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Abstract

The epidemic threshold is probably the most studied quantity in the modelling of epidemics
on networks. For a large class of networks and dynamics, it is well studied and understood.
However, it is less so for clustered networks where theoretical results are mostly limited to
idealised networks. In this paper we focus on a class of models known as pairwise models
where, to our knowledge, no analytical result for the epidemic threshold exists. We show
that by exploiting the presence of fast variables and using some standard techniques from
perturbation theory we are able to obtain the epidemic threshold analytically. We validate
this new threshold by comparing it to the threshold based on the numerical solution of the
full system. The agreement is found to be excellent over a wide range of values of the clus-
tering coefficient, transmission rate and average degree of the network. Interestingly, we
find that the analytical form of the threshold depends on the choice of closure, highlighting
the importance of model selection when dealing with real-world epidemics. Nevertheless,
we expect that our method will extend to other systems in which fast variables are present.
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1 Introduction

Epidemic dynamics on networks, being susceptible-infected-susceptible (SIS), susceptible-
infected-recovered (SIR) or otherwise, are often modelled as continuous time Markov chains
with discrete but extremely large state spaces of order mN , where m denotes the number
of different disease statuses (e.g. m = 2 for SIS and m = 3 for SIR) and N stands for the
number of nodes in the network. This makes the analysis of the resulting exact system
almost impossible, except for some specific network topologies such as the fully connected
network, networks with considerable structural symmetry or networks with few nodes (Kiss
et al., 2017; Holme, 2017).

Often, this problem is dealt with by focusing on mean-field models where the goal is
to derive, often heuristically, a system of ordinary or integro-differential equations that
describe (non-Markovian) epidemics for some average quantities, such as the expected
number of nodes in various states, the expected number of links in various states or the
expected number of star-like structures (focusing on a node and all of its neighbours).
These methods usually rely on closures to break the dependency on higher-order moments
(e.g. the expected number of nodes in a state depends on the expected number of links
in certain states and so on). Such an approach has led to a number of models including
heterogeneous or degree-based mean-field (Pastor-Satorras and Vespignani, 2001; Pastor-
Satorras et al., 2015), pairwise (Rand, 1999; Keeling, 1999), effective-degree (Lindquist
et al., 2011), edge-based compartmental (Miller et al., 2012) and message passing (Karrer
and Newman, 2010a), to name a few. These models essentially differ in the choice of
variables over which the averaging is done. Perhaps the most compact model with the fewest
number of equations is the edge-based compartmental model (Miller and Volz, 2013) which
is valid for heterogeneous networks with Markovian SIR epidemics, although extensions
of this model for arbitrary infection and recovery processes are possible (Sherborne et al.,
2018).

Pairwise models have been extremely popular and the very first model for regular net-
works and SIR epidemics (Rand, 1999; Keeling, 1999) has been generalised to heterogeneous
networks (Eames and Keeling, 2002), preferentially mixing networks (Eames and Keeling,
2002), directed (Sharkey et al., 2006) and weighted networks (Rattana et al., 2013), adaptive
networks (Gross et al., 2006; Kiss et al., 2012; Szabó-Solticzky et al., 2016), and structured
networks (House et al., 2009) among others. Perhaps this is due to the relative simplicity
and transparency of the pairwise model, whereby variables have a straightforward interpre-
tation and a basic understanding of the network and epidemic dynamics coupled with good
bookkeeping leads to valid and analytically tractable model equations. Pairwise models
have been successfully used to derive analytically the epidemic threshold and final epidemic
size, with these results mostly limited to networks without clustering. The propensity of
contacts to cluster, i.e. two neighbours of a node being neighbours of one another, is known
to lead to many complications, and modelling epidemics on clustered networks using an-
alytically tractable mean-field models is still limited to networks with specific structural
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features (House et al., 2009; Newman, 2009; Miller, 2009a,b; Karrer and Newman, 2010b;
Volz et al., 2011; Ritchie et al., 2016). However, using approaches borrowed from perco-
lation theory (Miller, 2009b) and focusing more on the stochastic process itself (Trapman,
2007a), some results have been obtained. For example, Miller (2009b) showed that for
the SIR epidemic on clustered networks with heterogeneous degree distributions, the basic
reproduction number is given by

R0 =
〈k2 − k〉
〈k〉

T − 2〈n4〉
〈k〉

T 2 + · · · , (1.1)

where 〈ki〉 stands for the ith moment of the degree distribution, T is the probability of
infection spreading across a link connecting an infected to a susceptible node and 〈n4〉
denotes the average number of triangles that a node belongs to. The first positive term
in equation (1.1) corresponds to the threshold for configuration-type networks without
clustering. The second term in equation (1.1), which is negative, shows that clustering
reduces the epidemic threshold when compared to the unclustered case, the contribution
of the remaining terms being of a smaller order.

For pairwise models, clustering first manifests itself by requiring a different and more
complex closure, which makes the analysis of the resulting system, even for regular networks
and SIR dynamics, challenging. Furthermore, it turns out that such a closure may in fact
fail to conserve pair-level relations and may not accurately reflect the early growth of
quantities such as closed loops of three with all nodes being infected (House and Keeling,
2010). Such considerations have led to an improved closure being developed in an effort to
keep as many true features of the exact epidemic process as possible (House and Keeling,
2010). In this paper we focus on the classic pairwise model for regular networks with
clustering, using both the simplest closure and a variant of the improved closure. We show
that by working with two fast variables, corresponding to correlations between neigbouring
nodes during the epidemic, we can analytically determine the epidemic threshold as an
asymptotic expansion in terms of the global clustering coefficient φ, defined in Section 2.1.

The use of fast variables is not new (Keeling, 1999; Juher et al., 2013; Llensa et al.,
2014; Britton et al., 2016; Eames, 2008). However, in many cases the epidemic threshold
has only been obtained numerically and it was framed in terms of a growth-rate-based
threshold, which is equivalent to the basic reproduction number at the critical point. Eames
(2008) considered a hybrid pairwise model incorporating random and clustered contacts,
with the analysis focusing on the growth-rate-based threshold. Eames (2008) derived a
number of results, some analytic (the critical clustering coefficient for which an epidemic
can take off) and some semi-analytic, and showed, in agreement with most studies, that
clustering inhibits the spread of the epidemic when compared to an equivalent network
without clustering but with equivalent parameter values governing the epidemic process.
However, no analytic expression for the epidemic threshold was provided.

More recently, Li et al. (2018) calculated the epidemic threshold in a pairwise model
for clustered networks with closures based on the number of links in a motif, rather than



4

nodes. This led to

R0 =
(n− 1)τ

τ + γ + τφ
, (1.2)

where n is the average number of links per node, φ is the global clustering coefficient, and
τ and γ are the infection and recovery rates, respectively. The expression above can be
expanded in terms of the clustering coefficient φ to give

R0 =
(n− 1)τ

τ + γ

(
1

1 + φ τ
τ+γ

)
' (n− 1)τ

τ + γ

(
1− φ τ

τ + γ
+ · · ·

)
, (1.3)

which again demonstrates that clustering reduces the epidemic threshold.
Building on these results, and effectively extending the work by Keeling (1999) and Eames

(2008), our paper presents a method to determine the epidemic threshold analytically and
applies it in the context of pairwise models with two different closures for clustered net-
works. The paper is structured as follows. In Section 2 we outline the model with closures
for unclustered and clustered networks discussed in Section 3. In Section 4 we briefly review
existing results and approaches for the pairwise model with the simple closure and then
focus on the correlation structure in terms of fast variables, showing that the epidemic
threshold can be expressed via the solution of a cubic polynomial. This key solution is
determined numerically and analytically as an asymptotic expansion in terms of the clus-
tering coefficient. In Section 5 we show that our approach extends to a compact version of
the improved closure, thus validating and generalising our approach. Finally, we conclude
with a discussion of the results, including comparing the threshold to other known results
and touching upon a number of possible extensions.

2 Model formulation

2.1 The network

We begin by considering a population of N individuals with its contact structure described
by an undirected network with adjacency matrix G = (gij)i,j=1,2,...,N where gij = 1 if nodes
i and j are connected and zero otherwise. Self-loops are excluded, so gii = 0 and gij = gji
for all i, j = 1, 2, . . . N . The network is static and regular, such that each individual has
exactly n edges or links. The sum over all elements of G is defined as ||G||=

∑
i,j gij. Hence,

the number of doubly counted links in the network is ||G||= nN . More importantly, using
simple matrix operations on G, we can calculate the global clustering coefficient of the
network

φ =
trace(G3)

||G2||−trace(G2)
, (2.1)
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where trace(G3) yields six times the number of closed triples or loops of length three
(uniquely counted) and ||G2||−trace(G2) is twice the number of triples (open and closed,
also uniquely counted).

2.2 SIR dynamics

The standard SIR epidemic dynamics on a network is considered. The dynamics are driven
by two processes: (a) infection and (b) recovery from infection. Infection can spread from
an infected and infectious node to any of its susceptible neighbours and this is modelled
as a Poisson point process with per-link infection rate τ . Infectious nodes recover from
infection at constant rate γ.

