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Abstract

In this paper we investigate the changes in the functional connectivity intensity, and some

related properties, in healthy people, across the life span and at resting state. For the explicit

computation of the functional connectivity we exploit a recently proposed model, that bases

not only on the correlations data provided by the acquisition equipment, but also on different

parameters, such as the anatomical distances between nodes and their degrees. The lead-

ing purpose of the paper is to show that the proposed approach is able to recover the main

aspects of resting state condition known from the available literature, as well as to suggest

new insights, perspectives and speculations from a neurobiological point of view. Our study

involves 133 subjects, both males and females of different ages, with no evidence of neuro-

logical diseases or systemic disorders. First, we show how the model applies to the sample,

where the subjects are grouped into 28 different groups (14 of males and 14 of females),

according to their age. This leads to the construction of two graphs (one for males and one

for females), that can be realistically interpreted as representative of the neural network dur-

ing the resting state. Second, following the idea that the brain network is better understood

by focusing on specific nodes having a kind of centrality, we refine the two output graphs by

introducing a new metric that favours the selection of nodes having higher degrees. As a

third step, we extensively comment and discuss the obtained results. In particular, it is

remarkable that, despite a great overlapping exists between the outcomes concerning

males and females, some intriguing differences appear. This motivates a deeper local inves-

tigation, which represents the fourth part of the paper, carried out through a thorough statisti-

cal analysis. As a result, we are enabled to support that, for two special age groups, a few

links contribute in differentiating the behaviour of males and females. In addition, we per-

formed an average-based comparison between the proposed model and the traditional
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statistical correlation-based approach, then discussing and commenting the main outlined

discrepancies.

Introduction

Functional magnetic resonance in neuroscience

Undoubtedly, the functional magnetic resonance imaging (fMRI) constitutes a fundamental

technique to examine brain function by using blood oxygen level–dependent (BOLD) contrast.

Ever since it was demonstrated that fMRI is sensitive to spontaneous brain activity at rest (i.e.,

in the absence of a task), the so-called resting state fMRI (rsfMRI or R-fMRI) has gained great

popularity for studying brain connectivity.

What makes fMRI so appealing for neuroscientists is that it can be applied in minimally-

compliant populations such as young children, adolescents, adults, elderly as well as in people

with neurodegenerative diseases or mental disorders.

While BOLD contrast has been used for nearly 3 decades to localize the neuronal activity

associated with a specific task or stimulus, it is now established that, even at rest, the BOLD sig-

nal exhibits low-frequency spontaneous fluctuations. These oscillations are characterized by

temporal correlations across spatially distinct brain regions and are thus believed to reflect the

degree of “functional connectivity” (FC) (see for example [1]). The explanation for this base-

line activity in the absence of external stimuli is that the brain maintains some sort of “stand-

by” condition, which allows the activity to be resumed very quickly on demand [2]. Alternative

explanations speculate that resting activity is devoted to prime the brain to respond to future

stimuli, or to maintain relationships between areas that often work together to perform tasks.

It may even consolidate memories or information absorbed during normal activity (see for

example [3]).

Regardless of the specific function of resting-state activity, it forms a substantial part of neu-

ral physiology, as indicated by the amount of energy devoted to it: blood flow to the brain dur-

ing rest is typically just 5–10% lower than during task-based experiments (see [4]). These

patterns of synchronous activities can be measured using rsfMRI, and have been shown to be

reproducible and associated with specific functional networks [5].

Default mode network

Among those functional networks, the Default Mode Network (DMN) has received most

attention. The term “default mode” was originally introduced by Raichle et al. in 2001 [6] to

describe resting brain function (see also [7]). Other resting-state networks have been charac-

terized by a high level of reproducibility, and functional disconnection has been implicated in

several neurological and psychiatric disorders [8]. The field has slowly moved towards an

increasingly abstract description of functional connections across the whole brain, based on a

graph theory approach (see for example [9], [10], [11]), where any network can be described

by means of its nodes, or vertices (in the case of the brain these would be grey matter areas),

and the connections (also called edges, or links) between them.

The DMN is most active when the brain is at rest, while it deactivates when the brain is

directed outwards or engaged in a cognitive task [12], [13], [14]. For this reason, the DMN is

believed to be associated with introspection and general cognition. All the areas involved in

the DMN are associated with high-level functions, such as memory (medial temporal lobe and

precuneus), the theory of mind, or the ability to recognize others as having thoughts and
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feelings similar to one’s own (medial prefrontal cortex); and integration of internal thoughts

(posterior cingulate).

The strength of correlation between the nodes’ activity at rest can be used to weight the

edges, and a number of topological parameters can be computed to characterize the network

in terms of efficiency, modularity, segregation and integration.

The threshold problem

While graph theory is a powerful approach for investigating changes occurring to the brain,

several challenges and pitfalls remain to be addressed. Many steps are required to compute a

graph from rsfMRI data, and some of them are still partially controversial, in particular, those

that impose arbitrary choices, all of which can substantially impact on the results. One of the

most critical points concerns the definition of a “threshold” for accepting a connection as

“real” as opposed to noise. There are several approaches for defining thresholds. Maybe the

most popular one, when data are originated by fMRI experiments, is correlation-based, mean-

ing that a particular value r~, between 0 and 1, is selected. Hence, only the links characterized by

a correlation index greater than r~ are considered. This method, though very common, could be

a bit crude, since defining connectivity purely based on the correlation between functional

time-series neglects the contribution of the underlying anatomical structure. For instance, a

node v of high degree (i.e. the number of connections involving v) is automatically removed

from the analysis in case all the edges whose v is an endpoint have correlation index below the

threshold. On the other hand, a great number of connections could reveal to be significant

from a neurobiological point of view, so that cutting-off v could cause the loss of important

information on the brain behaviour. As it is conceivable that functional connectivity expresses

structural connectivity, the edges of the graph should be weighted accordingly.

Aging of the functional network

There is a great interest in describing and understanding the changes occurring in functional

networks with age and gender, as a consequence of the hypothesised link between connectivity

and function of the brain. Using a range of complementary approaches, several research

groups have shown dramatic changes occurring during the lifespan. By means of a multivariate

technique, Ferreira et al. [15] showed that normal aging is not only characterized by decreased

resting-state FC within the DMN, but also by ubiquitous increases in internetwork positive

correlations and focal internetwork losses of anticorrelations (involving mainly connections

between the DMN and the attentional networks). Their outcomes seem to reinforce the notion

that the aging brain undergoes dedifferentiation processes with loss of functional diversity.

Using graph theory, Xu et al. [16] found that the whole-brain network is more easily fully con-

nected in young adulthood than that in late adulthood, indicating that the central regions,

frontal lobe, parietal lobe, and limbic lobe possibly occupy more resources in late adulthood.

In addition, they pointed out a selective loss of connectivity strength within the temporal lobe

and occipital lobe in late adulthood. Other changes occurring with aging include reduced

small-worldness and connectivity density. FC studies based on neurophysiological methods

(see for example [17]), also suggest the occurrence of age-related alterations of functional rest-

ing-state connectivity. Among the regions whose FC is more directly associated with cognitive

performance are the posterior cingulate/precuneus and medial temporal lobe. The interaction

between age and gender has also been explored, suggesting a faster cross-sectional FC decline

with age in females [18]. Globally, the results of this study indicate that although both male

and female brains show small-world network characteristics, male brains were more segre-

gated and female brains were more integrated. These sex differences in rsfMRI are more likely
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to reflect sexual dimorphisms in the brain rather than transitory activating effects of sex hor-

mones [19]. One important consequence of these findings is that age and sex should be con-

trolled for in FC studies of young adults.

