St. | 6th Floor | Boston, MA 02114

Email: awright24@mgh.harvard.edu
Abstract

Introduction: Research has demonstrated that functional outcome in psychosis is predicted by factors such as neurocognition, functional capacity, symptoms and, more recently, metacognition. Metacognitive ability has been demonstrated to mediate between neurocognition and functional outcome in First Episode Psychosis (FEP). Whether metacognition also predicts longer-term recovery in first episode is unknown. This study assessed whether neurocognition, functional capacity and metacognitive ability in FEP predicted functional outcome three years later. Methods: Eighty individuals with First Episode Psychosis were re-contacted after an average three years (range: 26-45 month follow-up) from baseline. Twenty-six participants (33%) completed neurocognitive measures, metacognition, functional capacity, functional outcome (hours spent in structured activity per week) and psychopathology at baseline and at follow-up. Results: Individual regression analyses demonstrated neurocognition, functional capacity and metacognitive ability at baseline significantly predicted functional outcome at three years. However, when baseline functional outcome was controlled, only metacognitive ability was a significant predictor of change in functional outcome from baseline to follow-up, p<.001. This model explained 72% (adjusted $r^2 = .69$) of the variance in functional outcome at follow-up. Negative symptoms did not change the model. Discussion: This study demonstrated that better metacognitive ability significantly predicted improvement in functioning in FEP across a 3-year period. This highlights the potential value of clinical interventions that focus on improving metacognitive ability at first point of illness to maximize recovery.
Introduction

Clinical recovery can be considered improvement in symptomatology and social/occupational functioning (Andreasen et al. 2005; Harvey and Bellack 2009). Although clinical recovery after an experience of psychosis was previously considered poor (May et al. 1981), recent research has demonstrated that around 50% of individuals with psychosis had favourable outcomes after long follow-up periods (Harrison et al. 2001; Harrow et al. 2005; Wunderink et al. 2009) and this has also been demonstrated with First Episode Psychosis (FEP) (Henry et al. 2010; Robinson et al. 2004). A 10-year follow-up study showed 77% of participants showed at least one period of recovery (defined as sustained symptom remission for at least two years) with 46% symptom-free for at least two years (Morgan et al. 2018). However, for Edwards et al. (1998) and Robinson et al. (2004) only 6.6% and 14% (respectively) met the criteria for full recovery after 1 and 5 year(s) (respectively), suggesting clinical recovery during early stages of illness may be slow. There is clear interest in understanding factors that influence clinical recovery in psychosis, particularly FEP where recovery may be more likely (Harrison et al. 2001; Morgan et al. 2014). Birchwood et al. (1998) named this the critical-period, highlighting the importance of early and targeted interventions to prevent further decline (Bertolote et al. 2002; Mcgorry, Killackey, and Yung 2008; Marshall and Rathbone 2011).

Social and occupational functioning, an aspect of clinical recovery, is a measurable aspect of an individual’s specific activities of daily living. Hodgekins et al. (2015b) suggested assessing functioning using time spent in structured activity per week (Fowler et al., 2009; Harrison et al., 2001), including employment, education, sports, and leisure. Research has demonstrated that time spent in structured activity is on average 63.5 hours in the healthy population, 25.2 hours in FEP sample (Hodgekins, Birchwood, et al. 2015), and 19.7 hours in a psychosis sample with delayed recovery (Hodgekins, French, et al. 2015). Importantly, engaging in more hours of activity, e.g. paid work, has been associated with reduced symptoms and improved overall functioning in interventions studies (Bell, Paul, and Robert 1996; Eklund, Hansson, and Ahlqvist 2004).

Research has demonstrated difficulties in functioning across the course of recovery in psychosis and, therefore, the importance of focusing on understanding and improving poor functional outcome. Despite advances in psychological interventions for psychosis, outcome remains poor. There is value in the identification of those with psychosis who are at risk of
poor functioning across time, to target interventions to reduce this disability. There are four selected lines of evidence which will be discussed here to suggest factors which predict poor functioning: i) neurocognition, ii) functional capacity, iii) negative symptoms and iv) metacognition.

Research assessing functional outcome within individuals with psychosis has focused on the influence of neurocognitive difficulties (Nuechterlein et al. 2011; Green, Kern, and Heaton 2004; Lepage, Bodnar, and Bowie 2014). The relationship between neurocognition and functional outcome has been demonstrated cross-sectionally (Allott et al. 2011; Carrión et al. 2013) and longitudinally in schizophrenia (Robinson et al., 2004), FEP (Milev et al. 2005; Stirling et al. 2003) and Ultra-High Risk groups (Lin et al. 2011). However, studies have demonstrated that predicting those who would have poor outcome with neurocognitive variables is substantially more straight-forward than predicting those who would recover (Faber et al. 2011; Gonzalez-Blanch et al. 2010). This suggests a more complex relationship with additional factors to be explored.

Functional capacity has also been shown to predict real-world functional outcome within schizophrenia (Leifker, Bowie, and Harvey 2009; Green et al. 2000) and FEP (Davies, Fowler, and Greenwood 2017). Neurocognitive ability associated with functional capacity (Bowie et al. 2008; Evans et al. 2003; Vesterager et al. 2012) and functional capacity has been shown to mediate between neurocognition and functional outcome in schizophrenia (Bowie et al. 2006) and FEP (Davies, Fowler, and Greenwood 2017). A longitudinal study demonstrated functional capacity predicted real-world functioning in psychosis for those with positive, but not for those with negative symptoms (Best et al. 2014). The authors suggested that negative symptoms are distinct and impact functioning, above functional capacity.