2.3 The unclosed pairwise model

Let Ai equal 1 if the individual at node i is of type A and equal zero otherwise. Then
single nodes (singles) of type A can be counted as [A] =

∑
iAi, pairs of nodes (pairs) of

type A − B can be counted as [AB] =
∑

i,j AiBjgij and triples of nodes (triples) of type
A−B−C can be counted as [ABC] =

∑
i,j,k AiBjCkgijgjk. This method of counting means

that pairs are counted once in each direction, so [AB] = [BA], and [AA] is even. Using this
notation to keep track of singles, pairs and triples leads to the following system of pairwise
equations describing the SIR epidemic on networks:

˙[S] = −τ [SI], (2.2)
˙[I] = τ [SI]− γ[I], (2.3)

˙[SI] = τ([SSI]− [ISI]− [SI])− γ[SI], (2.4)
˙[SS] = −2τ [SSI], (2.5)
˙[II] = 2τ([ISI] + [SI])− 2γ[II]. (2.6)

We note that equations (2.4)-(2.6) contain triples but evolution equations for these are
not given. To determine solutions of the system, we must find a way to account for these
triples in terms of pairs and singles, a method referred to as closing the system. The system
above is exact before a closure is applied. This means that it can be derived directly from
the exact stochastic epidemic model on the network, given by a continuous time Markov
Chain, without making any approximations (a precise proof for the SIS epidemic was given
by Taylor et al. (2012)). The flow between compartments and the rates of the SIR pairwise
model are illustrated in Fig. 1. The system given above only contains dynamically relevant
variables, i.e. those that emerge by writing down the variables as they are needed and
emerge by following a strict bookkeeping rule and those that appear when a chosen closure
for the triples is considered.
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Figure 1: Flow diagrams showing the flux between compartments of singles (left) and
compartments of pairs (right) for the SIR pairwise model. In the compartments of pairs,
straight arrows denote infections coming from within the pair (with a rate depending on a
pair) or from outside the pair (with a rate depending on a triple), and curved arrows denote
a recovery. The colour indicates the status of the “first” node in the pair. Symmetry allows
us to conclude that some of the variables (see lighter shaded variables on the right hand
side of the pairs diagram) must equal their symmetric version (e.g. [RS] = [SR]), so we do
not need to directly calculate both quantities.
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S
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Figure 2: General setup for a central susceptible node with a given infected neighbour for
(a) unclustered and (b) clustered regular networks with degree n. Dashed arrows indicate
that the infected node may be connected to the other neighbours of the central susceptible
node. Random variables X1, X2, . . . , Xn−1 take values from the set {S, I, R}.

3 Closures

A quick inspection of the unclosed pairwise system (2.2)-(2.6) reveals that only triples of
type [ASI] need closing, with A ∈ {S, I}. These triples, as well as triples of type [RSI],
are illustrated in Fig. 2 for unclustered and clustered networks.

3.1 Closure for unclustered networks

First, we consider the situation depicted in Fig. 2a. We aim to find an approximation
for the distribution of the random variables Xi which take values from the set {S, I, R}.
Several observations can be made. The expected number of A−S type links is [AS] and the
total number of links emanating from susceptible nodes counted across the whole network
is n[S]. Hence, the most straightforward approximation would be to assume that Xi, with
i = 1, 2, . . . , n − 1, are independent and identically Bernoulli distributed random variables
with probability pucA|S−I = [AS]

n[S]
, where pucA|S−I stands for the probability that a neighbour of a

susceptible node already connected to an infected node will be in state A, provided that the
network is unclustered. Averaging across the whole network leads to the closure

[ASI] = [SI](n− 1)pucA|S−I =
n− 1

n

[AS][SI]

[S]
. (3.1)

It is important to note that the new closed system, obtained upon using equation (3.1)
in system (2.2)-(2.6), is effectively an approximation of the exact pairwise model (2.2)-
(2.6) and one should question if closure (3.1) conserves the properties of the stochastic
process and those of the counting on the network. For example, it is expected that in the
closed system the number of nodes is conserved, i.e. [S] + [I] + [R] = N . Furthermore,
the number of pairs of different types must sum to nN . More subtle conditions refer to
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the conservation of link types at node level ([SS] + [SI] + [SR] = n[S]) and pair level
([SSI] + [ISI] + [RSI] = (n − 1)[SI]), respectively. It turns out that the closure for
unclustered networks (3.1) conserves these relations (Kiss et al., 2017). Finally, the validity
of closures can be empirically assessed by looking at the initial growth rate of the number
of open and closed triples, where the number of open triples comprised of three infectious
nodes should grow differently to the number of such closed triples. Of course such subtle
tests are usually preceded by direct comparisons between the numerical solution of the
closed pairwise system and explicit stochastic network simulations for a range of parameters.
Such tests initially focus on prevalence of infection and final epidemic size but may include
expected number of pairs.

3.2 Closures for clustered networks

3.2.1 Simple closure

The presence of closed loops of length three, as illustrated in Fig. 2b, introduces some
complications. Namely, a neighbour of the central susceptible node that is itself connected
to an infected neighbour of the central node is less likely to be susceptible due to the
added pressure from the infected neighbour, when compared to the case when the force
of infection is distributed evenly, as it is the case for the closure for unclustered networks
(3.1). More precisely, the epidemic process on the network displays clear correlations. In
(Cator and Van Mieghem, 2014) it has been shown that the exact SIS and SIR epidemics
on networks are non-negatively correlated in the sense that P(IiIj) ≥ P(Ii)P(Ij). Here,
P(IiIj) represents the probability that nodes i and j, connected by a link, are both infected,
while P(Ii) stands for the probability of node i being infected. For this result to hold, all
processes must be Markovian and infection rates across all links and recovery rates of
all nodes have to be fixed a priori. Using the pairwise model for an SIS epidemic on
an unclustered network with closure (3.1), it has been shown that the same correlation
is preserved when averaging at the population level (Kiss et al., 2017). While the proof
has not been extended to the pairwise SIR model, intuitively we expect to find the same
correlation structure. Based on these observations, we assume that the correlation structure
in exact SIS and SIR epidemics on networks averaged at the population level is maintained.
Hence, the inequalities

[SI] ≤ n[S]
[I]

N
, [II] ≥ n[I]

[I]

N
, and [SS] ≥ n[S]

[S]

N
, (3.2)

hold, where [AB] and [A] with A,B ∈ {S, I} represent the expected counts of pairs and
singles of the corresponding types taken from the exact model, i.e., the continuous time
full Markov chain.

Intuitively, this means that as the epidemic spreads on the network, infected nodes are
more likely to have neighbours which are themselves infected (either those that infected the
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node or were infected by it), and at the ‘front’ of the epidemic we would expect to observe a
‘sea’ of susceptible nodes alongside a ‘front’ of links between susceptible and infected nodes
that drives the epidemic. Hence, clustering and correlations need to be accounted for and
a new pcA|S−I for clustered networks needs to be defined. This has been done by Keeling

(1999) (see also work by Rand (1999) and Keeling et al. (1997)) and relies on a correlation
factor, CAB, that is able to capture the propensity that two nodes connected by a link are
in state A and B, respectively. This is given by

CAB =
[AB]

n[A] [B]
N

, (3.3)

where A,B ∈ {S, I}. This effectively compares the expected number of edges of type [AB]
to what its value would be if nodes were labelled at random with [A] nodes of type A and
[B] nodes of type B. If CAB > 1, then nodes of type A and B are positively correlated,
whereas if nodes of type A and B are negatively correlated, CAB < 1. As expected, CAB = 1
means that nodes are effectively labelled as type A or B at random. Equation (3.2) implies
that

CSI ≤ 1, CII ≥ 1 and CSS ≥ 1. (3.4)

We can modify pucA|S−I = [AS]
n[S]

to reflect these observations, leading to pcA|S−I = [AS]
n[S]

CAI .
However, before the closure can be written, open and closed loops need to be treated
separately. In order to do this, we split the closure based on whether the neighbour whose
state is to be determined is part of a closed loop of three nodes and thus in direct contact
with an infectious node, or not. This leads to

pcA|S−I =

{
pucA|S−I with probability (1− φ),

pucA|S−ICAI with probability φ,
(3.5)

where φ is defined in equation (2.1). With this in mind, the closure can be derived by
averaging equation (3.1) over the unclustered and clustered parts of the network. This
leads to

[ASI] = (1− φ)(n− 1)[SI]pucA|S−I + φ(n− 1)[SI]pucA|S−ICAI (3.6)

=
(n− 1)

n

[AS][SI]

[S]

(
(1− φ) + φ

N [AI]

n[A][I]

)
. (3.7)

This same closure has been derived by Keeling et al. (1997) and Keeling (1999). Fram-
ing pucA|S−I and pcA|S−I more generally and independently of the network type, i.e. simply
considering pA, the following statement holds:

Proposition 1. Consider a closure of the following form [ASI] = (n − 1)[SI]pA. If∑
A pA = 1, where A is taken over all possible states, then

∑
A[ASI] = (n− 1)[SI].

Proof.
∑

A[ASI] = (n− 1)[SI]
∑

A pA = (n− 1)[SI].
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3.2.2 Improved closure

We note that while pucA|S−I satisfies the above proposition, pcA|S−I does not. In particular,
we find ∑

A

[ASI] =
∑
A

(n− 1)[SI]pucA|S−I =
∑
A

(n− 1)[SI]
[AS]

n[S]

=
(n− 1)[SI]

n[S]

∑
A

[AS] =
(n− 1)[SI]

n[S]
n[S] = (n− 1)[SI].

However, for the clustered part of the network this is not the case. We find that∑
A

[ASI] =
∑
A

(n− 1)[SI]pcA|S−I =
∑
A

(n− 1)[SI]
[AS]

n[S]

N [AI]

n[A][I]

=
(n− 1)N [SI]

n2[S][I]

∑
A

[AS][AI]

[A]
,

which does not result in the desired (n−1)[SI]. This can be corrected in a straightforward
way by defining

pcnew

A|S−I =

p
uc
A|S−I with probability (1− φ),
pc
A|S−I∑
a p

c
a|S−I

with probability φ.
(3.8)

Hence we can now write∑
A

[ASI] =
∑
A

((1− φ)[ASI] + φ[ASI])

= (1− φ)(n− 1)[SI]
∑
A

pucA|S−I + φ(n− 1)[SI]
∑
A

pcnew

A|S−I

= (1− φ)(n− 1)[SI]
∑
A

[AS]

n[S]
+ φ(n− 1)[SI]

∑
A

pcA|S−I∑
a p

c
a|S−I

= (1− φ)(n− 1)[SI]
1

n[S]

∑
A

[AS] + φ(n− 1)[SI]

= (1− φ)(n− 1)[SI] + φ(n− 1)[SI]

= (n− 1)[SI],

as required. It is informative to investigate the relationship between the various probability
models that lead to different closures. This is summarised in the following proposition.