Our work

A main goal of the paper is to identify the strongest functional connections that are different

in males and females, through the lifespan and at resting state. In order to address this issue,

we apply a modified model of FC that has been recently proposed [20]. In this model (in the

following referred to as FD model, where F stands for “functional” and D stands for “dis-

tance”) the computation of the connectivity between each pair of nodes is not only based on

the strength of the statistical correlations between different cerebral areas (measured by the

correlation coefficient r), but also on the physical distance between the nodes, and their degree

in the corresponding graph. The choices of functional and structural data can be done accord-

ing to different criteria and methods (e.g. [21], [22], [23], [24]), without affecting the applica-

tion of the FD model.

Also, as an alternative approach to the thresholding problem, we apply a 2-step method pre-

viously proposed, and already applied to real fMRI data [23]. This procedure aims in selecting

a first threshold from the analysis of the histogram of the available data provided by the acqui-

sition system, and then applies a second threshold on the matrices provided by the FD model.

Consequently, the relevant links are selected from a suitable neighbour of interest, and, in the

meantime, fulfil the request of having high weight according to the FD model. This reflects in

that nodes having higher degrees have a higher probability of being preserved in the resulting

network, which, in our opinion, could be preferable in view of understanding the areas playing

a central role during the brain activity. Without pretending to solve definitively the threshold-

ing issue, our proposal should be intended as an alternative operative approach to provide

meaningful weights to the brain connections, based on the various kinds of involved connec-

tivity and typical graph parameters and metrics.

Furthermore, we performed a model comparison analysis whose aim is to compare the FD

model with the traditional statistical correlation-based approach, from now on referred to as

pure functional connectivity (pFC) approach. This analysis, based on the corresponding sam-

ple-averaged representative matrices, outlined a few connections that, though neglected by the

pFC, seem to be important at resting state, and suggest a deeper investigation in possible future

works.

The paper is organized as follows.

First, the FD model and the 2-step thresholding procedure have been briefly summarized,

also focusing on their explicit application to real data. Our study involved 133 subjects, both

males and females of different age, with no evidence of neurological diseases or systemic disor-

ders. We have shown how the model applies to the sample, where the subjects have been

grouped into 28 different groups (14 of males and 14 of females), according to their age. From

the obtained intensities we derived two graphs (one for males and one for females), that can be

realistically interpreted as representative of the neural network during the resting state. As a

result, we get a great overlapping between the outcomes concerning males and females. Then,

following the idea that the brain activity can be better understood by focusing on specific

nodes having a kind of centrality, we have refined the two previous graphs by introducing a

new metric that favour nodes having higher degrees. This led to identify the strongest links in

each one of the considered groups, showing that, both for males and for females, a main role

seems to be played by the precuneus, the cingulate gyrus, the frontal pole, the paracingulate

gyrus, and the occipital cortex. These are characterized both by high functional strength and
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degree and are consistent with the DMN as previously described in the literature (see for

instance [6], [7], [12] and [25]).

Despite this, some intriguing differences appeared, which motivated a deeper local investi-

gation, based on the statistical analysis of the results. As a consequence, we were enabled to

support that, for the two groups consisting of subjects from 46 to 50 years, and of subjects

from 71 to 79 years, a few links contribute in differentiating the behavior of males and females.

The obtained results have been extensively commented on and discussed.

Regarding the model comparison analysis, the adopted strategy pointed out that, on aver-

age, the main discrepancies occur in four special brain connections, namely, the left precu-
neus-right precuneus, the right middle temporal gyrus, posterior division–right central opercular
cortex, the right middle temporal gyrus-right planum temporal posterior division and the Left
Middle Temporal Gyrus, posterior division- Left Central Opercular Cortex. Their possible role at

resting state has been discussed. The paper is intended as a contribution in shedding more

lights on the Neuroscience of resting state. Future perspective leads towards a deeper study of

the principal networks such as DMN (Default Mode Network), SN (Salience Network), CEN

(Central Executive Network) as well as the functional connectivity changing over the lifespan

in patients affected by neuropsychiatric diseases.

Methods

Participants and MRI Data acquisition

The studied cohort consisted of 133 right-handed subjects, 51 males and 82 females. We

clustered the sample in 14 age classes, ranging from 6 to 79 years of age, namely males and

females were separately studied and divided into 14 separate 5-year-wide age groups (G1M,F to

G14M,F). Table 1 provides characteristics of the participants under investigation.

None of the participants were taking psychoactive medications at the time of the scan or had a

history of neurological or psychiatric disorders. According to the recommendations of the decla-

ration of Helsinki for investigations on human subjects, the present study was specifically

Table 1.

Range of age

(in y)

Id # of males # of females # of subjects

6–10 1 7 7 14

11–15 2 3 2 5

16–20 3 1 2 3

21–25 4 6 16 22

26–30 5 5 7 12

31–35 6 4 4 8

36–40 7 3 7 10

41–45 8 4 2 6

46–50 9 3 6 9

51–57 10 3 7 10

58–65 11 3 5 8

66–70 12 2 5 7

71–75 13 5 10 15

76–79 14 2 2 4

Total 51 82 133

Groups formed by the subjects involved in the study.

https://doi.org/10.1371/journal.pone.0206567.t001
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approved by the Ethics Committee of Don Gnocchi Foundation (Milan, Italy). Written informed

consent from all subjects to participate in the study were obtained before study initiation.

Data acquisition

Brain MR images were acquired using a 1.5 T scanner (Siemens Magnetom Avanto, Erlangen,

Germany) with eight-channel head coil. rfMRI, BOLD EPI images (TR/TE = 2500/30 ms; reso-

lution = 3.1 × 3.1 × 2.5 mm3; matrix size = 64 × 64; number of axial slices = 39; number of vol-

umes = 160; flip angle = 70˚; acquisition time = 6 min and 40 s) were collected at rest. Subjects

were instructed to keep their eyes closed, not to think about anything in particular, and not to

fall asleep. High-resolution T1-weighted 3D images (TR = 1900 ms; TE = 3.37 ms; matrix

192 × 256; resolution 1 × 1 × 1 mm3; 176 axial slices) were also acquired and used as anatomi-

cal references for rfMRI analysis.

Image pre-processing

Pre-processing of rfMRI data was carried out using FSL [26], [27]. Standard pre-processing

steps involved: motion correction, non-brain tissue removal, spatial smoothing with a 5 mm

full width at half maximum Gaussian kernel, and high-pass temporal filtering with a cut-off fre-

quency of 0.01 Hz. Subsequently, single-subject spatial ICA with automatic dimensionality esti-

mation was performed using MELODIC [28] and FMRIB’s ICA-based Xnoiseifier (FIX, http://

fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIX) [29] was used to regress the full space of motion artifacts and

noise components out of the data [30]. The training set for FIX was obtained using a separate

group of HC (N = 42; age 35.7 ± 22.3 years; M/F = 19/23), whose data had been acquired using

the same MRI protocol. After the pre-processing, each single-subject 4D dataset was first

aligned to the subject’s high-resolution T1-weighted image using linear registration.

Participants were classified according to their age in 5 classes (5–10, 11–18, 19–40, 41–60,

61–79), and an age class-specific template representing the average T1-weighted anatomical

image across subjects was built using the Advanced Normalization Tools (ANTs) toolbox [31].

Each participant’s cleaned dataset was co-registered to its corresponding structural scan, then

normalized to the class-specific template before warping to standard MNI152 space, with

2×2×2 mm3 resampling. This step was undertaken to avoid the bias of trying to match brain of

very different sizes to a single template.