Models have highlighted that negative symptoms predict functional outcome in psychosis (Rector, Beck, and Stolar 2005; Ventura et al. 2009). Specifically, negative community symptoms (e.g. amotivation or social withdrawal) compared to negative expressive symptoms (e.g. blunted affected), when combined with cognitive deficits, have the largest impact on functioning in schizophrenia (Fervaha et al. 2014a). Longitudinal studies have demonstrated that lower levels of negative symptoms predicted better outcomes in FEP in a large study of 304 participants (Austin et al. 2013). When assessing positive and negative symptom trajectories, poorer negative symptom trajectories were associated with poorer social
functioning, disorganized symptoms and schizophrenia diagnosis, compared to positive symptom trajectories which were associated with DUP and substance use (Austin et al. 2015). However, Alvarez-Jimenez et al. (2012) demonstrated that whilst symptom remission predicted functional recovery, negative symptoms had little predictive value for long-term functioning. Studies have noted an overlap in the variance in outcome explained by cognition and negative symptoms (Milev et al. 2005; Villalta-Gil et al. 2006) and, when taking into consideration the role of cognition, symptoms are shown not to predict functioning cross-sectionally (Velligan et al. 2000) and later longitudinally (Peña et al. 2012). These studies highlight that functional outcome is the product of a complex array of abilities and symptoms.

Following this research, models in psychosis suggest that neurocognition, functional capacity and negative symptoms influence functional outcome (Grant and Beck 2009; Bowie et al. 2008; Rector, Stolar, and Grant 2011). The path between neurocognition and functioning has been shown to be mediated by functional capacity and cognitive processes (Grant and Beck 2009; Couture, Blanchard, and Bennett 2011; Bowie et al. 2006; Rector, Stolar, and Grant 2011), including defeatist performance beliefs and self-stigma (Berry and Greenwood 2018) and, most recently, metacognition (Davies, Fowler, and Greenwood 2017).

Metacognition is considered ‘thinking about thinking’ (Flavell, 1979) or the way one thinks about one’s experience (Dimaggio et al. 2009). Metacognition involves forming an integrated representation of oneself, others, and the world and using these representations to implement an effective action strategy to perform or accomplish a task (Semerari et al. 2003b). Nelson and Narens (1990) outlined a metacognitive model suggesting an object-level (cognitive processes) and a meta-level (an abstract view of the object-level) are connected by metacognitive processes. Metacognition may be fractionated and three levels of metacognition have been proposed. Firstly, metacognitive ability: capacity to think about one’s own cognitions, emotions and behavior, and to use this reflection to respond to challenges (Lysaker et al. 2010; Lysaker, Erickson, et al. 2011). Secondly, metacognitive experience: an online appraisal of one’s experience, and thirdly, metacognitive sensitivity: a sub-conscious awareness of performance during a task. The first level, metacognitive ability, can be measured using Metacognitive Assessment Scale (MAS) (Lysaker et al. 2005) or Metacognitive Assessment Interview (MAI) (Semerari et al. 2012), is shown to predict real-life functioning in schizophrenia (Lysaker et al. 2013; Arnon-Ribenfeld et al. 2017; Davies and Greenwood 2018). In particular, metacognitive ability is a mediator between neurocognition and...
functioning schizophrenia (Lysaker et al. 2010) and FEP (Davies, Fowler, and Greenwood 2017; Wright et al. 2018). Metacognitive ability is shown to have a large, key role in functioning in psychosis, although this relationship is also influenced by neurocognition and functional skills.

Whether the relationship between metacognition and functional outcome persists across time is unknown. Intervention studies focusing on improving metacognition have demonstrated an increase in real-world functioning (Moritz et al. 2014; Rocha and Queirós 2013; Briki et al. 2014; Dubreucq, Delorme, and Roure 2016). Longitudinal studies demonstrated that metacognitive ability, particularly one’s ability to use representations of self or other to implement effective strategies, predicted social functioning across a 5-month period in schizophrenia (Lysaker, Erickson, Buck, et al., 2011) and McLeod, Gumley, MacBeth, Schwannauer and Lysaker (2014) demonstrated that metacognitive ability predicted negative symptoms at 12 months in FEP, independent of known factors, e.g. gender, DUP and premorbid academic/social adjustment. However, no study has yet assessed the role of metacognitive ability on functioning over a longer follow-up period; particularly within FEP, where recovery is more likely.

It may be suggested that metacognitive ability enables the use of appropriate skills and abilities to perform a task or challenge. For example, an individual may have poor neurocognitive ability, but if they have appropriate metacognitive ability then they may be able to use their available resources and strategies in order to overcome challenges in the environment. Successful outcome, following the utilization of metacognitive ability, may predict engagement in more activities rather than neurocognition, functional capacity skills and negative symptoms themselves. Lysaker et al. (2010a) demonstrated that those with schizophrenia and high metacognitive ability display better work performance across 6-months, as those with high metacognitive ability were able to see their conclusions as fallible and were able to learn and adapt to the changing demands of work. Therefore, metacognitive ability may be the key predictor of a change in functional outcome across time.