Proposition 2. For closures applied across the clustered part of the network and assuming
that the number of nodes in state R is negligible, it follows that

pcnew

S|S−I =
[SS][I]

[SS][I] + [II][S]
, pcS|S−I =

[SS]

n[S]

N [SI]

n[S][I]
, pucS|S−I =

[SS]

n[S]
, (3.9)
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and
pcS|S−I ≤ pucS|S−I and pcnew

S|S−I ≤ pucS|S−I . (3.10)

Proof. All three probabilities follow from their definitions and assuming that A ∈ {S, I}.
Since S − I links are negatively correlated (3.2), it follows that CSI = N [SI]

n[S][I]
≤ 1 and as a

result

pcS|S−I =
[SS]

n[S]
CSI ≤

[SS]

n[S]
= pucS|S−I . (3.11)

While pcS|S−I has a natural interpretation (it is a simple discounted variant of the prob-
ability from the unclustered network case and takes into account the observation that if the
neighbour of a central susceptible node is connected to one of the infected neighbours of the
same node then it is less likely that the node in question is susceptible), the interpretation
of pcnew

S|S−I is less obvious. A close inspection reveals that pcnew

S|S−I can be rewritten as

pcnew

S|S−I =
[SS][I]

[SS][I] + [II][S]
=

[SS]

[SS] + [II] [S]
[I]

. (3.12)

However, combining [SI] ≤ n[S] [I]
N

with [I] ≤ N
n

[II]
[I]

, as given in equation (3.2), leads to

[SI] ≤ [II] [S]
[I]

. Finally, using the relation [SI] ≤ [II] [S]
[I]

in equation (3.12) yields

pcnew

S|S−I =
[SS]

[SS] + [II] [S]
[I]

≤ [SS]

[SS] + [SI]
=

[SS]

n[S]
= pucS|S−I . (3.13)

Equation (3.13) illustrates that as expected pcnew

S|S−I ≤ pucS|S−I . Again, this simply shows that
for clustered networks and for the setup in Fig. 2, it is less likely to find neighbours who
are susceptible compared with the unclustered network case.

Taking into account the new way of defining pcnew

A|S−I , the improved closure yields

[ASI] = (1− φ)[ASI] + φ[ASI]

= (1− φ)(n− 1)[SI]
[AS]

n[S]
+ φ(n− 1)[SI]

[AS]
n[S]

CAI∑
a p

c
a|S−I

= (1− φ)
(n− 1)

n

[AS][SI]

[S]
+ φ(n− 1)[SI]

[AS]
n[S]

N [AI]
n[A][I]∑

a
[aS]
n[S]

N [aI]
n[a][I]

= (1− φ)
(n− 1)

n

[AS][SI]

[S]
+ φ(n− 1)

[AS][SI][IA]

[A]
∑

a
[aS][aI]

[a]
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= (n− 1)

(
(1− φ)

[AS][SI]

n[S]
+ φ

[AS][SI][IA]

[A]
∑

a[aS][aI]/[a]

)
. (3.14)

We finally note that the closures rely heavily on the assumption of how the states of the
neighbours are distributed, and the assumption of independent and identically Bernoulli-
distributed variables is a strong one. For clustered networks in particular, we have illus-
trated different ways of incorporating correlations induced by closed cycles of length three.
Despite these seemingly strong assumptions, it is known that the pairwise model for unclus-
tered networks is equivalent to the edge-based compartmental equivalent on configuration
networks (Miller and Kiss, 2014; Kiss et al., 2017) and the latter has been shown to be
the limiting system of the stochastic network epidemic model (Decreusefond et al., 2012;
Janson et al., 2014). For clustered networks we are not aware of such results.

4 Results for the pairwise model with the simple clo-

sure

4.1 Background

Using the simple closure for clustered networks (3.7), and writing ξ = (n−1)
n

, we obtain
the following closed pairwise model equations describing an SIR epidemic on a clustered
regular network of N individuals with degree n:

˙[S] = −τ [SI], (4.1)

˙[I] = τ [SI]− γ[I], (4.2)

˙[SI] = −(τ + γ)[SI] + τξ
[SS][SI]

[S]

(
(1− φ) + φ

N [SI]

n[S][I]

)
− τξ [SI]2

[S]

(
(1− φ) + φ

N [II]

n[I]2

)
,

(4.3)

˙[SS] = −2τξ
[SS][SI]

[S]

(
(1− φ) + φ

N [SI]

n[S][I]

)
, (4.4)

˙[II] = 2τ [SI]− 2γ[II] + 2τξ
[SI]2

[S]

(
(1− φ) + φ

N [II]

n[I]2

)
. (4.5)

For model equations (4.1)-(4.5), the basic reproductive ratio (R0) is considered by (Keel-
ing, 1999). Starting from the evolution equation of the expected number of infectious nodes
leads to

˙[I] = τ [SI]− γ[I]

=

(
β[S]

N
CSI − γ

)
[I],
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where CSI is defined in equation (3.3). Taking into account that τn = β and that initially
[S] ' N , Keeling (1999) claimed that R0 = CSIβ/γ. It is important to note that this R0

is not the classical R0 in the sense of describing the expected number of new infections
produced by a typical infectious individual when introduced into a fully susceptible pop-
ulation. Rather it can be thought of as a growth-rate-based threshold, and has the same
properties as the classical R0 when both are exactly one. In what follows, we will simply
refer to it as R (Eames, 2008; Kiss et al., 2012).

In order to determine R explicitly, Keeling (1999) considered the early behaviour of CSI
and found that this variable is given by the ordinary differential equation (ODE)

˙CSI = −τ
(
CSI + C2

SI − nξ(CSI − C2
SI)(1− φ) + nξC2

SIφ
[I]CII
N

)
. (4.6)

However, the ODE above depends on the behaviour of [I]CII/N and Keeling (1999) showed
that

[I]CII
N

−→ 2τCSI
γ + βCSI − 2ξβC2

SIφ
. (4.7)

Considering the quasi-equilibrium of CSI , referred to as C∗SI , in equation (4.6) together
with the expression for [I]CII/N in equation (4.7), one finds that C∗SI is given by

1 + C∗SI − nξ(1− C∗SI)(1− φ) +
2βξφC∗SI

2

γ + βC∗SI − 2ξβC∗SI
2φ

= 0. (4.8)

Hence, R can be calculated as C∗SIβ/γ, at least numerically. Variables such as CSI and CII
describe the correlations between the states of neighbouring nodes on the network as the
epidemic unfolds and these have been studied numerically by Keeling (1999).

For model equations (4.1)-(4.5) and when there is no clustering in the network (φ = 0),
a further simplification of equation (4.8) can be achieved (Keeling, 1999). To determine
R = C∗SIβ/γ in this case, one can simply solve

1 + C∗SI − nξ(1− C∗SI) = 0 (4.9)

to find C∗SI = n−2
n

and thus R = (n−2)τ
γ

.
Unfortunately when φ 6= 0, according to our knowledge, the quasi-equilibrium values

can only be determined numerically via equation (4.8). In what follows, we show that
by working with two new variables, α = [SI]/[I] and δ = [II]/[I], which are still closely
linked to the correlations formed during the spreading process, it is possible to obtain the
epidemic threshold as the solution of a cubic equation and, more importantly, we show that
this solution can be approximated by an asymptotic expansion in powers of φ.
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4.2 Epidemic threshold

Consider the initial phase of an infection invading an entirely susceptible population in the
pairwise model, described by equations (4.1)-(4.5). We find that

˙[I] = τ [SI]− γ[I] = γ[I]

(
τ [SI]

γ[I]
− 1

)
. (4.10)

We know the quantity γ[I] remains non-negative regardless of time in the epidemic process,

and we choose to consider the epidemic threshold in terms of [SI]
[I]

. This leads to R = τ [SI]
γ[I]

.
When R > 1 an epidemic will occur, and when R < 1 the epidemic will die out. Although
we know the values of τ and γ, to determine if an epidemic will occur a priori, we require
further knowledge about the quantity [SI]

[I]
at some initial time close to t = 0. At t = 0 or at

the disease-free steady state, both [SI] and [I] are zero and hence their ratio is ill-defined.

Furthermore, gaining knowledge about [SI]
[I]

will involve [II]
[I]

and this term suffers of the same
problem, being ill-defined at t = 0. While this is similar to the approach taken by Keeling
(1999), we focus on the variables [SI]

[I]
and [II]

[I]
, and we motivate our choice below. The

problem of finding the epidemic threshold can be dealt with in at least two other different
but equivalent ways. First, one can carry out a simple linear stability analysis of the
disease-free steady state as is shown in Appendices B and C. Second, the threshold can
also be computed as the largest eigenvalue of the next generation matrix, see Section 6.
However, in both cases, the variables [SI]/[I] and [II]/[I] turn out to play a key role and
their values for small times need to be determined.

4.3 Fast variables with the simple closure

To circumvent the problem of the ill-defined variables above, we exploit the fact that
α := [SI]

[I]
and δ := [II]

[I]
are fast variables when compared to the time course of the epidemic.

Fig. 3 shows clearly that α and δ are fast compared to the epidemic process and that they
quickly converge to a quasi-equilibrium. Hence, at early times, α and δ attain their quasi-
equilibrium values, and these are the values that can be used to compute the epidemic
threshold.

We continue by deriving differential equations for the variables α = [SI]
[I]

and δ = [II]
[I]

.