Computation of anatomical and functional matrices

For each subject, rfMRI data were parcelled into 94 cortical areas using the Harvard-Oxford

Atlas (HOA) (see Table 2) [32], [33], [34], [35], then time-series were extracted from each one

of these regions of interest. Subject-specific FC matrices were estimated by correlating each

pair’s time-series. The resulting 94x94 matrix was used as functional connectivity matrix F

whose entries are Fij.
The HOA was also used to estimate the pairwise Euclidean distance between all the cen-

troids of the regions of interest. The resulting values were used to define the 94x94 distance

matrix D, whose elements Dij appear in the exponent of the model (see Eq (3)).

Model description

Following [20], we compute the weight of the edge between two nodes i and j as follows:

WijðtÞ ¼ bði; j; tfixedÞ e
� ðZðtÞDij � aði;j;tÞÞ: ð1Þ
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Table 2. Nodes and correspondent cerebral areas.

Node Cerebral area Node Cerebral area

1 Left Frontal Pole 48 Right Frontal Pole

2 Left Insular Cortex 49 Right Insular Cortex

3 Left Superior Frontal Gyrus 50 Right Superior Frontal Gyrus

4 Left Middle Frontal Gyrus 51 Right Middle Frontal Gyrus

5 Left Inferior Frontal Gyrus, pars triangularis 52 Right Inferior Frontal Gyrus, pars triangularis

6 Left Inferior Frontal Gyrus, pars opercularis 53 Right Inferior Frontal Gyrus, pars opercularis

7 Left Precentral Gyrus 54 Right Precentral Gyrus

8 Left Temporal Pole 55 Right Temporal Pole

9 Left Superior Temporal Gyrus, anterior division 56 Right Superior Temporal Gyrus, anterior division

10 Left Superior Temporal Gyrus, posterior division 57 Right Superior Temporal Gyrus, posterior division

11 Left Middle Temporal Gyrus, anterior division 58 Right Middle Temporal Gyrus, anterior division

12 Left Middle Temporal Gyrus, posterior division 59 Right Middle Temporal Gyrus, posterior division

13 Left Middle Temporal Gyrus, temporooccipital part 60 Right Middle Temporal Gyrus, temporooccipital part

14 Left Inferior Temporal Gyrus, anterior division 61 Right Inferior Temporal Gyrus, anterior division

15 Left Inferior Temporal Gyrus, posterior division 62 Right Inferior Temporal Gyrus, posterior division

16 Left Inferior Temporal Gyrus, temporooccipital part 63 Right Inferior Temporal Gyrus, temporooccipital part

17 Left Postcentral Gyrus 64 Right Postcentral Gyrus

18 Left Superior Parietal Lobule 65 Right Superior Parietal Lobule

19 Left Supramarginal Gyrus, anterior division 66 Right Supramarginal Gyrus, anterior division

20 Left Supramarginal Gyrus, posterior division 67 Right Supramarginal Gyrus, posterior division

21 Left Angular Gyrus 68 Right Angular Gyrus

22 Left Lateral Occipital Cortex, superior division 69 Right Lateral Occipital Cortex, superior division

23 Left Lateral Occipital Cortex, inferior division 70 Right Lateral Occipital Cortex, inferior division

24 Left Intracalcarine Cortex 71 Right Intracalcarine Cortex

25 Left Frontal Medial Cortex 72 Right Frontal Medial Cortex

26 Left Juxtapositional Lobule Cortex 73 Right Juxtapositional Lobule Cortex

(formerly Supplementary Motor Cortex) (formerly Supplementary Motor Cortex)

27 Left Subcallosal Cortex 74 Right Subcallosal Cortex

28 Left Para cingulate Gyrus 75 Right Para cingulate Gyrus

29 Left Cingulate Gyrus, anterior division 76 Right Cingulate Gyrus, anterior division

30 Left Cingulate Gyrus, posterior division 77 Right Cingulate Gyrus, posterior division

31 Left Precuneus Cortex 78 Right Precuneus Cortex

32 Left Cuneal Cortex 79 Right Cuneal Cortex

33 Left Frontal Orbital Cortex 80 Right Frontal Orbital Cortex

34 Left Parahippocampal Gyrus, anterior division 81 Right Parahippocampal Gyrus, anterior division

35 Left Parahippocampal Gyrus, posterior division 82 Right Parahippocampal Gyrus, posterior division

36 Left Lingual Gyrus 83 Right Lingual Gyrus

37 Left Temporal Fusiform Cortex, anterior division 84 Right Temporal Fusiform Cortex, anterior division

38 Left Temporal Fusiform Cortex, posterior division 85 Right Temporal Fusiform Cortex, posterior division

39 Left Temporal Occipital Fusiform Cortex 86 Right Temporal Occipital Fusiform Cortex

40 Left Occipital Fusiform Gyrus 87 Right Occipital Fusiform Gyrus

41 Left Frontal Operculum Cortex 88 Right Frontal Operculum Cortex

42 Left Central Opercular Cortex 89 Right Central Opercular Cortex

43 Left Parietal Operculum Cortex 90 Right Parietal Operculum Cortex

44 Left Planum Polare 91 Right Planum Polare

45 Left Heschl’s Gyrus (includes H1 and H2) 92 Right Heschl’s Gyrus (includes H1 and H2)

46 Left Planum Temporale 93 Right Planum Temporale

(Continued)
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Here, tfixed denotes an instant corresponding to the interval during which data are recorded,

while t is a time parameter spanning the whole life of the investigated neural network.

The function β (i, j, tfixed) depends on the topological growth of the neural network, and it

can be approximated by the product of the degrees deg(i), deg(j) of nodes i and j, respectively

(see [20], [36]). We remind that the degree of a node is the number of edges connected to the

node and that it is computed from the thresholded correlation matrix.

The parameter η is time-dependent and represents a kind of weight on the anatomical dis-

tances. In principle it changes with age (i.e. it is a function of t) [37], but, for simplicity, in this

paper we have considered it constant, and consequently, it has been incorporated in the matrix

D = [Dij]. Therefore, η reduces to a normalization factor introduced on the anatomical dis-

tances, namely, the entries of the distance matrix D range in the real interval [0,1].

The function α(i, j, t) relates to the functional connectivity, and it can be realistically mod-

eled as the product of two functions f (i, j) and g(t):

aði; j; tÞ ¼ f ði; jÞgðtÞ ð2Þ

where f(i, j) is the correlation between nodes i and j (depending on the task and/or resting

state correlation), while g(t) is connected to stage of life in which the volunteer falls when

the data are acquired. The function α(i, j, t) is directly available from the collected data, and,

when there is no need of the synthetic decomposition provided by Eq (2), we simply denote by

F(t) = [Fij(t)] the corresponding FC matrix (i.e., the correlation matrix) collected at time t.
As a consequence, the employed model can be rewritten and simplified as follows

Wij tð Þ ¼
degðiÞdegðjÞ
WmazðtÞ

e� ðZDij � F
S
ijðtÞÞ; ð3Þ

whereWmax(t) is the normalization value, with i and j ranging from 1 to N, being N the total

number of the areas of the chosen neural HOA, that is 94 in the present paper (see Table 2).

Analytic description

First of all, let us comment briefly on the entries of the functional connectivity matrices made

available by the data acquisition system. As usual, these consist of positive, zero and negative

values. The problem of negative correlations is a very important issue, highly debated in Neu-

roscience. One of the advantages of the proposed model is that a positive weight can be

assigned even to links characterized by negative correlations, so that these could be considered

as well. However, since the main focus of the present paper is different, we have preferred to

avoid including negative correlations in our discussions. Consequently, these entries have

been set to zero, and our study is based on the resulting non-negative matrices.

We split the analysis of the available sample in two different steps, a background analysis,

and a graph analysis.