From this, it is hypothesized that functional outcome in FEP at 3-year follow-up will be predicted by metacognitive ability at baseline, independent of neurocognition, negative symptoms and functional capacity. It is also hypothesized that a change in functional outcome
will be predicted by metacognitive ability at baseline, independent of neurocognition, negative symptoms and functional capacity.

Materials and methods

Procedure

Ethical and Health Research Authority approval was obtained through Camberwell St. Giles Research Ethics Committee (reference number: 17/LO/0055). This study was All participants provided written informed consent at first entry to the study. Participants who gave consent to be re-contacted were contacted after the three-year period and provided written informed consent at follow-up.

Design

This is a longitudinal follow-up study exploring the contribution of metacognitive ability to functional outcome at three-year follow-up with individuals with First Episode Psychosis. Full details of the study design and ethical approval is provided in the protocol (Wright, Fowler, and Greenwood 2018). Details of the baseline study are provided in an earlier publication (Davies et al., 2017).

Participants

Participants with First Episode Psychosis were recruited, via a convenience sample, from outpatient Early Intervention in Psychosis services in Sussex Partnership NHS Foundation Trust. All participants had been within Early Intervention Services for at least 3 months before entry into the study. All participants received a diagnosis of First Episode Psychosis (F29) by a psychiatrist at entry to the study. Participants with a primary diagnosis of substance misuse disorder or organic neurological impairment were excluded.

Measures

Metacognitive ability: This was assessed using the Metacognitive Assessment Interview (MAI) (Semerari et al. 2012), which requires the participant to reflect on a recent difficult interpersonal experience and to answer a series of questions. The measure assesses the individual’s ability for i) monitoring, identification of feelings and thoughts, ii) differentiation, distinguishing between dreams, beliefs or assumptions, iii) integration, reflection on different mental states and rules governing them, and iv) decentralization, describing the mental state of
the other which is independent of their own view. These four subscales are scored between 0-5, depending on spontaneity, use of aids/prompts and the sophistication of the answer. The scores for the sub-domains are averaged to provide one multidimensional score. This measure has demonstrated good inter-rater reliability and internal consistency ($\alpha=0.91$ for total metacognition), and construct reliability showing correlations amongst the MAI scales ($r=0.62-0.9$) (Semerari et al. 2012).

Function

Functional outcome: Time-Use Survey (TUS) (Short 2006) is a structured interview (inter-rater reliability 0.99; Hodgekins et al. 2015) during which participants are asked questions regarding the number of hours spent engaged in specific structured activities for the preceding month (D Fowler et al. 2009), including hours spent in paid work, voluntary work, educational activity, childcare, sports, leisure and housework activities. A weekly average was calculated for each activity. Two total scores can be produced: i) constructive economic activity (CEA) includes the total hours per week in employment, education, voluntary work, childcare and housework and chores and ii) structured activity (SA) includes the total hours per week in constructive economic activity, leisure activities and sports activities. Within this study, we used structured activity as the total score. This measure is able to capture differences across clinical groups (Hodgekins, French, et al. 2015; Cella, Edwards, and Wykes 2016).

Functional capacity: The UCSD Performance-Based Skills Assessment (Patterson et al. 2001) provides a total score for real-life performance skills based on role-play tasks. This measure is divided into five sections: i) finance, e.g. counting money, ii) communication, e.g. re-arranging a medical appointment, iii) comprehension/planning, e.g. planning a visit to a theme park, iv) transport, e.g. reading a bus timetable, and v) household, e.g. creating a shopping list from a recipe. During each role-play the individual is given points by the researcher from the manual guidelines. These raw scores are totaled for each domain, converted into 0-20 scale then multiplied by 2 and summed to provide a total out of 100. This measure demonstrates high internal consistency ($\alpha=0.88$), good validity with other scales (Direct Assessment of Functional Status scale, $r=0.86$) and good test-retest reliability ($r=0.91$) (Harvey, Velligan, and Bellack 2007; Mausbach et al. 2011; Mausbach et al. 2009).

Neurocognitive ability: Participants completed a battery of neurocognitive measures, including Verbal and working memory (Logical Memory and Letter-Number Sequencing subscales from
the Wechsler Memory Scale (WMS-III)), executive function (Trail-Making Task and Verbal Fluency), Verbal and Performance IQ (Vocabulary and Matrix reasoning tasks). All scores were converted into Z scores using age-scaled population means and standard deviations (Wechsler 1999; Wechsler 1987; Tombaugh 2004; Tombaugh, Kozak, and Rees 1999). A neurocognitive composite score at baseline was produced from the measures outlined above. IQ was assessed at follow-up using Vocabulary task and Matrix reasoning task (Wechsler 1999).

Symptoms: Positive and Negative Syndrome Scale (Kay & Fiszbein 1987) is the most widely used standardized instrument for assessing symptom severity in schizophrenia (Hermes et al. 2012). This measure provide three separate scores for positive, negative and general psychopathology symptoms.

Planned analysis

G power estimation was used for a power calculation based on a power of .80, effect size of .31 (Davies et al., 2017) and alpha of .05. This suggested for 4 predictors a total of 44 participants were required.