Differentiating α and δ and using equations (4.1)-(4.5) leads to

dα

dt
= −τα + τξn(1− φ)α + τξφα2 − τξ 1

n
φα2δ − τα2, (4.11)

dδ

dt
= 2τα− γδ + 2τξ

1

n
φα2δ − ταδ. (4.12)

We note that this approach has already been exploited by Juher et al. (2013); Llensa et al.
(2014); Britton et al. (2016), with the authors focusing on combinations of SIS, SIR and
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Figure 3: Illustration of the dynamics of prevalence, [I]/N , over time ((a)-(b)), compared

to that of α = [SI]
[I]

((c)-(d)) and δ = [II]
[I]

((e)-(f)) for the pairwise model with the simple

(left column) and the improved (right column) closures. Parameter values are N = 10000,
n = 5, φ = 0.5 and τ = γ = 1.
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SEIR models without demography and rewiring of S − I links to S − S links. In all these
papers, systems of fast variables are derived and analysed in detail to gain information
about the epidemic threshold and the stability of the disease-free or endemic steady states.

4.3.1 Global stability of the steady state

The analysis of system (4.11)-(4.12) is carried out in detail by Trapman (2007b) (see Ap-
pendix A of this paper). The only caveat there is that the global stability of the unique
steady state was not confirmed, leaving the possibility of the existence of a limit cycle.
Below, we sketch the main ideas of the proof and provide some extra results by using the
Bendixson criterion.

The starting point is to show that system (4.11)-(4.12) admits a unique steady state
which is biologically meaningful, i.e. (α∗, δ∗) ∈ D = {(α, δ) : 0 ≤ α ≤ n, 0 ≤ δ ≤ n − α}.
First we show that the trajectories of the system remain in D for all appropriate initial
conditions and all positive times. When δ = 0, then dδ/dt = 2τα > 0. When α = 0, then

dα/dt = 0. However, by condition (4.15), d(dα/dt)
dα

= τ [(n− 1)(1− φ)− 1] > 0. Finally, we
need to show that if α+ δ = n then d(α+ δ)/dt < 0. By substituting δ = n− α, and after
some algebra we obtain that d(α + δ)/dt = γ(α − n) − τ(n − 1)φα(1 − α/n)2 < 0. The
observations prove that D is invariant. A typical picture of the phase diagram is given in
Fig. 4.

It turns out that both null clines can be written conveniently with α being the inde-
pendent and δ being the dependent variable. The null clines corresponding to dα/dt and
dδ/dt are given by

δ1(α) =
n

ξφ

(
ξn(1− φ)− 1

α
+ ξφ− 1

)
, (4.13)

δ2(α) =
2τα

γ + τα− 2τ ξ
n
φα2

. (4.14)

Several observations can be made. If ξn(1 − φ) − 1 > 0, then δ1(α) will be a decreasing

function in α and its intersection with the horizontal axis is at α1 = ξn(1−φ)−1
1−ξφ , which

happens to be less than n. Furthermore, it is straightforward to show that dδ2(α)/dα > 0,
which means that δ2(α) is an increasing function in α. Given the behaviour of the null clines
at α = 0, it follows that their intersection gives rise to a unique steady state. Requiring
that ξn(1− φ)− 1 > 0 is equivalent to

φ <
n− 2

n− 1
. (4.15)

This is the same as found by Keeling (1999) in the limit of β = τn large and when
assuming that at the threshold CSI = γ/β. This condition can also be derived directly
from equation (4.21) by replacing α = τ/γ (which corresponds to the threshold R = τα

γ
)
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Figure 4: Illustration of the typical phase plane of system (4.11)-(4.12). The null clines δ1
(dashed) and δ2 (dash-dotted), and the α + δ = n (continuous) line are plotted together
with a typical trajectory (�) that is attracted to the unique steady state of the system.
Parameter values are N = 10000, n = 5, φ = 0.5 and τ = γ = 1.

and then taking the limit of large τ . In fact, when φ > (n−2)/(n−1) the disease dies out.
Hence, the two null clines define a unique point of intersection as long as the condition
above, (4.15), is met. The same argument holds even if the singularity of the second null
cline happens to be in (0, n). However, we must also exclude the possibility that the
intersection point will lie outside D. For example if the δ2 null cline lies to the left of δ1
then the δ2 null cline may cross the α + δ = n boundary at a smaller value of α than the
δ1 null cline does. However, this cannot happen because, in such a case, D would not be
invariant since the solutions would leave D across the region of this boundary limited by
the two null clines, which contradicts that fact that d(α + δ)/dt < 0 on this boundary.

Provided that condition (4.15) holds, Fig. 4 shows that a unique steady state exists.
Trapman (2007b) showed that this steady state is locally stable but global stability was not
confirmed. Here, in addition to the results by Trapman (2007b) we show that under certain
assumptions the existence of a limit cycle can be ruled out by applying the Bendixson
criterion. This also ensures the global stability of the unique steady state. Dividing the
equations by α, the divergence of the system takes the form:

B(α, δ) =
d
(
dα
αdt

)
dα

+
d
(
dδ
αdt

)
dδ

= −2τ − γ

α
+ φ

[
τξ

n
(n− δ + 2α)

]
. (4.16)

We separated the above expression in the non-clustered and clustered parts of the network.
It is obvious that when φ = 0 then B(α, δ) < 0 and thus no limit cycle can occur. Now
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setting B(α, δ) = 0 and neglecting the −γ/α term defines the following curve

δB(α) = 2α + n− 2n

ξφ
. (4.17)

This intersects the horizontal axis at αB = n
ξφ
−n/2. Given that the slope of δB is positive,

the divergence will remain negative in D as long as the intersection with the horizontal
axis is beyond n. This requires that

n

ξφ
− n

2
> n.

Rearranging this, we obtain

φ <
2n

3(n− 1)
.

Hence, if the above holds then the unique steady state is globally stable. It is worth noting
that if

2n

3(n− 1)
>
n− 2

n− 1
,

then the global stability also holds for all φ < (n − 2)/(n − 1), and as long as n < 6 the
above inequality holds.

Numerical tests suggest that global stability holds for all reasonable parameter values.
For example, if the point of intersection of δB with the horizontal axis is in (αβ, n), then the
non-existence of the limit cycle can be shown as follows. To the left of δB the divergence
is negative and the lower right quadrant of D is repellent.

4.3.2 Fast variables without clustering

When clustering is negligible and hence φ = 0, we find that

dα

dt
= −τα + τξnα− τα2, (4.18)

dδ

dt
= 2τα− γδ − ταδ, (4.19)

where ξ = (n−1)
n

. The steady states of the system (4.18)-(4.19) are given by (α∗1, δ
∗
1) = (0, 0)

and (α∗2, δ
∗
2) =

(
(n− 2), 2τ(n−2)

γ+τ(n−2)

)
. Based on equation (4.10), it follows that R =

τα∗2
γ

=
τ(n−2)

γ
.

4.3.3 Fast variables with clustering

When clustering is present in the network, the differential equations for α and δ are more
complex and thus steady states are harder to compute. Firstly, we set equation (4.11) equal
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to zero and rearrange to isolate δ, finding

δ =
−1 + ξn(1− φ) + ξφα− α

ξ 1
n
φα

. (4.20)

Plugging equation (4.20) into equation (4.12) leads to the following cubic equation in α:

(2τξφ(1− ξφ))α3 + (τξnφ− 2τξ2nφ(1− φ)− τn)α2

+ (−n(τ + γ) + τξn2(1− φ) + γξnφ)α + (γξn2(1− φ)− γn) = 0. (4.21)

The solution of the cubic equation (4.21) provides the steady state(s) of system (4.11)-
(4.12), and allows the computation of the threshold via the formula Rc = τα∗

γ
. We note

that the steady state in α has to be biologically plausible. α = [SI]
[I]

restricts the steady state
to be positive and to be less than n, since the average number of susceptible neighbours
averaged over all infected nodes needs to be less than the average degree.

4.4 Asymptotic expansion of the epidemic threshold

The case of φ 6= 0 can be regarded as a perturbation of the case without clustering and
we thus set out to find α using a perturbation method. More precisely, we seek to find the
roots of the cubic polynomial, given in equation (4.21), in terms of an asymptotic expansion
in powers of φ, that is

α = α0 + φα1 + φ2α2 + · · · . (4.22)

Plugging (4.22) into equation (4.21) leads to

(4.23)

2τξφ(1− ξφ)(α0 + φα1 + φ2α2 + · · ·)3

+ (τξnφ− 2τξ2nφ(1− φ)− τn)(α0 + φα1 + φ2α2 + · · ·)2

+ (−n(τ + γ) + τξn2(1− φ) + γξnφ)(α0 + φα1 + φ2α2 + · · ·)
+ (γξn2(1− φ)− γn) = 0.

Collecting terms of order φ0 in (4.23) and after some algebra we find that α0 satisfies:

n(α0 − (n− 2))(τα0 + γ) = 0. (4.24)

Hence, α0 = (n − 2). The other solution, α0 = −γ/τ is not biologically feasible since by
definition α is positive. As expected, this corresponds to the unclustered case. Collecting
terms of order φ in (4.23), we find a polynomial in terms of α0 and α1:

2τξα3
0 + (τξn− 2τξ2n)α2

0 + (γξn− τξn2)α0 − 2τnα0α1 + (τξn2 − n(τ + γ))α1 − γξn2 = 0 .
(4.25)
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Equation (4.25) leads to

α1 =
γξn2 − 2τξα3

0 + (2τξ2n− τξn)α2
0 + (τξn2 − γξn)α0

τξn2 − n(τ + γ)− 2τnα0

,

which, after substituting α0 = (n− 2) and ξ = (n−1)
n

yields

α1 =
−2(n− 1)

n2

(
2τ(n− 1)(n− 2) + γn

τ(n− 2) + γ

)
. (4.26)

To summarise, we have determined the first two coefficients α0 and α1 of the asymptotic
expansion (4.22) which solves the cubic equation (4.21). Hence, the true solution is ap-
proximated by:

α = (n− 2)− φ2(n− 1)

n2

(
2τ(n− 1)(n− 2) + γn

τ(n− 2) + γ

)
+O(φ2). (4.27)

We make several remarks. First, the epidemic threshold will be given by Rc = τα/γ.
Second, the coefficient of the first order correction of α can be rearranged in terms of
R = τ(n−2)

γ
, the threshold for the case of unclustered networks, leading to

Rc = R− φaτ
γ

(
aR + 1

R + 1

)
, (4.28)

where a = 2(n− 1)/n and where terms in φ of order larger than one have been neglected.
Finally, it is clear that due to the first order correction being negative, we have that

Rc = R− φaτ
γ

(
aR + 1

R + 1

)
≤ R =

τ(n− 2)

γ
. (4.29)

The goodness of the estimate for α (4.27) is tested by comparing it to the numerical
solution of the cubic equation (4.21). This is done in Fig. 5 for five different values of the
clustering coefficient. The asymptotic approximation performs well and only breaks down
for values of clustering larger than φ ' 0.3. From the same figure it is clear that higher
values of clustering push the critical Rc = 1 curve to higher values of τ and n. Hence, in
the presence of clustering a viable epidemic requires either a denser network or a higher
transmission rate, noting that the transmission rate and the recovery rate γ are not strictly
independent.