1. The background analysis exploited, first of all, a recently proposed [23] double-step thresh-

olding procedure. The first step is applied to the functional data made available by the

acquisition system, and provides the functional correlations FSijðtÞ to be introduced in the

Table 2. (Continued)

Node Cerebral area Node Cerebral area

47 Left Occipital Pole 94 Right Occipital Pole

Brain HOA.

https://doi.org/10.1371/journal.pone.0206567.t002
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exponent of the formula for the computation of the matricesWij(j) according to the FD

model (see (3)). The second step acts on the computed matricesWij(j), and leads to the con-

struction of a graph that can be realistically assumed as representative of the neural network

having the strongest activity during the life span and at resting state.

2. The graph analysis is based on the previously determined representative graph, and intro-

duces a new metric on the vertices, in order to favor links having endpoints of higher

degrees. Indeed, as we have explained in the Introduction section, the leading idea behind

the FD model is that the areas playing a central role during the brain activity can be better

outlined, in our opinion, by focusing on nodes having high degrees. This results in refusing

a few links previously selected (some of them even of high frequency all over the various

groups) which consequently should be interpreted as an auxiliary indication of the brain

activity at resting state.

Background analysis

Let’s now explain in detail the two steps of the thresholding procedure applied to the consid-

ered sample.

First thresholding step. For each one of the 133 subjects, the distribution of the non-neg-

ative entries of the functional connectivity matrix Fk = [Fk (i, j, t)] (k 2 {1, . . .,133}) has been

organized in a histogram consisting of ten bins. For h2 {1,. . .,10}, the h-th bin of each histo-

gram covers the interval of intensities h� 1

10
; h

10

� �
, and its height represents the number of entries

in this range for the corresponding distribution.

The analysis of each histogram pointed out that most of the data always accumulate in the

first two bins. This is not surprising since, being at resting state, the involved functional corre-

lations are expected to be not so great. Since our aim was to focus on the links having strongest

intensities, we defined data-depending thresholds that select, for each one of the 133 distribu-

tions, a suitable neighbor of interest (NOI) [23]. This is done by fixing a q-quantiles partition

of each distribution, and by considering, for each k 2 {1, . . .,133}, a reference quantile qk such

that all data above this quantile are contained above the second bin of the corresponding histo-

gram. We recall that this implies that the (100(q-qk)/q)% of the data of the k-th distribution

contributes to the corresponding NOI.

The resulting thresholded matrix Fks = [Fks(i, j, t)], k 2 {1, . . .,133} is exploited for the com-

putation of the node degrees of the k-th distribution, and then included in the exponent of the

model Eq (3), together with the Dij values computed as described previously. This provides the

133 matrices Wk = [W(i, j, t, k)].
Then, according to their age, the 133 subjects have been split into 28 5-years ranged differ-

ent groups, 14 formed by males and denoted byMi, and 14 formed by females and denoted by

Bi, i 2 {1, . . .,14} (see Table 1). Within each groupMi (i2 {1, . . ., 14}), the first-step thresholded

matrices associated to the corresponding subjects are summed up, and then divided by the car-

dinality of the group, so encoding in a single matrixWMi
ðtÞ the information concerning the

whole group. The same procedure has been applied to Bi, which associates a single matrix

WBi
ðtÞ to each one of the 14 groups of females.

Second thresholding step. The second thresholding step aims in preserving, among the

previously selected ones, the links having higher intensities [23].

To this, we apply, for each i, a second threshold λi onWMi
ðtÞ (respectively μi forWBi

ðtÞ). In

order to compute λi (respectively μi), we have organized all the entries of the first-step thre-

sholded matrices in a new histogram, consisting of 10 bins, and then we have considered the

centermi (respectively bi) of the bin formed by the highest 10% of entries. Then, the thresholds
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λi (respectively μi) should be assumed to be equal to some suitable percentage ofmi (respec-

tively bi). Since no specific knowledge in advance on the sample was available, it seemed to us

quite reasonable to consider λi = 1/2mi (respectively μi = 1/2 bi), setting to 0 each entry below

the thresholds.

The above choices are motivated by the fact that, working at resting state, we are interested

in selecting only links having very high intensity. Actually, by using a greater percentage we

would include very low intensities, which could be highly affected by noise. On the other

hand, working with less than 10% of the highest entries could result in the loss of some link

that, though not so strong, have a relevant importance at resting state.

Due to the resting state condition, we expect that the range of such highest intensities spans

also some values that are not so strong. Indeed, this is the case, since, all over the 28 working

groups, we found intensities even around 0.1, which, however, are not so common (see

Table 3, Table 4 and Table 5).

The resulting outputs consist of matricesWMi
ðtÞ� andWBi

ðtÞ�, i 2 {1, . . ., 14}, where the �

denotes the second thresholding step.

Table 3.

MALES FEMALES

Link Frequency Link Frequency

31–78 14 22–31 14

29–76 13 31–78 14

30–77 13 29–76 13

22–31 12 1–48 11

69–78 12 69–78 12

28–75 11 30–77 10

54–64 11 36–83 9

1–48 10 22–78 9

36–83 8 47–94 9

47–94 8 30–31 8

75–76 7 28–75 8

77–78 7 75–76 7

30–31 7 48–75 7

48–75 7 77–78 7

22–69 6 30–78 6

24–36 5 31–69 6

22–78 5 1–28 5

31–69 4 22–69 5

31–77 4 28–29 3

28–29 4 28–76 2

23–47 3 69–70 1

1–28 3

29–75 3

21–22 2

28–48 2

30–78 2

22–77 1

The set L of emerging links and their presence over Mi and Bi, i = 1,. . .,14. See also Table 2 for the matching with the

corresponding cerebral areas.

https://doi.org/10.1371/journal.pone.0206567.t003
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Example. The groupM6, namely the 6th group of males, consists of 4 subjects (see

Table 1). The matrixWM6
ðtÞ that represents the group is obtained by averaging the matrices

Wk computed when k assumes the four values corresponding to the subjects inM6, namely

WM6
ðtÞ ¼ 1

4

P4

i¼1
Ws
i ðtÞ.

The center valuem6 of the bin formed by highest 10% of its entries is determined. It results

inm6 = 0.3848. Then the matrixWM6
ðtÞ is thresholded, by setting its entries equal to zero

when these are below λ6 = 1/2m6 = 0.1924. The resulting 94x94 sized matrixWM6
ðtÞ� is repre-

sented in Fig 1, where different colors denote different functional intensities.

Analysis to define the neural graph at rest

We denoted by L the set of emerging links, namely the set of all links related to non-zero entries

in the 28 matrices (the 14WMi
ðtÞ� and the 14WBi

ðtÞ�) provided by the FD model. This set L is

collected in Table 3, where, for each link, the corresponding frequency, ranging from 1 to 14,

is also reported. For instance, the frequency 11 associated to the link 28–75 in the male column

means that this link has been selected by the FD model in 11 over the 14 male groups. Table 4

and Table 5 show the corresponding functional intensities all over the various groups.

Table 4.