Hypothesis testing

Descriptive statistics were produced for neurocognitive ability, metacognitive ability, functional capacity, functional outcome and symptoms and scores were compared from baseline to three-year follow-up using t-tests. At baseline, a large battery of neurocognitive measures was collected. At follow-up, only matrix reasoning and vocab measures (as a two-part IQ score) were collected. Therefore, the difference tests (comparing baseline and follow-up) only assessed differences in these measures.

For the main analysis, predictors of functional outcome at three follow-up were explored (variables included: neurocognition, negative symptoms, functional capacity and metacognition). In light of the small sample size, and in order to reduce the number of predictors in the model, a series of single regression analyses were used to assess the predictive value of each variable at baseline on functional outcome at three-year follow-up. After this, a stepwise regression was conducted using only the significant predictors as covariates and metacognitive ability was added to the model in block 2, to assess the independent contribution
of metacognitive ability.

Next, the predictive value of variables on change in functional outcome from baseline to follow-up was assessed. The change was assessed by using baseline functional outcome as a covariate, adjusting the mean for the baseline levels, to explore differences in functional outcome at follow-up. Then, significant predictors were used as covariates and metacognitive ability added to the model in block 3. It is important to note that the Time-Use survey has been demonstrated to be sensitive to change over time in clinical trials (see Fowler et al., 2018; 2019). Due to the sample size and to minimize the number of predictors within a single model, the independent role of neurocognition, negative symptoms and functional capacity were used as covariates within three parallel analyses.

Results

Data and assumption checking
Missing data was considered as ‘Missing Completely At Random’ (MAR), as missing data was not associated with data within the study. All predictor and outcome data were checked for skewness, kurtosis and outliers. MAI total at baseline displayed a multimodal distribution. There were no significant differences on cognition, functional capacity, functional outcome, symptoms and metacognitive ability for those who participated in follow-up and those who did not.

Sample characteristics
The first recruitment phase took place during 2013-2015. The follow-up recruitment phase took place within 2017 after three years (average 36-month; range 26 – 45-month follow-up). The baseline sample included 80 participants with FEP (49 men, 31 female) with a mean age of 26.08 years (SD=5.53). Seventy-seven people provided consent to re-contact. Twenty-six participants from the baseline study took part in the follow-up assessment (see figure 1 for flowchart of participation). The mean age at follow-up was 28.93 (SD=5.55, range 22-43) with 23 males and 8 females (see table 1). See supplement A for distribution of months between baseline and three years for the sample followed-up.

[INSERT FIGURE 1]
Descriptive statistics
See table 1 for descriptive statistics. A number of variables increased over the two
timepoints: vocabulary score \((p=.04)\), functional capacity (UPSA) \((p<.001)\), functional
outcome (time-use structured activity) \((p=.01)\) and metacognitive ability (MAI) \((p=.03)\).
Negative symptoms decreased \((p=.01)\) (see table 1 for descriptive statistics).

[INSERT TABLE 1]

Associations between predictor variables
See table 2 for correlation matrix for neurocognition, metacognitive ability, symptoms,
functional capacity and functional outcome at baseline and follow-up. Age at baseline was
significantly associated with functional outcome at follow-up \((r=.4, p=.027)\) and included as a
covariate in subsequent analyses. For neurocognition, a Confirmatory Factor Analysis was
conducted on the z scores of the cognitive variables at baseline and converted into a
neurocognitive factor score for each participant.

[INSERT TABLE 2]

Hypothesis 1
In order to test predictors (neurocognition, functional capacity, negative symptoms and
metacognition) of functional outcome at 3-year follow-up, individual regression analyses were
conducted. Neurocognitive ability at baseline did not significantly predict functioning at three
years, \(p=.24\). Functional capacity, \(F(2, 25) 6.66, p=.01\), negative symptoms, \(F(2, 23) 5.69,
\(p=.01\), and metacognitive ability, \(F(2, 24) 27.97, p<.001\), were significant predictors of
functioning at three years. Including negative symptoms as a covariate in the above analyses
did not substantially change the significance levels for neurocognition and metacognitive
ability \((p=.44\) and \(p<.001\), respectively). However, when controlling for negative symptoms,
functional capacity at baseline was no longer a significant predictor of functional outcome at
follow-up, \(\Delta R^2=.07, p=.13\).

Next, in order to test whether metacognition predicted functional outcome at follow-up
independent of other known factors, all significant predictors (functional capacity and negative
symptoms) were included in the first block of the stepwise regression then the independent
contribution of metacognitive ability (MAI) to recovery was assessed (see table 3). This model explained 77.1% (adjusted $r^2 = .72$) of the variance in functional outcome at follow-up ($R^2 = .77$, $F(4, 23) = 16.01, p < .001$). MAI significantly improved the model ($ΔR^2 = .35, p < .001$), explaining 34.6% of the 77% (adjusted $r^2 = .72$) total variance explained.