4.5 Numerical examples

In the previous section we have demonstrated that for the pairwise model with the simplest
closure for clustered networks, the determination of the epidemic threshold involves the
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solution of a cubic equation. While this solution can be obtained numerically, we presented
an asymptotic approximation of the solution in terms of powers of the clustering coefficient
φ. In Fig. 5 we present a systematic test of the newly determined threshold by comparing
the threshold based on the numerical solution of the cubic equation (4.21) (continuous line
in the (τ, n, 0) plane), the asymptotic approximation of the solution to the cubic equation
(4.27) (dashed line and markers - ◦) and the numerical solution of the full ODE system
corresponding to the closed pairwise model (4.1)-(4.5).

The agreement between the explicit numerical solution of the closed pairwise system and
threshold based on the numerical solution of the cubic equation is excellent for all clustering
values and other parameter combinations. Moreover, the agreement of these results with
the threshold based on the asymptotic approximation is also excellent and remains valid
for values of 0 ≤ φ ≤ 0.3. The initial conditions for the closed pairwise systems were set in
the following way: [I](0) = I0 = 1, [S](0) = N −I0 = S0, [SI](0) = nI0

S0

N
, [SS](0) = nS0

S0

N

and [II](0) = nI0
I0
N

. The ODEs were run for a sufficiently long time (Tmax = 1000) to
ensure that the epidemic died out. It is worth noting that the correct numerical solution
of the cubic equation can be chosen by keeping in mind that 0 ≤ α = [SI]

[I]
≤ n.

5 Results for the pairwise model with the compact

improved closure

Starting from the improved closure (3.14) but in line with Proposition 2, we adapt the
closure so that the term responsible for the approximation on the clustered part of the
network does not consider variables, singles or pairs involving the R class. This leads to
the new closure

[ASI] = (n− 1)

(1− φ)
[AS][SI]

n[S]
+ φ

[AS][SI][IA]

[A]
(

[SS][SI]
[S]

+ [SI][II]
[I]

)
 , (5.1)

which we refer to as the compact improved closure. Plugging equation (5.1) into the exact
system (2.2)-(2.6) leads to a self-consistent system that is written out in full in Appendix A.

In line with our procedure so far, we aim to find the epidemic threshold of this new
pairwise system with the compact improved closure. It turns out that the approach used
for the pairwise system with the simple closure is applicable to this case, and the steps and
results are summarised below.

5.1 Fast variables with the compact improved closure

As we have shown before, finding the threshold relies on finding the quasi-equilibrium of
α = [SI]

[I]
. In Appendix A we show that this requires knowledge about the behaviour of
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Figure 5: Assessing the validity of the epidemic threshold based on the asymptotic approx-
imation (4.27) (dashed line and markers - ◦) by comparing it to the epidemic threshold
based on the numerical solution of the cubic equation (4.21) (continuous lines). In the
right hand column we compare both threshold curves in the (τ, n, 0) plane. In the left hand
column both curves are compared to the final epidemic size based on numerical integration
of the pairwise model equations with the simple closure. Parameter values are N = 10000,
γ = 1 and from top to bottom the clustering coefficients are φ = 0, 0.15, 0.3, 0.45, 0.6.
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δ = [II]
[I]

variable and indeed a system of differential equations involving these two variables
can be derived. This system is given below

dα

dt
= −τα− τα2 + τ(n− 1)

(
(1− φ)α + φα

(
n− δ
n+ δ

))
, (5.2)

dδ

dt
= 2τα− γδ + 2τ(n− 1)

(
φαδ

n+ δ

)
− ταδ. (5.3)

As previously, the steady states of this system are of interest and apart from the trivial
(α∗, δ∗) = (0, 0) steady state, the quasi-equilibrium can be found by first expressing δ as a
function of α. This can be done by setting equation (5.2) equal to zero and rearranging,
leading to

α = (n− 2)− (n− 1)φ
2δ

n+ δ
. (5.4)

Plugging equation (5.4) into equation (5.3) and collecting powers of δ leads to the following
cubic equation

(−A−B)δ3 + (−n(n− 2)− A2 − 2nB)δ2

+ (−n(n− 2)A+ 2nA− n2B)δ + 2n2(n− 2) = 0, (5.5)

where A = (n− 2)− 2φ(n− 1) and B = γ/τ . It is worth noting that in this case it is easier
to work with δ, but any results can be converted in terms of α which is the main variable of
interest. However, before we proceed with asymptotic expansion of the solution, we show
that there is a unique biologically feasible steady state.

5.2 Global stability of the steady state

It is worth considering whether the trajectories of the system governed by equations (5.2)-
(5.3) remain in D = {(α, δ) : 0 ≤ α ≤ n, 0 ≤ δ ≤ n−α} for all appropriate initial conditions
and all positive times. When α = 0, then dα/dt = 0, so the α = 0 line is stationary and

solutions remain in D. Moreover, on this line, d(dα/dt)
dα

= τn(n−2)
n+δ

+ δτ((n−2)−2φ(n−1))
n+δ

which
is greater than zero when 2φ < (n − 2)/(n − 1). This is a condition which will resurface
later when the intersection of the null clines is analysed. If δ = 0, then dδ/dt = 2τα > 0
meaning that the solution cannot leave D along the δ = 0 line. Finally, we need to show
that if α+δ = n then d(α+δ)/dt < 0. By substituting δ = n−α, and after some algebra we
obtain that d(α+ δ)/dt = −γ(n−α) = −γδ < 0. These findings prove that D is invariant.

To continue we focus on showing that (5.2)-(5.3) admits a unique steady state which
is biologically meaningful, i.e. (α∗, δ∗) ∈ D. The null cline corresponding to dα/dt can be
rewritten to give

δn(α) =
n((n− 2)− α)

α + 2φ(n− 1)− (n− 2)
. (5.6)
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It is straightforward to check that

dδn(α)/dα =
−2φn(n− 1)

(α + 2φ(n− 1)− (n− 2))2
< 0, (5.7)

meaning that the function is decreasing for all α. Setting α = 0 in (5.6) leads to δ =
n(n − 2)/(2φ(n − 1) − (n − 2)), which can be both negative or positive. On the other
hand setting δ = 0 in (5.6) yields α = (n − 2). This null cline has a singularity at
α∗ = (n−2)−2φ(n−1), with α∗ < (n−2) < n. If α∗ < 0 then the branch on the left of the
vertical asymptote will not intersect D. This happens exactly when 2φ > (n−2)/(n−1). So
in this case the branch of the null cline to the right of the asymptote intersects the α-axis at
((n−2), 0) and the δ-axis at (0, n(n−2)/(2φ(n−1)− (n−2))), where the intersection with
the δ-axis happens at a positive value, namely n(n− 2)/(2φ(n− 1)− (n− 2)) > 0, and this
inequality holds true due to requiring that α∗ is negative. This point may be greater than n
but also intersects the horizontal axis at (n− 2, 0). This is illustrated in Fig. 6 (left panel).
When the singularity point is positive, α∗ > 0, that is when 2φ < (n − 2)/(n − 1), then
the intersection with the δ-axis happens at a negative value of δ. This is also illustrated
in Fig. 6 (right panel), where the positive singularity is clearly visible with the intersection
with the δ-axis being out of the range of the plot.

The null cline corresponding to dδ/dt is given by

αn(δ) =
γδ(n+ δ)

τ{−δ2 + [2(n− 1)φ− (n− 2)]δ + 2n}
. (5.8)

This null cline passes through (α, δ) = (0, 0) and the derivative of αn(δ) is always positive,
namely,

dαn(δ)/dδ =
γ(2δ2 + 2n2 + 4nδ + 2φδ2(n− 1))

τ{−δ2 + [2(n− 1)φ− (n− 2)]δ + 2n}2
≥ 0. (5.9)

The denominator is a quadratic polynomial in δ with the discriminant being always positive
and thus leading to two distinct real roots. From the equation it follows that sum of the
roots is (n− 2)− 2φ(n− 1) and their product is −2n < 0. Therefore, two singularity points
exist, one for negative and the other for positive δ. αn(δ) is such that

lim
δ→±∞

αn(δ) = −γ/τ.

Hence, D happens to lie, at least partly, in the area defined by the two singularity points
(i.e. the region between the two vertical asymptotes if considered in the (δ, α) plane). In
this area the null cline increases with δ starting from (α, δ) = (0, 0), see both panels in
Fig. 6. Summarising, we have shown that the null clines will intersect at a unique point,
and this point cannot be outside D due to the orientation of the vector fields, see also the
argument presented in Section 4.3.1.
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Figure 6: Illustration of the typical phase plane of system (5.2)-(5.3). The null clines δn
(dashed) and αn (dash-dotted), and the α + δ = n (continuous) line are plotted together
with a typical trajectory (�) that is attracted to the unique steady state of the system.
Parameter values are N = 10000, n = 5, φ = 0.8 (left panel), φ = 0.2 (right panel) and
τ = γ = 1.