Link M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14

31–78 0.41 0.58 0.73 0.47 0.50 0.6 0.79 0.73 0.62 1.00 0.68 0.67 0.90 0.90

29–76 0.40 0 0.64 0.43 0.30 0.52 0.68 0.19 0.50 0.80 0.26 0.43 0.52 0.61

30–77 0.29 0.30 0.44 0.34 0 0.37 0.47 0.39 0.40 0.74 0.29 0.40 0.41 0.76

22–31 0.26 0.35 0 0 0.34 0.24 0.40 0.32 0.28 0.35 0.42 0.44 0.53 0.59

69–78 0.29 0.32 0.41 0.28 0 0.32 0.53 0.40 0.20 0.69 0.43 0.41 0.57 0

28–75 0.53 0 0.50 0.37 0.23 0.34 45 0 0 0.61 0.19 0.29 0.43 0.38

54–64 0.28 0.25 0.58 0.30 0.29 0.47 0.52 0 0.40 0.45 0.40 0 0.34 0

1–48 0.42 0 0.43 0.44 0.22 0.31 0.43 0.08 0 0 0.21 0 0.43 0.50

36–83 0 0.23 0 0.33 0.44 0.46 0.59 0.34 0 0.50 0 0 0.38 0

47–94 0 0 0 0.34 0.30 0.47 0 0.43 0.32 0.36 0 0.38 0 0.52

75–76 0.26 0 0.46 0.29 0 0.35 0 0 0.18 0.56 0 0.31 0 0

77–78 0 0.24 0 0 0 0.37 0.43 0.19 0 0.34 0.23 0 0 0.62

30–31 0 0.25 0 0.27 0 0.30 0 0.17 0 0 0.20 0.30 0 0.46

48–75 0.34 0 0 0.34 0 0.28 0 0 0 0.50 0 0.29 0.39 0.39

22–69 0 0 0 0 0.21 0.27 0 0.13 0 0 0.21 0.41 0.40 0

24–36 0 0 0 0 0 0.29 0.39 0.15 0.30 0.43 0 0 0 0

22–78 0 0.17 0 0 0 0 0 0.24 0 0 0.22 0 0.39 0.34

31–69 0 0.23 0 0 0 0 0.44 0 0 0 0.36 0.37 0 0

31–77 0 0.25 0 0 0 0.30 0 0 0 0 0.22 0 0 0.49

28–29 0.29 0 0 0 0 0 0 0 0.19 0.50 0 0 0.40 0

23–47 0 0.16 0 0 0 0 0 0 0 0 0 0.29 0.38 0

1–28 0.27 0 0 0.28 0 0 0 0 0 0 0 0 0 0.36

29–75 0.28 0 0 0 0 0 0 0 0 0.47 0 0.27 0 0

21–22 0 0.22 0 0 0 0 0 0 0 0 0 0 0.36 0

28–48 0.27 0 0 0 0 0 0 0 0 0 0 0 0 0.35

30–78 0 0 0 0 0 0 0 0.12 0 0 0 0 0 0.51

22–77 0 0 0 0 0 0 0 0 0 0 0.19 0 0 0

Males. Functional connectivity intensities of the emerging links all over the 14 groups.

https://doi.org/10.1371/journal.pone.0206567.t004
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Table 5.

Link F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14

22–31 0.51 0.27 0.27 0.26 0.20 0.26 0.28 0.21 0.11 0.26 0.28 0.39 0.22 0.21

31–78 0.91 0.45 0.49 0.48 0.60 0.50 0.44 0.26 0.13 0.44 0.62 0.55 0.34 0.33

29–76 1 0.20 0.21 0.15 0.48 0.28 0.29 0 0.05 0.25 0.58 0.45 0.16 0.16

1–48 0.67 0 0 0.21 0.39 0.31 0.31 0.19 0.09 0.26 0.38 0.37 0.23 0.24

69–78 0 0.26 0.34 0.22 0.25 0.32 0.26 0 0.09 0 0.34 0.34 0.21 0.24

30–77 0.84 0.23 0 0.22 0.39 0 0.20 0.14 0 0.34 0.34 0.43 0.18 0

36–83 0.54 0 0.34 0.25 0.29 0 0.14 0 0.08 0.20 0.26 0.30 0 0

22–78 0 0.17 0.16 0.17 0.19 0.17 0.21 0 0.06 0.09 0 0 0.13 0

47–94 0 0 0.27 0.17 0.33 0.16 0.11 0.23 0 0.20 0.27 0 0.15 0

30–31 0 0.22 0.16 0.13 0.19 0 0.11 0.17 0 0 0 0.27 0.17 0

28–75 1 0 0 0.16 0.22 0.23 0.09 0 0 0.13 0.29 0.25 0 0

75–76 0.67 0 0 0 0.16 0.19 0.08 0 0 0.11 0.40 0.31 0 0

48–75 0.70 0 0 0 0.16 0.18 0 0 0 0.11 0.34 0.27 0.17 0

77–78 0 0.19 0 0 0.24 0 0.18 0 0 0.16 0.32 0.30 0.13 0

30–78 0 0.17 0.16 0 0.18 0 0.09 0 0 0.10 0 0 0.14 0

31–69 0 0.16 0.28 0.14 0 0.16 0 0 0 0 0 0.30 0 0.22

1–28 0 0 0 0 0.20 0.18 0 0 0 0.10 0.26 0 0 0.21

22–69 0 0.16 0 0.18 0 0.15 0 0 0.08 0 0 0 0 0.22

28–29 0.53 0 0 0 0 0 0 0 0 0 0.25 0 0 0.13

28–76 0 0 0 0 0 0 0 0 0 0 0.25 0 0 0.12

69–70 0 0 0 0 0 0 0 0 0 0 0 0 0 0.14

Famale. Functional connectivity intensities of the emerging links all over the 14 groups.

https://doi.org/10.1371/journal.pone.0206567.t005

Fig 1. The thresholded matrix WM6
ðtÞ� representing the group M6.

https://doi.org/10.1371/journal.pone.0206567.g001
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The male and female sets of emerging links provided by the FD model can be immediately

turned in graphs, that can be realistically assumed as representative of the emerging neural net-

work during the life span and at resting state. These are represented in Fig 2 and Fig 3,

Fig 2. The representative graph of the neural network for males, as determined by the emerging links according to

the FD model.

https://doi.org/10.1371/journal.pone.0206567.g002

Fig 3. The representative graph of the neural network for males, as determined by the emerging links according to

the FD model.

https://doi.org/10.1371/journal.pone.0206567.g003
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respectively, where the thickness of a link corresponds to its frequency of appearance over the

life span.

One of the ideas behind the FD model is to favour the selection of links whose endpoints

have higher degrees, since, in our opinion, this is preferable in view of understanding the areas

playing a central role during the brain activity. In this view, a first glance to Fig 2 and Fig 3

would immediately lead us to remove some links, for example, 54–64 for males, or 36–83 and

47–94 for females. However, we preferred to implement an explicit methodology to catch such

less meaningful links.

To this, we have deepened our approach to the analysis of the representative graph by asso-

ciating to each node v of the HOA (see Table 2) a new topological metric, the Centrality Index
of v, hereinafter denoted by CI(v). For the male (resp. female) sample, CI(v) is the normalized

sum of the number of non-zero entries that involve v over the 14 matrices associated to the 14

male (resp. female) groups. That is, CI(v) is the sum of the degrees of v all over the correspond-

ing 14 networks, divided by the greatest obtained values. Note that CI(v) is defined only for the

nodes corresponding to non-zero lines of the double-step thresholded matrices.

Now, the selection from L of the links of interest is based on the following five steps.

1. Selection of the set of principal vertices

We have organized the distribution of the centrality indices in a histogram consisting of ten

bins. The computation of the center of the 5th bin provides 0.46, both for males and for

females.

The set V’ of principal vertices has been obtained by extracting from the HOA the nodes

having centrality index greater than, or equal to, this value, namely:

V 0 ¼ fv 2 HOA; CIðvÞ � 0:46g ð4Þ

Table 6 shows the distribution of the centrality indices for males and for females, where the

vertices forming the set V’ have been reported in the shaded cells.

2. Selection of the principal links

The first set of edges to be included in the representative graph has been obtained by consider-

ing all links having non-zero occurrence in the matrices provided by the FD models, and whose

endpoints both belong to the set V’ previously introduced. That is, for any pair of vertices a,b 2
V0 we selected the link a − b if and only if it appeared in at least one of the matrices associated to

the considered groups (14 for males and 14 for females). We denoted by E’ this set of edges.