Hypothesis 2

In order to assess predictors (neurocognition, functional capacity, negative symptoms and metacognition) of a change in functional outcome from baseline to 3-year follow-up, individual regression analyses were conducted, controlling for baseline functional outcome. Neither neurocognition ($p = .22$), functional capacity ($p = .57$) or negative symptoms ($p = .35$) predicted change in functional outcome. Metacognitive ability (MAI) was a significant predictor of change in functional outcome at follow-up, when including baseline functional outcome as a covariate. This model explained 72% (adjusted $r^2 = .69$) of the variance in functional outcome at follow-up ($R^2 = .72$, $F(3, 25) = 19.22, p < .001$). MAI significantly improved the model ($ΔR^2 = .12, p = .01$), explaining 12% of the 72% total variance explained (see table 4). VIF values were inspected to check multicollinearity and the score was acceptable (Ringle, Wende, and Becker 2015; Hair et al. 1995). Even when separately controlling for negative, neurocognition, and functional capacity in a parallel analysis, metacognitive ability was still a significant predictor of change in functional outcome from baseline to follow-up [controlling for neurocognition ($p = .005$), negative symptoms ($p = .006$), and functional capacity ($p = .001$)].

For those participants who were followed-up, metacognitive ability (MAI) at baseline demonstrated a bivariate distribution (supplement B). We therefore, compared those with FEP and either high or low metacognitive ability graphically, with other previous samples. Specifically, we divided participants into two groups: high MAI at baseline (N=14) or low MAI at baseline (N=12), using mean split, to assess the changes in time-use scores between the groups. Individuals in the high MAI group demonstrated a difference in hours spent in structured activity between baseline (M=50.32, SD=23.98) and follow-up (M=58.13, SD=19.29) ($p = .05$), but for the low MAI group there was no significant difference ($p = .17$) in
structured activity between baseline (M=13.17, SD=7.7) and follow-up (M=15.53, SD=7.63) (see figure 2).

[INSERT FIGURE 2]

Discussion

This was the first study assessing the role of metacognitive ability on functional outcome longitudinally in First Episode Psychosis. This study was able to demonstrate that functional outcome improved over time and, whilst negative symptoms and functional capacity predicted functioning at three years, the improvement in functioning was largely predicted by metacognitive ability and baseline functioning.

Within this study, individuals with FEP significantly improved in cognitive ability (verbal), real-life functional capacity skills, metacognitive ability and negative symptoms over three years. At baseline, individuals within this sample were demonstrating typical mean activity levels for an FEP sample (29.82 hours per week) (see Hodgekins et al. 2015b), but there was an improvement of 9 hours in structured activity at the three-year follow-up, resulting in a time-use score similar to an ARMS group. There was an increase in functional capacity, in that individuals at follow-up were similar to those typically residing independently and employed (Mausbach et al. 2011). There was a significant improvement in verbal cognitive ability (vocabulary). Studies in the general population suggest vocabulary is stable over time (Scheider, Niklas, and Schmeideler 2010), including studies within schizophrenia (Heaton et al. 2001; Ginett and Moran 1964). The increase in verbal cognition may be the consequence of an initial drop in cognitive ability, particularly verbal IQ (Vorstman et al. 2015; Leeson et al. 2011), which then recovered throughout the follow-up period.

Findings demonstrated that functional capacity and negative symptoms, but not neurocognition, at baseline predicted functional outcome at three years after FEP, supporting and furthering research (Austin et al., 2015, 2013; Bowie et al., 2008; Best et al. 2014). Neurocognition did not directly predict functional outcome at three-years. However, studies have suggested that neurocognitive factors only predict a small amount of variance in real-world functioning (Bowie et al. 2006) and other factors have a more substantial role. Alternatively, neurocognition may have an indirect role, via functional capacity, as the present study demonstrated an association between neurocognition and functional capacity or negative
symptoms as Fervaha, Foussias, Agid and Remington (2014) demonstrated, using a factor analysis, that negative symptoms may be divided into amotivation and diminished expression and it is the former factor, combined with cognitive deficits, that have the largest impact on functioning in schizophrenia.

Importantly, this study demonstrated that functional outcome at three-years was predicted by metacognitive ability, supporting previous cross-sectional studies (Davies et al. 2017; Lysaker et al. 2010; Saeedi et al. 2007). Metacognitive ability was also the only significant predictor of improvement in functioning accounting for a significant change in functioning over time. Therefore, whilst negative symptoms and functional capacity skills predicted functioning at three-years, this study highlights that those with higher metacognitive ability at baseline may be better able to make use of strategies and resources (e.g. from the early intervention services) to improve their functioning over time, compared to those with lower metacognitive ability who may need more guidance in order to utilize the services available to them.

In further exploring metacognitive ability at baseline, it was evident that individuals who displayed low metacognitive ability at baseline demonstrated limited change in functioning at three-year follow-up, compared to individuals who displayed adequate metacognitive ability. This may suggest that those with better metacognition were better able to reflect on their thoughts, strengths, as well as perspectives of others, and use appropriate strategies to implement in the real world. Metacognitive ability was a longitudinal predictor of functional outcome, independent of IQ. Whilst the sample size in the group is small, this supports the main hypothesis that early metacognitive factors influence change in functioning.