Finally, we show that the existence of a limit cycle can be ruled out by applying the
Bendixson criterion. This also ensures the global stability of the unique steady state. Di-
viding equations (5.2)-(5.3), and computing B(α, δ) = d

dα

(
1
α
dα
dt

)
+ d

dδ

(
1
α
dδ
dt

)
, the divergence

of the system yields

B(α, δ) = −2τ − γ

α
+

2τφn(n− 1)

(n+ δ)2
. (5.10)

It is easy to show that this is negative. Even if − γ
α

is neglected, we have that

−2τ +
2τφn(n− 1)

(n+ δ)2
= −2τ

(n+ δ)2 − φn(n− 1)

(n+ δ)2
< 0,

since (n+ δ) is greater than both n and (n− 1).

5.3 Asymptotic expansion of the epidemic threshold

As in Section 4.4, we require the roots of the cubic polynomial given in equation (5.5). To
do so, we express δ as an asymptotic expansion in powers of φ. We substitute

δ = δ0 + δ1φ+ δ2φ
2 + · · · . (5.11)

Plugging the expansion for δ (5.11) into equation (5.5) leads to

(5.12)(−A−B)(δ0+δ1φ+δ2φ
2+ · · ·)3+(−n(n−2)−A2−2nB)(δ0+δ1φ+δ2φ

2+ · · ·)2

+ (−n(n− 2)A+ 2nA− n2B)(δ0 + δ1φ+ δ2φ
2 + · · ·) + 2n2(n− 2) = 0.
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Alternatively, substituting (5.4) into the differential equation for δ (5.3), setting the ex-
pression equal to zero and rearranging leads to

γδ(n+ δ)2 = τ [(n− 2)(n+ δ)− 2φ(n− 1)δ][(2− δ)(n+ δ) + 2φ(n− 1)δ]. (5.13)

Substituting (5.11) into (5.13) and collecting terms of order φ0 yields

γδ0(n+ δ0)
2 = τ [(n− 2)(n+ δ0)][(2− δ0)(n+ δ0)] (5.14)

γδ0 = τ(n− 2)(2− δ0) (5.15)

δ0(γ + τ(n− 2)) = 2τ(n− 2) (5.16)

δ0 =
2τ(n− 2)

γ + τ(n− 2)
. (5.17)

Following the same process to collect terms of order φ1, we find

(5.18)γδ1[(n+ δ0)
2 + 2(n+ δ0)δ0] = τ(n− 2)(n+ δ0)[δ1(2− n− 2δ0) + 2(n− 1)δ0]

+ τ(2− δ0)(n+ δ0)[(n− 2)δ1 − 2(n− 1)δ0],

which can be rearranged to yield

δ1 =
2τ(n− 1)δ0(n− 4 + δ0)

γ(n+ 3δ0) + τ(n− 2)(n+ 3δ0 − 4)
, (5.19)

with δ0 defined in (5.17). In summary, we have determined the first two coefficients δ0 and
δ1 of the asymptotic expansion for δ given in equation (5.11). Hence, the true solution is
approximated by the following expression:

(5.20)δ =
2τ(n− 2)

γ + τ(n− 2)
+

2τ(n− 1)δ0(n− 4 + δ0)φ

γ(n+ 3δ0) + τ(n− 2)(n+ 3δ0 − 4)
+O(φ2).

Finally, we are able to plug (5.20) into the quasi-equilibrium point for α, given in equation
(5.4), to obtain

α = (n− 2)− 2(n− 1)φ
δ0

n+ δ0
+O(φ2), (5.21)

which, upon neglecting terms in φ of order larger than one, can be rearranged to find

α = (n− 2)− φ 4τ(n− 1)(n− 2)

τ(n+ 2)(n− 2) + γn
. (5.22)

The expression for α (5.22) can be used to determine the epidemic threshold as follows

Rcci =
τα

γ
=

(n− 2)τ

γ
− φτ

γ

(
4τ(n− 1)(n− 2)

τ(n+ 2)(n− 2) + γn

)
. (5.23)

It is straightforward to see that again Rcci ≤ R, with clustering making the spread of the
epidemic less likely.
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5.4 Numerical examples

In Fig. 7 we repeat the systematic test of comparing the epidemic threshold generated
via the numerical solution of the cubic equation (5.5), the epidemic threshold generated
by the asymptotic expansion (5.23) and the numerical value of the final epidemic size
predicted by the pairwise model with the compact improved closure, over a wide range
of (τ, n) values. Several observations can be made. First, it is clear that higher values
of clustering push the location of the threshold to higher τ and n values, meaning that
the limiting effect of clustering on the epidemic spread can only be overcome if either
the value of the transmission rate or average degree increases. Second, the agreement
between the threshold based on the numerical solution of the cubic equation (5.5) and the
asymptotic expansion (5.20) is excellent over a wide range of φ values. In fact, in this case
the agreement is excellent for 0 ≤ φ ≤ 0.45, with only small deviations even for φ = 0.6.
The agreement between the numerical solution of the pairwise model and the threshold
based on the numerical solution of the cubic equation (5.5) remains excellent across all
parameter values.

6 Comparing epidemic thresholds based on different

models

Exploiting the presence of fast variables and combining this with elements of perturbation
theory allowed us to compute the epidemic threshold for the pairwise model with two
different closures that take clustering into account. Our results are in line with the findings
by Li et al. (2018) and Miller (2009b). Li et al. (2018) calculated the epidemic threshold
in a pairwise model for clustered networks with a closure based on the number of links in
a motif, rather than nodes. This led to

R0 =
(n− 1)τ

τ + γ + τφ
. (6.1)

Equation (6.1) can be expanded in terms of φ to give

R0 =
(n− 1)τ

τ + γ

(
1

1 + φ τ
τ+γ

)
' (n− 1)τ

τ + γ

(
1− φ τ

τ + γ
+ · · ·

)
, (6.2)

which again reflects our finding that clustering reduces the epidemic threshold.
Similarly but for clustered networks with heterogeneous degree distributions, Miller

(2009b) found that

R0 =
〈k2 − k〉
〈k〉

T − 2〈n4〉
〈k〉

T 2 + · · · , (6.3)
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Figure 7: Assessing the validity of the epidemic threshold based on the asymptotic expan-
sion (5.20) (dashed line and markers - ◦) by comparing it to the epidemic threshold based on
the numerical solution of the cubic equation (5.5) (continuous lines). In the right hand col-
umn we compare both threshold curves in the (τ, n, 0) plane. In the left hand column both
curves are compared to the final epidemic size based on numerical integration of the pair-
wise model equations with the compact improved closure. Parameter values are N = 10000,
γ = 1 and from top to bottom the clustering coefficients are φ = 0, 0.15, 0.3, 0.45, 0.6.
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where 〈ki〉 stands for the ith moment of the degree distribution, T is the probability of
infection spreading across a link connecting an infected to a susceptible node and 〈n4〉
denotes the average number of triangles that a node belongs to. The expression above again
shows that clustering reduces the epidemic threshold when compared to the unclustered
case. Furthermore, if the network is regular and we assume that infections and recoveries
are Markovian processes with rates τ and γ respectively, giving T = τ/(τ + γ), R0 above
reduces to

R0 =
τ(n− 1)

τ + γ
− (n− 1)φ

(
τ

τ + γ

)2

+ · · · , (6.4)

where we have used the fact that a global clustering coefficient of φ translates to a node
on average being part of 1

2
n(n − 1)φ uniquely counted triangles. This in turn coincides

with equation (6.2). This is perhaps unexpected since the first expression was obtained
based on a new type of closure for pairwise models while the other expression was based
on percolation theory type arguments. Trapman (2007a) considered specific networks with
household structure to investigate the effects of clustering and infectious period distribution
on a modified version of R0 referred to as R∗, and lower and upper bounds for the value
of this quantity were found. Similarly Ball et al. (2010) considered a random network
incorporating household structure and provided the basic reproduction number which takes
into account within household and global contacts.

However, as elaborated upon in Section 4.1, the R threshold that we compute is a growth-
rate-based threshold and whilst at the threshold R = 1 ⇐⇒ R0 = 1, R does not have the
same biological interpretation as R0. Despite this, our analysis confirms that clustering
starves the spreading epidemic of susceptible neighbours such that the epidemic is less likely
to spread if the networks are clustered, all other parameters being equal. More impor-
tantly, the epidemic threshold is model-dependent and the pairwise model with the compact
improved closure leads more readily to epidemic outbreaks when compared to the pairwise
model with the simple closure, see Figs. 5 and 7. While this ordering is true for the param-
eters used in this paper, we cannot conclude that this ordering holds true for all parameter
values. Further research may focus on the ordering of these thresholds and a better under-
standing of the impact of model choice on the values of the epidemic threshold.

The computation of the true R0 for pairwise models can be attempted by considering
the next generation matrix approach (Van den Driessche and Watmough, 2002). Looking
at the pairwise model with the simplest closure and ordering the variables involved in the
spreading process as: [I],[SI], the generation of new infectious cases at the the disease-free
steady state is given by

F =

(
0 τ
0 τ(n− 1)(1− φ) + τξφα

)
, (6.5)

where the lower right term is obtained from equation (4.3) by looking at the rate of growth
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of [SI] in terms of [SI] itself and evaluating it at the disease-free equilibrium, that is

˙[SI] = +τξ
[SS]

[S]

(
(1− φ) + φ

N

n

[SI]

[S][I]

)
[SI] ' (τ(n− 1)(1− φ) + τξφα) [SI].