3. Secondary vertices

At this point we added to V’ further nodes, having a “strong” link with some node of V’. More

precisely, a node v=2V is considered, if and only if there exists a node v 2 V0 such that the link

v � v appears in at least 7 of the 14 matrices representing the groups (Mi and Fi, respectively,

i = 1, . . ., 14). This forms the set

V@ ¼ fv; 9 v 2 V 0; jv � vj � 7; v=2V 0g; ð5Þ

where the symbol | | stands for the cardinality.

4. Secondary edges

The set V” naturally leads to consider also the set of edges E” consisting of all links v � v pro-

vided by Eq (5), which deserve to be considered due to their high frequency. However, it is
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worth to be included also possible links provided by the FD model, having non-zero frequency

and both endpoints v; v 2 V@. Note that, though their frequency is not necessarily at least 7

(see Table 3), such links deserve to be considered as well, since further connections between

pairs of nodes in V” relate immediately to an increasing robustness of the neural network.

The representative graph. As a result of the above five items, we have assumed the neural

network at resting state represented by the graph G(V,E) such that V = V0 [ V" and E = E0 [ E".

Table 7 shows the sets V’ and V” for the male and female groups.

Table 7.

Males V’ = {22, 28, 29, 30, 31, 48, 69, 75, 76, 77, 78} V” = {1}

Females V’ = {22, 30, 31, 48, 69, 75, 76, 78} V” = {1, 28, 29, 77}

The sets of nodes V’ and V” for males and females.

https://doi.org/10.1371/journal.pone.0206567.t007

Table 6.

MALES FEMALES

Node CI Node CI Node CI Node CI

31 1.00 73 0.12 78 1 71 0.08

78 0.98 79 0.12 31 0.88 32 0.06

75 0.73 26 0.10 22 0.63 43 0.06

77 0.66 32 0.10 69 0.53 46 0.06

22 0.63 70 0.10 48 0.51 12 0.04

28 0.56 50 0.07 30 0.49 25 0.04

76 0.56 65 0.07 76 0.49 42 0.04

30 0.54 71 0.07 75 0.47 67 0.04

69 0.54 3 0.05 1 0.39 68 0.04

29 0.49 21 0.05 28 0.39 72 0.04

48 0.49 45 0.05 77 0.37 80 0.04

36 0.41 51 0.05 29 0.35 86 0.04

47 0.39 57 0.05 47 0.33 18 0.02

64 0.39 67 0.05 83 0.31 20 0.02

83 0.39 68 0.05 94 0.27 21 0.02

1 0.37 8 0.02 36 0.24 26 0.02

54 0.37 10 0.02 64 0.22 27 0.02

40 0.27 12 0.02 87 0.22 39 0.02

94 0.24 39 0.02 54 0.2 45 0.02

87 0.22 42 0.02 70 0.2 55 0.02

7 0.20 46 0.02 17 0.18 57 0.02

24 0.20 55 0.02 23 0.16 59 0.02

17 0.17 59 0.02 7 0.14 63 0.02

23 0.15 93 0.02 40 0.14 66 0.02

13 0.1 73 0.02

79 0.1 74 0.02

10 0.08 90 0.02

24 0.08 93 0.02

Distribution of the centrality indices. The set V’ of the principal vertices is formed by the nodes in the shaded cells.

https://doi.org/10.1371/journal.pone.0206567.t006
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Notably, while V’ and V” have a different structure in males and females, their union V0 [
V" becomes the same for both samples. Table 8 provides the list of all selected edges E, listed

according to their frequency of appearance. In red and in blue are represented, respectively,

the links forming the subsets E’ and E” involved in G(V, E), while in black the removed emerg-

ing links. See also Table 2 for the matching with the corresponding cerebral areas.

Fig 4 and Fig 5 show the graph G(V, E) for males and for females, respectively. Also com-

paring the known literature concerning the resting state (see for example [25], [38], [39]), we

are leading to interpret G(V, E) as the Default Mode Network (DMN).

Discussion on the representative graph

We have exploited the recently proposed FD model [20] for the construction of a representa-

tive graph G(V,E) of the neural network, over the life span and at resting state. The set E of

edges, and the corresponding set V of vertices, has been selected from the thresholded matrices

provided by the FD model.

Table 8.

MALES FEMALES

Link Frequency Link Frequency

31–78 14 22–31 14

29–76 13 31–78 14

30–77 13 29–76 13

22–31 12 1–48 11

69–78 12 69–78 12

28–75 11 30–77 10

54–64 11 36–83 9

1–48 10 22–78 9

36–83 8 47–94 9

47–94 8 30–31 8

75–76 7 28–75 8

77–78 7 75–76 7

30–31 7 48–75 7

48–75 7 77–78 7

22–69 6 30–78 6

24–36 5 31–69 6

22–78 5 1–28 5

31–69 4 22–69 5

31–77 4 28–29 3

28–29 4 28–76 2

23–47 3 69–70 1

1–28 3

29–75 3

21–22 2

28–48 2

30–78 2

22–77 1

Emerging links L and their presence over Mi and Bi, i = 1,. . .,14. The links belonging to E’ are shown in red while the

links belonging to E‘‘ in blue. The black links do not contribute to the relevant network.

https://doi.org/10.1371/journal.pone.0206567.t008

Exploring rsFC across the lifespan in healthy people by means of a graph theoretical model

PLOS ONE | https://doi.org/10.1371/journal.pone.0206567 November 8, 2018 16 / 28

https://doi.org/10.1371/journal.pone.0206567.t008
https://doi.org/10.1371/journal.pone.0206567


We can see that the representative graph largely overlaps with the nodes and links within

the DMN. In this sense we referred to Raichle et al. [6], [7], Greicius et al. [25] and Buckner

et al. [12], that defined the DMN as composed by specific areas such as the prefrontal gyrus,

the ventral precuneus, the posterior cingulate gyrus and the bilateral inferior parietal regions,

the angular gyrus, the temporoparietal junction, the lateral temporal cortex and part of the

temporal lobe. We found that, both for males and for females, and over the range of age con-

sidered in this study, a main role seems to be played by the precuneus, the cingulate gyrus, the

frontal pole, the paracingulate gyrus, and the occipital cortex, which are characterized by high

functional strength and degree. In particular, if we focus our attention on the precuneus, cin-

gulate gyrus and frontal pole such characteristics are consistent with their role as hubs within

the DMN. This is not surprising since the DMN is most active when the brain is at rest, while

it deactivates when the brain is directed outwards or engaged in a cognitive task [12], [13].

Although we consider the Euclidean distance between cerebral areas, our findings fit with

the results in [40], where a general correspondence between functional and structural connec-

tivity has been demonstrated across the cortex, highlighting that the structural core contains

many connecting hubs, and a central role seems to be played by the right and left posterior cin-

gulate cortex, in other sub-divisions of the cingulate cortex, in the precuneus and in the

cuneus.

Fig 4. Males. The representative graph G(V,E).

https://doi.org/10.1371/journal.pone.0206567.g004

Fig 5. Females. The representative graph G(V,E).

https://doi.org/10.1371/journal.pone.0206567.g005
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We would like to stress that we considered an anatomical atlas (Harvard-Oxford) when we

started our analysis. This was part of the set experimental paradigm. Nevertheless, the FD

model can be applied to different structural data (e.g. DTI and tractography) referring to par-

ticular atlases (e.g. the Destrieux Atlas [24]) as well as to every functional data (fMRI, EEG,

MEG,. . .). To this, the formula in Eq (3) should be considered independently of the methods

employed to collect the corresponding data, even if, of course, the resulting numerical values

must be interpreted accordingly.

Even more detailed atlases, such as the ones that combine functional (for instance rsfMRI)

and structural (DTI) datasets, would surely increase the precision of the outcomes.