A large amount of the variance in time-use at follow-up was predicted by baseline time-use and age. Therefore, individuals with better initial functioning are more likely to show an improvement later on, compared to those who had lower functioning who showed no change in already poor functioning. This finding may suggest that those with poor functioning at baseline have poorer metacognitive abilities. The poor metacognitive ability then may predict lower prospective functioning or strategies to improve their poor functioning or are less motivated, due to poor cognitive and metacognitive ability (Luther et al. 2016; Tas et al. 2012), both of which lead to less change or improvement in functioning over time. This study defined functional outcome as a measurable aspect of an individual’s specific activities of daily living, and social and occupational functioning. The Time-Use Survey is a relatively
objective and specific measure of functioning, sensitive to change over time (see Fowler et al., 2009; Fowler, Hodgekins, & French, 2019; Fowler et al., 2018) and across stages of psychosis (see Hodgekins et al., 2015). Future studies could look at changes in subjective recovery outcomes (see Neil et al., 2009), following the service user movement (Shepherd, Boardman, and Slade 2008), to identify longitudinal relationships with metacognition. These findings highlight the importance of the Early Interventions services to focus on improving functioning and encouraging early help-seeking to prevent low levels of functioning initially.

These findings can be taken forward in two ways: i) poor metacognitive ability may be a marker for poor outcome in psychosis later on, and ii) metacognitive ability may be a key ability for interventions to target in early psychosis to improve subsequent functioning. If metacognitive ability does play a role, metacognitive interventions which have previously demonstrated to be associated with decrease in symptoms (Lysaker, Buck, and Ringer 2007), may also be useful for improving functional outcome in psychosis (Dubreucq, Delorme, and Roure 2016). Metacognition Reflection and Insight Therapy (MERIT) is specifically aimed at improving metacognitive ability (Lysaker et al. 2011). However, De Jong et al. (2018) recently demonstrated, in a trial of MERIT for individuals with schizophrenia, evidence of improved metacognitive ability but not functioning. The lack of improvement in functioning may be due to shorter follow-up period or may be accounted for by other factors, e.g. functional capacity or negative symptoms (see Davies et al. 2017; Koren et al. 2006). Therefore, new interventions, such as cognitive remediation, should continue to aim to improve both cognitions and real-life skills to consider both cognitive and metacognitive ability (e.g. Cella et al. 2015).

Limitations and future studies

Firstly, there was a low follow-up rate. This may be due to the long period between the two assessment points and during this time participant had moved out of area, lost contact with study team, or could not remember the first study due to length of time or being unwell during the first assessment. Future studies should carefully consider the role of presentation of the study and continuity of contact across time. A consequence of this low follow-up rate was the small sample size, which limited the number of predictors included in the regression analyses.

In terms of measurement, this study used the PANSS to assess negative symptoms which may not align with current negative symptoms conceptualizations (see Kirkpatrick, Fenton,
Carpenter, & Marder, 2006), e.g. negative symptoms are a distinct therapeutic area of interest and negative symptoms are independent from depression, medication side effects and neurocognition. Future studies could assess negative symptoms using Clinical Assessment Interview for Negative Symptoms (CAINS) (Kring et al. 2013) or Brief Negative Symptom Scale (BNSS) (Kirkpatrick et al. 2011) and could assess, or control for, other psychotic symptoms which could be deemed as secondary negative symptoms (Fervaha et al. 2014a).

This sample was on average lower on symptoms of psychosis at baseline and follow-up (Leucht et al. 2005) compared to other FEP samples (Fitzgerald Lucas, Redoblado, Winter, Brennan, Anderson, & Harris, 2004; McLeod et al. 2014), which may explain the lack of change in positive symptoms. Whilst this study demonstrated that metacognitive ability, measured using Metacognitive Assessment Interview, had a large predictive role on functioning, other measures of metacognition, e.g. metacognitive experience (online appraisal) has been associated with social, real-world and work functioning (Gould et al. 2015; Verdoux et al. 2010; Stratta et al. 2009). Future studies should aim to replicate this follow-up study with addition of other metacognitive measures. Finally, age was used as a covariate within the main analyses assessing predictors of outcome, as it was associated with functional outcome at follow-up. Age was recently demonstrated as a positive predictor of structured activity in At Risk Mental State (ARMS) group (Bright et al. 2018) and it may be suggested that age is a proxy for illness severity as those who have an earlier psychosis onset may have more difficulties in functioning later on (Immonen et al. 2017). However, age of onset is difficult to measure and research suggests that premorbid IQ accounts for this difference (Zammit et al. 2004). Analyses without age as a covariate demonstrated no difference in the results.

Conclusion

The present three-year follow-up study was able to demonstrate that metacognitive ability at baseline significantly predicted improvement in functioning after three years, in FEP. This was independent of cognitions, functional capacity and negative symptoms. This study highlighted the importance of intervening early to enhance metacognitive ability, over neurocognitive ability or functional capacity, in order to improve functioning later on, and to target interventions to improve functioning in those with poor metacognitive ability in the early stages of psychosis. Future studies should aim to replicate this within a larger sample.

Acknowledgements
We thank all participants for taking part in the study. This study was included within a doctoral thesis by the first author at University of Sussex. This study was presented at IEPA-11 conference 2018.

Author Contribution Statement

AW, KG, DF developed the hypotheses for the study. GD collected the baseline data and AW collected the follow-up data. AW produced the manuscript with reviewing and editing from all authors (KG, DF, GD).

Data availability statement

The dataset for this manuscript is not publicly available. Due to the sensitive nature of the questions during the study, participants were assured raw data would remain confidential and would not be shared. Requests to access the dataset should be directed to Abigail Wright: awright24@mgh.harvard.edu.

Conflict of interest statement

There is no conflict of interest.