Now all other transfers between compartments are summarised in the V matrix, which is
given below

V =

(
γ 0

0 (τ + γ) + τ ξ
n
αδφ

)
, (6.6)

where the lower right term describes the rate at which [SI] pairs are depleted. This is
obtained from equation (4.3) as follows

˙[SI] = −
(

(τ + γ) + τξ
[SI]

[S]
(1− φ) + φτξ

[SI]

[S]

N [II]

n[I]2

)
[SI] ' −((τ + γ) + τ

ξ

n
αδφ)[SI],

where again all expressions were evaluated at the disease free steady state. Now R0 is given
by the leading eigenvalue of FV −1, which is

R0 =
τn(n− 1)− τ(n− 1)(n− α)φ

n(τ + γ) + τξαδφ
. (6.7)

Obviously, this seems like a rather complicated expression since the quasi-equilibrium values
for α and δ are needed. These are only available as asymptotic expansions in powers of φ.
Nevertheless, for φ = 0, R0 = τ(n−1)

τ+γ
, which agrees perfectly with the two results quoted

above. Considering the φ > 0 case, we write R0 = r0 +φr1, α = α0 +φα1 and δ = δ0 +φδ1.
Plugging these into equation (6.7), leads to

r0 =
τ(n− 1)

τ + γ
and r1 = −τ

2(n− 1)

(τ + γ)2

[
2(τ + γ)

nτ
+

(n− 1)

n
α0δ0

]
.

While the first term in the expansion for R0 agrees with the results quoted above, the
second term seems less likely to be equivalent to those shown above. This same approach
can be used to compute R0 when the compact improved closure is used. We believe that
comparing these different ways of computing the epidemic threshold can contribute to
reconciling different methods and will lead to more clarity and transparency between various
modelling approaches.

Finally, we report some results concerning networks composed of two layers, local within
household and global contacts, where epidemic threshold-like quantities have been pro-
posed (Ball et al., 2010). Taking the infection rates over global/network and local/household
edges to be the same means that households in the model can be viewed as a device for
introducing clustering into the network. This observation motivates our short analysis be-
low. We consider the simple example of a network with all households of size three with
additional global contacts assigned to nodes according to a configuration-like network with
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a regular degree, say µD. This is to keep in line with our assumption of regular random
networks. Based on results by Ball et al. (2010), the clustering in such a network is

φ =
2

2 + µD(3 + µD)
, (6.8)

which can be inverted to give µD in terms of clustering

µD =
1

2

√
1 +

8

φ
− 3

2
. (6.9)

Assuming that both infection and recovery are Markovian with rates λG (infection through
global links), λL (infection within households) and γ, and following the calculations by Ball
et al. (2010) it is easy to show that the epidemic threshold is

R∗ = (1−M(λG))((1 + µT )µD − 1) = −(1−M(λG)) + (1−M(λG))(1 + µT )µD, (6.10)

where

M(θ) =
θ

γ + θ
, µT = 2

[
1−M2(λL)−M(2λL)(1−M(λL)

]
. (6.11)

Plugging in the expression for µD, as in equation (6.9), leads to

R∗ = −(1−M(λG))− 3

2
(1−M(λG))(1 + µT )︸ ︷︷ ︸
T1

+
1

2
(1−M(λG))(1− µT )︸ ︷︷ ︸

T2

√
1 +

8

φ
(6.12)

It is now obvious that R∗ decreases as φ increases, but to keep in the spirit of this section
we expand the above in terms of φ. Given that around x = 0 the following expansion holds√

1 + 8/x =
√

1
x

(
2
√

2 + 1
4
√
2
x− · · ·

)
, we can rewrite R∗ to give

R∗ = T1 + 2
√

2T2
1√
φ

+
1

4
√

2
T2
√
φ− · · · . (6.13)

Two important remarks can be made. First, even though R∗ defines an epidemic thresh-
old, it does not have the same interpretation as the basic reproduction number: it is the
household reproduction number. However, it is a threshold parameter so it takes a value
below/at/above its threshold value (= 1) precisely when any other threshold parameter
(such as R0) is below/at/above its threshold value. Secondly, the dependency on φ for the
various epidemic thresholds differs. While for most thresholds considered here this depen-
dency is via a negative term of O(φ), the threshold from the household model decreases
as O((φ)−1/2) as φ increases away from zero. This may indicate a clear difference in the
underlying models but all models may be correct as long as their individual assumptions
are met. Therefore, further exploration may focus on understanding which assumptions
lead to this discrepancy and what the implications of the various modelling approaches are
when applying such models in reality.
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7 Discussion

In this paper we derived an analytic epidemic threshold using pairwise models but for clus-
tered networks. For the unclustered case this problem has been solved previously (Keeling,
1999). Here, however, by exploiting the presence of fast variables and using elements of
perturbation theory, we could find the epidemic threshold as an asymptotic expansion in
powers of the clustering coefficient.

Our analysis confirms that clustering starves the spreading epidemic of susceptible nodes
such that the epidemic is less likely to spread if the networks are clustered, all other
parameters being equal. More importantly, the epidemic threshold is model-dependent
and the pairwise model with the compact improved closure leads more readily to epidemic
outbreaks when compared to the pairwise model with the simple closure, see Figs. 5 and
7. While this ordering is true for the parameters used in this paper, it is easy to show that
this relation can change if parameters are tuned accordingly.

We carried out a full analysis of two systems of fast variables (one corresponding to the
simplest closure with no clustering, the other corresponding to the compact improved closure
for clustered networks). Both systems exhibit similar behaviours but, surprisingly, the more
complicated one (that with the compact improved closure) yields results with virtually no
constraints on the parameter values.

It is obvious that the complexity of the closure has a bearing on the complexity of the
resulting model. As shown in the paper, using the compact improved closure leads to a more
complex model whose analysis is slightly more complicated. After submitting the present
paper and while waiting for the reviews, we analysed the system with the full improved
closure (Kiss et al., 2018). However, our analysis only included the asymptotic expansion
of the epidemic threshold without considering the detailed analysis of the system of fast
variables (e.g. existence and uniqueness of a biologically feasible steady-state). This system
is now four dimensional with not two but four fast variables (the extra variables being
[SR]/[R] and [IR]/[I]). In doing so, we were able to confirm the effectiveness and generality
of the approach presented in the paper.

It will also be worthwhile to compare different models in order to identify the impact of
clustering on epidemics by mapping out regions in the parameter space where its effect is
strongest. It is known that when the network is dense the effect of clustering is limited and
the same holds when the transmission/recovery rates are high/low, respectively. Moreover,
as we have shown in Section 6 there is scope for reconciling epidemic thresholds computed
from different mean-field or stochastic models where the network is a key ingredient. More
importantly, while there is some agreement between the different epidemic threshold ex-
pressions, especially in some limits or particular cases, it is clear that the epidemic threshold
is model dependent. Hence, the biology of the disease and the contact pattern has to be
carefully analysed and taken into account when choosing models that are to be used in
relation to actual epidemics.

Of course there remains the issue of accounting for degree heterogeneity in the network
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and this has been addressed to some extent by using percolation type approaches. The
approach that we presented in this paper may be extended to degree-heterogeneous clus-
tered networks, but this will require more sophisticated models such as effective-degree,
or compact/super-compact pairwise models (Simon and Kiss, 2015). These will no doubt
lead to more complex systems which are more challenging to analyse. The simplest starting
point could be to consider a network with nodes having either degree k1 or k2. For ease
of treatment, let Ni be the number of nodes with degree ki with i ∈ {1, 2}. Now one can
assume that clustering in the network is introduced at random so it is going to be propor-
tional to the degree and the mixing between the two groups of nodes. One can assume the
simplest case of proportional mixing, where the number of links between nodes of degree
ki and kj, ni,j is simply nij =

kikjNiNj∑
l klNl

. Then, the closure could be considered as follows

[ASI] = (1− φ)[ASI] + φ[ASI] = (1− φ)
∑
i

[ASiI] + φ
∑
i

[ASiI], (7.1)

where Si denotes the class of susceptible nodes of degree ki. Now appropriately scaled
closures for the triples are needed, which will depend on the degree of the nodes and how
clustering is apportioned over nodes of different degrees. The viability of such a model
will then rely on whether such closures are compact and compatible enough to derive a
reasonably simple overall expression for [ASI], ideally one where the closure no longer
depends on degree, but rather such information appears as some factor in the closure.

Finally, it would be worthwhile to test our findings against explicit stochastic network
simulations. Since our focus was on exploiting the presence of fast variables and the use
of perturbation analysis to determine the epidemic threshold analytically, such empirical
validation was thought to be beyond the scope of the present work. We hope that the
results of this paper may encourage other researchers to consider and tackle the challenges
posed by modelling epidemic dynamics on clustered networks with heterogeneous degree
distributions.
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A Derivation of evolution equations for the fast vari-

ables with the compact improved closure

Using the improved closure (3.14) in line with Proposition 2, which we refer to as the
reduced improved closure, we find that

[ASI] = (n− 1)

(
(1− φ)

[AS][SI]

n[S]
+ φ

[AS][SI][IA]

[A]
∑

a[aS][aI]/[a]

)
(A.1)

= (n− 1)

(1− φ)
[AS][SI]

n[S]
+ φ

[AS][SI][IA]

[A]
(

[SS][SI]
[S]

+ [SI][II]
[I]

)
 . (A.2)

Using equation (A.2) to close the original pairwise equations (2.2)-(2.6), we obtain the
following system of equations:

˙[S] = −τ [SI] (A.3)
˙[I] = τ [SI]− γ[I] (A.4)

(A.5)

˙[SI] = −(τ + γ)[SI] + τ(n− 1)

(
(1− φ)

[SS][SI]

n[S]
+ φ

[I][SS][SI]

[I][SS] + [S][II]

)
− τ(n− 1)

(
(1− φ)

[SI]2

n[S]
+ φ

[S][SI][II]

[I][SS] + [S][II]

)

(A.6)˙[SS] = −2τ(n− 1)

(
(1− φ)

[SS][SI]

n[S]
+ φ

[I][SS][SI]

[I][SS] + [S][II]

)

(A.7)˙[II] = 2τ [SI]− 2γ[II] + 2τ(n− 1)

(
(1− φ)

[SI]2

n[S]
+ φ

[S][SI][II]

[I][SS] + [S][II]

)
.