Mathematical discussion

Looking at the provided outputs, we can see that both the graphs representing the neural net-

work at resting state for males and females consist of two connected components, and each of

them is a planar graph. A graph G = (V, E) is planar if it can be “drawn” on the plane without

edges crossing except at endpoints. In other words, a planar graph is a graph that can be

embedded in the plane. More precisely, there is a 1 to 1 function f: V! R2 and for each e 2 E
there exists a 1 to 1 continuous function ge, ge: [0, 1]! R2 such that:

1. e = xy implies f(x) = ge(0) and f(y) = ge(0).

2. e 6¼ e0 implies that ge(x) 6¼ ge0(x0) for all x,x0 2 (0,1).

For a given set of nodes, an increasing number of links tends to reduce the probability that

the graph is planar. Also, increasing the number of links reflects in increasing the cost of the

graph. On the other side, the presence of more paths between a same pair of nodes improves

the resistance of the networks to random attacks, so preserving the efficiency in transmitting

information. Therefore, the planar structure of our outputs, and the presence of cycles in both

of them, suggests a tendency of the brain to reduce, but not minimize, the cost, and a kind of

robustness of the DMN.

Statistical analysis of results

Objectives of the analysis

In the previous section we have provided a graph representation of the human connectivity, as

it emerges at resting state, by exploiting the FD model and the related thresholding procedure.

As we have previously detailed, the set E of edges of the resulting graph G(V,E) has been

selected from the set L of all the emerging links as detailed previously

The aim of the statistical analysis reported in this section is to investigate the differences in

connectivity between males and females in the different age classes. In detail, we want to inves-

tigate whether the set L of emerging links is able to discriminate between males and females. If

such discrimination is possible, we aim at selecting the specific age groups that present differ-

ences between males and females (global analysis), and for such age groups, the specific links

that better discriminate males and females (local analysis). The two objectives of this analysis

are pursued in two separate phases and are addressed by means of different statistical inferen-

tial methods.

Global analysis. In the first phase, we test if, globally, the functional connectivity of males

is different with respect to the one of the females. The performed test is a global test, in the

sense that it considers the functional connectivity of all emerging links together. In a prelimi-

nary study that is not reported here for brevity, we tested if mean and variance of the signalW
depend on age. We found out that—while there is no significant effect of age on the mean
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connectivity—there is a significant effect of age on the variance. Hence, we decided to run a

separate analysis for each age group.

The method used in this phase is a non-parametric multivariate analysis of variance

(MANOVA).

Local analysis. If on a specific age group we observe significant differences between males

and females (i.e., if the global MANOVA test is significant for that class), then it is of great

interest to select the specific links which significantly discriminate males from females. Hence,

in the second phase of the analysis within the age groups selected in the first phase, we test if

locally the functional connectivity of males is different with respect to the one of females. The

performed test is a local test since it is performed for every link separately and provides a selec-

tion of the statistically significant links. The method used in this phase is a non-parametric

univariate analysis of variance (ANOVA).

Statistical methods

Let LM and LB denote the sets of the links emerging from the previous analysis for males and

females, respectively (i.e., the links reported in Table 3, left and right columns, respectively).

Since we are interested in comparing the connectivity of males and females, it is natural to

compare it on a common set of links. Hence, the analysis that we carry on is on the compari-

son between the connectivity of males and females on the set L = LM U LB (where U denotes

the operation of union of the two sets of links). Let us denote by Q = |L| the cardinality of the

set L. Note that in our case we have a total of Q = 29 links emerging from the previous analysis.

The aim of the statistical analysis performed here is then to test for differences between the

connectivity of males and females across the set of emerging links within each group of age

(see Table 8).

First of all, note that the number of individuals in the different groups of age is in some

cases very small, with some groups containing just one or two individuals. For such reasons, to

increase the sample size before performing the statistical analysis, we decided to merge the

original 14 age groupsMi and Bi into the seven groupsMi’ and Bi’, reported in Table 9 (with

Table 9.

Original Groups New Groups i’ # of males # of females

6–10 6–15 1 10 9

11–15

16–20 16–21 2 7 18

21–25

26–30 26–35 3 9 11

31–35

36–40 36–40 4 7 9

41–45

46–50 46–50 5 6 13

51–57

58–65 58–70 6 5 10

66–70

71–75 71–79 7 7 12

76–79

Ages and sample sizes regarding the subjects involved in the study of the original groups, and of the new groups after

merging into seven classes.

https://doi.org/10.1371/journal.pone.0206567.t009
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the new index i’ ranging from 1 to 7). The following global and local analyses are carried out

on the new groups.

Global analysis

The aim of the global analysis is to investigate the differences between males and females in

terms of functional connectivity, for every separate age group. Formally, 8i0 = 1,. . .,7, letWMi0k

(with k = 1,. . .,|Mi0|) denote the functional connectivity matrices of the |Mi0| male subjects of

the groupMi0. Analogously, 8i0 = 1,. . .,7, letWBi0k
(with k = 1,. . .,|Bi0|) denote the functional

connectivity matrices of the |Bi0| female subjects of the group Bi0. We are interested in testing

the differences between the two Q-variate samples f½WMi01
�e;½WMi02

�e ; . . . ; ½WMi0 jMi0 j
�ege2E and

f½WBi01
�e;½WBi02

�e ; . . . ; ½WBi0 jBi0 j
�ege2E, for all links e belonging to L. For easier notation, let us

denote with ðyi01 ; yi02 ; . . . ; yi0 jMi0 j
Þ and ðxi01 ; xi02 ; . . . ; xi0 jBi0 j

Þ the two samples of males and females,

respectively, of group i’. Note that, for all k, yi0k and xi0k are random vectors of dimension Q
containing the entries of the Q emerging links. Assume that 8i0 = 1,. . .,7: yi0k � i:i:d:Y i0 , and

xi0k � i:i:d:X i0 , where Yi0 and Xi0 are two independent Q-variate random vectors and i.i.d. is the

acronym for independent and identically distributed.
For all i’ = 1,. . .,7 we aim at testing the null hypothesis of equality between the distributions

of Yi0 and Xi0 against the alternative hypothesis of a different distribution between the two vari-

ables:

H0i0
: Y i0 ¼ Xi0 against H1i0

: Y i0 6¼ Xi0 : ð6Þ

The test (6) is a multivariate test since it involves the distribution of the Q-dimensional ran-

dom vectors Yi0 and Xi0. In case of rejection of the null hypothesis for group i’, we will say that

we have enough evidence to state that there is a significant difference between males and

females for that particular age group. In addition, note that for all age groups, the dimension

of the random vectors Q = 29 is higher than the sample sizes (last two columns of Table 9).

Hence, it is not possible to employ classical parametric statistical methods to perform the test

(6), since they typically require that |Mi0|+|Bi0|> Q. For such reason, we perform a non-

parametric permutation test based on permutations of the observations over the two groups

and on a direct combination of the classical ANOVA test statistic over all Q links in E [41].