References

Davies, Geoff, David Fowler, and Kathryn Greenwood. 2017. “Metacognition as a Mediating

Luther, Lauren, Ruth L. Firmin, Jenifer L. Vohs, Kelly D. Buck, Kevin L. Rand, and Paul H. Lysaker. 2016. “Intrinsic Motivation as a Mediator between Metacognition Deficits and
Impaired Functioning in Psychosis.” *British Journal of Clinical Psychology*, n/a-n/a. https://doi.org/10.1111/bjc.12104.

———. 1999. “Wechsler Abbreviated Scale of Intelligence™ (WASI™).” Psychological Corporation, no. San Antonio, TX:

Tables

Table 1: Sample characteristics and descriptive and change statistics for neurocognitive measures, functional capacity, functional outcome, metacognitive ability and symptoms.

<table>
<thead>
<tr>
<th></th>
<th>Baseline (N=26)</th>
<th>Three-year follow-up (N=26)</th>
<th>Differences test (baseline to follow-up)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, yrs. (SD)</td>
<td>25.9 (5.94, range 19-39)</td>
<td>29.32 (6.18, range 22-43)</td>
<td></td>
</tr>
<tr>
<td>Gender (M/F)</td>
<td>19/7</td>
<td>19/7</td>
<td></td>
</tr>
<tr>
<td>Education (years)</td>
<td>13.67 (2.09)</td>
<td>13.64 (range 11-16 years)</td>
<td></td>
</tr>
<tr>
<td>Medication (Y/N)</td>
<td>22/4</td>
<td>18/8</td>
<td></td>
</tr>
</tbody>
</table>

1 Data for follow-up was captured as categories (e.g. GCSE, A-level, Degree, higher degree) which was subsequently converted into years of education to match the baseline group.
<table>
<thead>
<tr>
<th>Measure</th>
<th>Baseline Mean (SD)</th>
<th>Follow-up Mean (SD)</th>
<th>t(23)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix reasoning (t-score)</td>
<td>51.6 (8.71)</td>
<td>54.17 (5.52)</td>
<td>t(23)-1.96, p=.06</td>
<td></td>
</tr>
<tr>
<td>(range 24-68)</td>
<td>(range 41-66)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vocabulary (t-score)</td>
<td>49.62 (12.79)</td>
<td>54.23 (12.57)</td>
<td>t(24)-2.2, p=.04*</td>
<td></td>
</tr>
<tr>
<td>(range 35-70)</td>
<td>(range 21-70)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UPSA total (0-100)</td>
<td>74.66 (13.45)</td>
<td>83.09 (9.18)</td>
<td>t(24)-4.35, p<.001***</td>
<td></td>
</tr>
<tr>
<td>(range 42.94-93.18)</td>
<td>(range 57.96-96.6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Use CEA (hours in activity per week)</td>
<td>22.07 (19.95)</td>
<td>31.66 (22.87)</td>
<td>t(25)-2.66, p=.01*</td>
<td></td>
</tr>
<tr>
<td>(range 0-70.62)</td>
<td>(range .81-88.96)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time Use SA (hours in activity per week)</td>
<td>29.82 (22.3)</td>
<td>39.31 (24.81)</td>
<td>t(25)-2.47, p=.02*</td>
<td></td>
</tr>
<tr>
<td>(3-74.80)</td>
<td>(range 6.06-96.46)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAI total (0-5)</td>
<td>2.77 (1.32)</td>
<td>3.27 (.87)</td>
<td>t(25)-2.28, p=.03*</td>
<td></td>
</tr>
<tr>
<td>(range .88-4.56)</td>
<td>(range 1.63-4.44)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symptoms (positive)</td>
<td>11.44 (3.63)</td>
<td>11.87 (4.7)</td>
<td>t(23)-1.23, p=.23</td>
<td></td>
</tr>
<tr>
<td>(7-49)</td>
<td>(range 7-23)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symptoms (negative)</td>
<td>13.40 (4.06)</td>
<td>10.87 (3.89)</td>
<td>t(23)2.92, p=.01**</td>
<td></td>
</tr>
<tr>
<td>(7-49)</td>
<td>(range 7-26)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symptoms (general)</td>
<td>28.68 (6.9)</td>
<td>26.0 (5.68)</td>
<td>t(23) 1.5, p=.15</td>
<td></td>
</tr>
<tr>
<td>(16-112)</td>
<td>(range 18-38)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symptoms (total)</td>
<td>53.52 (12.36)</td>
<td>48.73 (12.84)</td>
<td>t(23) 1.2, p=.24</td>
<td></td>
</tr>
<tr>
<td>(30-210)</td>
<td>(range 32-79)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: *<.05, **<.01, ***<.001. UPSA = UCSD Performance-Based Skills Assessment; CEA = Constructive Economic Activity; SA = Structured Activity; MAI= Metacognitive Assessment Interview (total)