As we have shown in the main body of the paper, the computation of the threshold
requires a system of differential equations for the fast variables α = [SI]/[I] and δ =
[II]/[I]. We find

dα

dt
=

[SI]′

[I]
− [SI][I]′

[I]2

and substituting [SI]′ from equation (A.5) and [I]′ from equation (A.4), we obtain

(A.8)

dα

dt
= −(τ + γ)

[SI]

[I]
+ τ(n− 1)

(
(1− φ)

[SS][SI]

n[S][I]
+ φ

[SS][SI]

[I][SS] + [S][II]

)
− τ(n− 1)

(
(1− φ)

[SI]2

n[S][I]
+ φ

[S][SI][II]

[I]2[SS] + [S][I][II]

)
− τ [SI]2

[I]2
+ γ

[SI]

[I]
.
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Replacing all [SI]
[I]

terms by α and all [II]
[I]

terms by δ gives

(A.9)

dα

dt
= −(τ + γ)α + τ(n− 1)

(
(1− φ)

[SS]

n[S]
α + φα

[SS]

[SS] + [S]δ

)
− τ(n− 1)

(
(1− φ)

[SI]

n[S]
α + φαδ

[S]

[SS] + [S]δ

)
− τα2 + γα,

and evaluating dα
dt

at the disease-free steady state ([S], [I], [SI], [SS], [II]) = (N, 0, 0, nN, 0)
(B.1) gives

(A.10)

dα

dt
= −(τ + γ)α + τ(n− 1)

(
(1− φ)α + φα

nN

nN +Nδ

)
− τ(n− 1)

(
φαδ

N

nN +Nδ

)
− τα2 + γα.

After simplification we find that

dα

dt
= −τα + τ(n− 1)

(
(1− φ)α + φα

n

n+ δ
− φαδ 1

n+ δ

)
− τα2 (A.11)

= −τα + τ(n− 1)

(
(1− φ)α + φα

(
n− δ
n+ δ

))
− τα2. (A.12)

Differentiating δ = [II]
[I]

gives

dδ

dt
=

[II]′

[I]
− [II][I]′

[I]2
,

and substituting [II]′ from equation (A.7) and [I]′ from equation (A.4), we obtain

(A.13)

dδ

dt
= 2τ

[SI]

[I]
− 2γ

[II]

[I]
+ 2τ(n− 1)

(
(1− φ)

[SI]2

n[S][I]
+ φ

[S][SI][II]

[I]2[SS] + [S][I][II]

)
− τ [SI][II]

[I]2
+ γ

[II]

[I]
.

Replacing all [SI]
[I]

terms by α and all [II]
[I]

terms by δ gives

dδ

dt
= 2τα− 2γδ + 2τ(n− 1)

(
(1− φ)

[SI]

n[S]
α + φαδ

[S]

[SS] + [S]δ

)
− ταδ + γδ

= 2τα− γδ + 2τ(n− 1)

(
(1− φ)

[SI]

n[S]
α + φαδ

[S]

[SS] + [S]δ

)
− ταδ,

and evaluating dδ
dt

at the disease-free steady state (B.1) gives

dδ

dt
= 2τα− γδ + 2τ(n− 1)

(
φαδ

N

nN +Nδ

)
− ταδ (A.14)
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= 2τα− γδ + 2τ(n− 1)

(
φαδ

1

n+ δ

)
− ταδ. (A.15)

Combining the differential equations for both α = [SI]
[I]

and δ = [II]
[I]

, we have

dα

dt
= −τα + τ(n− 1)

(
(1− φ)α + φα

(
n− δ
n+ δ

))
− τα2 (A.16)

dδ

dt
= 2τα− γδ + 2τ(n− 1)

(
φαδ

n+ δ

)
− ταδ. (A.17)

B Standard linear-stability analysis for the case of the

simple closure

An alternative way to determine the epidemic threshold is to consider the stability of the
disease-free steady state

([S], [I], [SI], [SS], [II]) = (N, 0, 0, nN, 0). (B.1)

When the disease-free steady state is stable, the system will always end up at the disease-
free steady state and thus no epidemic will occur. When the disease-free steady state
becomes unstable, there exists (at least) a second steady state whereby an epidemic will
occur and [S] will no longer be equal to N . To determine a stability condition for the
disease-free steady state (B.1), we must compute the Jacobian matrix J of the system
(4.1)-(4.5), evaluated at the disease-free steady state, and solve to find its eigenvalues.

By computing partial derivatives of each differential equation (4.1)-(4.5) with respect
to each model variable [S], [I], [SI], [SS] and [II], and evaluating each expression at the
disease-free steady state (B.1), we obtain

Jdf =



0 0 −τ 0 0
0 −γ τ 0 0

0 ∂ ˙[SI]
∂[I]

∂ ˙[SI]
∂[SI]

0 ∂ ˙[SI]
∂[II]

0 ∂ ˙[SS]
∂[I]

∂ ˙[SS]
∂[SI]

0 0

0 ∂ ˙[II]
∂[I]

∂ ˙[II]
∂[SI]

0 ∂ ˙[II]
∂[II]

 , (B.2)

with ∂ ˙[SI]
∂[I]

= τξφ
(

2[SI]2[II]
n[I]3

− [SI]2

[I]2

)
, ∂ ˙[SI]
∂[SI]

= −(τ + γ) + τξ(1 − φ)n + 2τξφ
(

[SI]
[I]
− [SI][II]

n[I]2

)
,

∂ ˙[SI]
∂[II]

= −τξφ [SI]2

n[I]2
, ∂ ˙[SS]

∂[I]
= 2τξφ [SI]2

[I]2
, ∂ ˙[SS]
∂[SI]

= −2τξ(1−φ)n−4τξφ [SI]
[I]

, ∂ ˙[II]
∂[I]

= −4τξφ [SI]2[II]
n[I]3

,

∂ ˙[II]
∂[SI]

= 2τ + 4τξφ [SI][II]
n[I]2

and ∂ ˙[II]
∂[II]

= −2γ + 2τξφ [SI]2

n[I]2
all containing variables [SI]

[I]
and [II]

[I]
.

The zero entries in Jdf reflect the true values that the respective partial derivatives attain at
the disease-free equilibrium. However, the majority of the non-zero matrix entries involve
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[SI]
[I]

and [II]
[I]

. Since [I] = [SI] = [II] = 0 at the disease-free steady state, both of these
quantities are ill-defined. Hence, not all entries of the Jacobian can be evaluated at the
equilibrium. This issue prevents the computation of the eigenvalues of Jdf and thus the
value of the epidemic threshold. In order to progress, we need to determine the correct
values for α = [SI]

[I]
and δ = [II]

[I]
. We note that the correct value of α = [SI]

[I]
is also required

in equation (4.10), and the threshold cannot be computed without it.
In fact, using only φ = 0, the Jacobian at the disease-free steady state (B.1) becomes

Jdf no clust =


0 0 −τ 0 0
0 −γ τ 0 0
0 0 −γ + τ(n− 2) 0 0
0 0 −2τ(n− 1) 0 0
0 0 2τ 0 −2γ

 . (B.3)

It is straightforward to show that the eigenvalues are given by λ1 = 0, λ2 = −γ, λ3 =
τ(n − 2) − γ, λ4 = 0 and λ5 = −2γ. The only eigenvalue that can be non-zero and non-
negative is λ3 = τ(n − 2) − γ. Hence, we know that the disease-free steady state (B.1) is
stable when λ3 ≤ 0 and becomes unstable when λ3 > 0. Thus, the epidemic threshold is
given by λ3 = 0 and this can be rearranged to give τ(n − 2)/γ = 1. This is equivalent to
the calculation based on determining the quasi-equilibrium of the fast variables.

C Standard linear-stability analysis for the case of the

compact improved closure

To determine an epidemic threshold, we consider conditions for stability of the disease-free
steady state (B.1). To do so, we compute the Jacobian matrix evaluated at the disease-free
steady state as

Jdf2 =



0 0 −τ 0 0
0 −γ τ 0 0

0 ∂ ˙[SI]
∂[I]

∂ ˙[SI]
∂[SI]

0 ∂ ˙[SI]
∂[II]

0 ∂ ˙[SS]
∂[I]

∂ ˙[SS]
∂[SI]

0 ∂ ˙[SS]
∂[II]

0 ∂ ˙[II]
∂[I]

∂ ˙[II]
∂[SI]

0 ∂ ˙[II]
∂[II]

 (C.1)

where ∂ ˙[SI]
∂[I]

= 2τ(n − 1)φαδ n
n2+2nδ+δ2

, ∂ ˙[SI]
∂[SI]

= −(τ + γ) + τ(n − 1)
(
(1− φ) + φ

(
n−δ
n+δ

))
,

∂ ˙[SI]
∂[II]

= −2τ(n − 1)
(
φα n

n2+2nδ+δ2

)
, ∂ ˙[SS]

∂[I]
= −2τ(n − 1)

(
φαδ n

n2+2nδ+δ2

)
, ∂ ˙[SS]
∂[SI]

= −2τ(n −

1)
(
(1− φ) + φ n

n+δ

)
, ∂ ˙[SS]
∂[II]

= 2τ(n − 1)
(
φα n

n2+2nδ+δ2

)
, ∂ ˙[II]

∂[I]
= −2τ(n − 1)

(
φαδ n

n2+2nδ+δ2

)
,

∂ ˙[II]
∂[SI]

= 2τ + 2τ(n− 1)
(
φδ 1

n+δ

)
and ∂ ˙[II]

∂[II]
= −2γ + 2τ(n− 1)

(
φα n

n2+2nδ+δ2

)
cannot be fully

evaluated as they contain products of the problematic variables α = [SI]
[I]

and δ = [II]
[I]

.
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The Jacobian above becomes useful once analytical expressions for α and δ are obtained
(or it could be an asymptotic expansion or even numerical values). Plugging these in the
Jacobian will allow to either numerically or analytically compute the threshold. We note
that using the linear-stability analysis or focusing on the initial growth rate should lead to
the same threshold value, as was already shown for the case of the system with the simple
closure in Section B.
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