2 At baseline, a large battery of neurocognitive measures was collected. At follow-up, only collected matrix reasoning and vocab measures (as a two-part IQ score) was collected. Therefore, the t-tests in this table only assesses differences in these measures.
Table 2: Correlation matrix for neurocognition, metacognition, symptoms, functional capacity and functional outcome at baseline and follow-up.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurocognitive factor (baseline) 1</td>
<td></td>
</tr>
<tr>
<td>Metacognition (baseline) 2</td>
<td>.61**</td>
<td></td>
</tr>
<tr>
<td>Positive symptoms (baseline) 3</td>
<td>-.22</td>
<td>-.15</td>
<td></td>
</tr>
<tr>
<td>Negative symptoms (baseline) 4</td>
<td>.43**</td>
<td>-.64**</td>
<td>.17</td>
<td></td>
</tr>
<tr>
<td>General psychopathology symptoms (baseline) 5</td>
<td>-.22</td>
<td>-.39**</td>
<td>.59**</td>
<td>.52**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UPSA (baseline) 6</td>
<td>.48**</td>
<td>.53**</td>
<td>-.09</td>
<td>-.44**</td>
<td>-.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time-use (baseline) 7</td>
<td>.48**</td>
<td>.84**</td>
<td>-.1</td>
<td>-.49**</td>
<td>-.27*</td>
<td>.39**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metacognition (follow-up) 8</td>
<td>.66**</td>
<td>.64**</td>
<td>-.33</td>
<td>-.56**</td>
<td>-.33</td>
<td>.66*</td>
<td>.4*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive symptoms</td>
<td>-.32</td>
<td>-.36</td>
<td>-.39</td>
<td>.28</td>
<td>.17</td>
<td>-.31</td>
<td>-.29</td>
<td>-.59**</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(follow-up)</td>
<td></td>
</tr>
<tr>
<td>Negative symptoms</td>
<td>-.54**</td>
<td>-.46*</td>
<td>.3</td>
<td>.51*</td>
<td>.13</td>
<td>-.46*</td>
<td>-.34</td>
<td>-.55**</td>
<td>.71**</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(follow-up)</td>
<td></td>
</tr>
<tr>
<td>General</td>
<td>-.28</td>
<td>-.44*</td>
<td>.38</td>
<td>.23</td>
<td>.26</td>
<td>-.34</td>
<td>-.47*</td>
<td>-.31</td>
<td>.75**</td>
<td>.67**</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>psychopathology</td>
<td></td>
</tr>
<tr>
<td>symptoms (follow-up)</td>
<td></td>
</tr>
<tr>
<td>UPSA (follow-up)</td>
<td>.71**</td>
<td>.63**</td>
<td>-.29</td>
<td>-.42*</td>
<td>-.31</td>
<td>.74**</td>
<td>.3</td>
<td>.49**</td>
<td>-.29</td>
<td>-.48*</td>
<td>-.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Time-use (follow-up)</td>
<td>.29</td>
<td>.82**</td>
<td>.02</td>
<td>-.41*</td>
<td>-.23</td>
<td>.54**</td>
<td>.74**</td>
<td>.42*</td>
<td>-.37*</td>
<td>-.46*</td>
<td>.47**</td>
<td>.5**</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>
Table 3: Full regression model for predictive value of metacognitive ability on functional outcome at three years, whilst controlling for age, UPSA, and PANSS negative symptoms.

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>SE B</th>
<th>β</th>
<th>p value</th>
<th>CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>7.09</td>
<td>35.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UPSA</td>
<td>-.58</td>
<td>.44</td>
<td>-.33</td>
<td>.2</td>
<td>-1.5, .33</td>
</tr>
<tr>
<td>PANSS negative</td>
<td>-.14</td>
<td>1.15</td>
<td>-.02</td>
<td>.91</td>
<td>-2.54, 2.27</td>
</tr>
<tr>
<td>Age</td>
<td>.89</td>
<td>.54</td>
<td>.22</td>
<td>.12</td>
<td>-.25, 2.03</td>
</tr>
<tr>
<td>MAI (total)</td>
<td>18.99</td>
<td>3.54</td>
<td>1.05</td>
<td><.001***</td>
<td>11.57, 26.4</td>
</tr>
</tbody>
</table>

*<.05, **<.01, ***<.001

Note: UPSA = UCSD Performance-Based Skills Assessment; PANSS = Positive And Negative Syndrome Scale; MAI= Metacognitive Assessment Interview (total).

Table 4: Full regression model for predictive value of metacognitive ability on change in functional outcome from baseline to follow-up, whilst controlling for baseline functional outcome, and age.

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>SE B</th>
<th>β</th>
<th>p value</th>
<th>CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>-25.69</td>
<td>14.12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>.93</td>
<td>.53</td>
<td>.21</td>
<td>.1</td>
<td>-.18, 2.04</td>
</tr>
<tr>
<td>Time use baseline</td>
<td>.21</td>
<td>.24</td>
<td>.18</td>
<td>.38</td>
<td>-.28, .70</td>
</tr>
<tr>
<td>Metacognitive ability (MAI)</td>
<td>12.21</td>
<td>4.00</td>
<td>.61</td>
<td>.01**</td>
<td>3.88, 20.53</td>
</tr>
</tbody>
</table>

*<.05, **<.01, ***<.001

Note: When include age as a covariate, functional outcome at baseline was no longer significant. MAI= Metacognitive Assessment Interview (total).
Figure legends

Figure 1: Flowchart for re-recruiting individuals from baseline study into longitudinal study.

Figure 2: Bar graph to demonstrate differences in mean follow-up time-use scores (including CI for current data) for those with high or low metacognitive ability at baseline compared to previous data from Hodgekins et al. (2015).

3 11 people were untraceable: 1 participant was not on the records system and 10 people provided contact details which were now out-of-date and were no longer connected to services.