Specifically, if we now fix a link e 2 L, we can compute the ANOVA test statistic for testing dif-

ferences between males and females on the link e [42]:

ðTi0 Þe ¼

�
�
�Mi0

�
�
�½ðyi0 Þe � ðmi0 Þe�

2
þ

�
�
�Bi0
�
�
�½ðxi0 Þe � ðmi0 Þe�

2

P
�
�Mi0
�
�

k¼1 ½ðyi0kÞe � ðyi0 Þe�
2
þ
P
�
�Bi0
�
�

k¼1 ½ðxi0kÞe � ðxi0 Þe�
2

� �

=ð
�
�Mi0

�
�þ
�
�Bi0
�
� � 2Þ

ð7Þ

where ðyi0kÞe and ðxi0kÞe are the e-th element of vectors yi0k and xi0k , respectively, ðy i0 Þe ¼
PjMi0 j
k¼1 ðyi0kÞe=jMi0 j; ðx i0 Þe ¼

PjBi0 j
k¼1 ðxi0kÞe=jBi0 j, and ðmi0 Þe ¼ ðjMi0 jðy i0 Þe þ jBi0 jðx i0 ÞeÞ=ðjMi0 jþ

jBi0 jÞ. The test statistic (Ti0)emeasures the distance between the functional connectivity of males

and females of group i’ on the specific link e. To measure the global distance between males and

females over all links of the set L, we can then compute the sum statistic (Ti0)e over all links:

Ti0 ¼
P
e2EðTi0 Þe ð8Þ
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For testing (6) we can now perform a permutation test based on statistic (8). Specifically,

we compute the test statistic (8) over all possible permutations of data across the units. The p-
value of the test is the proportion of permutation leading to a permuted test statistic higher

than the test statistic observed on the non-permuted data.

Let us define as pi0 the p-value of the permutation test of (6) for comparing males and

females of group i’. Now, note that we are performing in this analysis seven different tests of

comparison between males and females over the seven groups of age. As a consequence, the

results of the seven tests have to be adjusted to take into account the multiplicity [43]. This can

be done in several different ways, depending on the type of error that has to be controlled over

the family of tests. In this work, we propose to control the family-wise error rate (FWER) by

means of the Bonferroni-Holm procedure [44], [45]. As a result, the p-values pi0 are adjusted

for multiplicity, providing a family of adjusted p-values f~pi0 gi0¼1;...;7
. The groups presenting sig-

nificant differences between males and females can then be selected as the ones with corre-

sponding adjusted p-value ~pi0 < 5%. Such a selection is provided with a strong control of the

FWER. Specifically, the probability of selecting at least one false positive group (i.e., an age

group i’ with no differences between males and females but an adjusted p-value ~pi0 < 5%) is

lower than 5%.

Local analysis

The test (6) performed in the global analysis involves the whole distribution of the Q-dimen-

sional random vectors Yi0 and Xi0, resulting in a single adjusted p-value for each age group. If

we have enough evidence to state that there is a significant difference between males and

females for the age group i’, it is then of great importance to identify the specific links that pres-

ent a significant difference between males and females. This is the scope of the subsequent

local analysis, described in this section.

Assume that–for the group i’–the adjusted p-value is ~pi0 < 5%. For all links e 2 L we now

aim at testing the null hypothesis of equality between the distribution of (Yi0)e and (Xi0)e against

the alternative hypothesis of a difference between the two distributions:

H0i0
: ðY i0 Þe ¼ ðXi0 Þe against H1i0

: ðY i0 Þe 6¼ ðXi0 Þe: ð9Þ

Note that, with respect to test (6), what now changes, is the fact that now we are performing

a univariate test on each single link e.
Consistently with the global analysis, the tests (9) can be performed by means of non-

parametric permutation tests, by computing the test statistic (7) over all possible permutations

of data across the units. The p-value of the test is the proportion of permutation leading to a

permuted test statistic higher than the test statistic observed on the non-permuted data.

Let us define as pi0e the p-value of the permutation test of (9) for comparing males and

females of group i’ and link e. Again, for each group i’ we are performing Q = 29 different tests,

each one regarding a specific link. Hence, we need to adjust the obtained p-values taking into

account multiplicity. We now apply the Bonferroni-Holm method to the family of p-values

{pi0e}e2L. The corresponding adjusted p-values ~pi0e are the final result of the local analysis.

Again, by selecting the links with an adjusted p-value lower than the desired level, we obtain a

selection of significantly different links with a strong control of the FWER.

Discussion on the statistical results

All results of global and local analyses are shown in Table 10. The table reports–for each age

group–the unadjusted p-values (second column) and the adjusted p-values (third column).
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The groups presenting significant differences between males (i.e., the ones with an associated

adjusted p-value lower than 5%) and females are highlighted in bold. In detail, we found signif-

icant differences in group 45–60 (p-value 0.042) and 71–79 (p-value 0.035).

The fourth column of the table reports the significant links emerging from the local analysis

on groups with an associated global adjusted p-value lower than 5%.

All results of the local analysis for the groups with a global adjusted p-value lower than 5%

are shown in Table 11. The table reports–for each link–the p-value of test (9) and the Bonfer-

roni-holm adjusted p-value. The links with local adjusted p-values lower than 10% are

highlighted in bold.

We found out one significant link in the age class 46–50, that is the link 24–36 with associ-

ated adjusted p-value equal to 0.03. In the age class 71–19 we found out the significant link 31–

78 with associated p-value equal to 0.03. In addition, in the latter class the adjusted p-value of

link 22–31 is equal to 0.087, suggesting a weak evidence that also this link is different between

males and females.

Note that the sample size in all age classes is not very high. The use of permutation tests, in

this case, is of capital importance since they enable to obtain exact tests for every sample size.

The statistical power of the inferential analysis might, however, be low due to the low sample

sizes. However, it is important to note that, despite a possibly low power, it is possible to obtain

significant results. This suggests that the significant results reported in the paper are valid, and

potentially they could be improved (for instance, the number of significant links could be

increased) by increasing the sample size.

Comparison of models

The FD model [20] needs, for the calculation of the intensity of functional connectivity

between couples on nodes (representing cerebral areas), not only the functional data but also

the degree of such nodes and their distance. We point out again that, generally, only the func-

tional data are used in the literature.

Therefore, we are naturally invited to investigate analogies and differences between the

usual approach which employs statistical correlations (we remind the reader we shortly called

pFC approach and pFC data, where pFC stands for pure functional connectivity), and the

results obtained with the adopted FD model.

Such a comparison could be carried out with different procedures. Here we decided to fol-

low a smooth approach, meaning that we considered the average functional connectivity of all

subjects.

Table 10.

Groups p-value Adjusted p-value Significant Links Anatomical areas

6–15 0.763 1.000

16–21 0.026 0.130

26–35 0.823 1.000

36–40 0.071 0.284

46–50 0.007 0.042 24–36 Left Intracalcarine Cortex- Left Lingual Gyrus

58–70 0.696 1.000

71–79 0.005 0.035 31–78

(22–31)

Left Precuneous Cortex-Right Precuneous Cortex

(Left Lateral Occipital Cortex-Left Precuneous Cortex)

Results of the global and local analyses: unadjusted and adjusted p-values for each age group and significant links. Groups with adjusted p-values lower than 5% are

highlighted in bold. The link in parentheses is characterized by a p-value lower than 10%.

https://doi.org/10.1371/journal.pone.0206567.t010
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To this, we compacted the 133 matrices Wk, k 2 {1,. . .,94}, into a single matrix Wrep, of size

94x94, whose entry Wrep(i,j) is the average value of the 133 entries at position (i,j) in the matri-

ces W1, W2,. . .,W133. In other words, Wrep i; jð Þ ¼ W1ði;jÞþW2ði;jÞþ���þW133ði;jÞ
133

, where i,j 2 {1,. . .,94}.

Note that, now, we do not separate the contribution of males from that of females.

Analogously, we compacted the 133 pure functional connectivity matrices Fk, k 2
{1,. . .,94}, to get a single matrix Frep, still of size 94x94, where Frep i; jð Þ ¼ F1ði;jÞþF2ði;jÞþ���þF133ði;jÞ

133
, i,j

2 {1,. . .,94}.

From Wrep and Frep we formed the matrix M =Wrep—Frep. Then we selected only the

entries of M greater than 0.1116, and setting to zero all the remaining ones. Such a threshold

has been derived from the analysis of the histogram of the distribution of the entries of M,

which shows a clear separation between two different sets. The resulting number of selected

entries is four, so it is very limited, which points out that both models find almost the same

links at resting state. Such four links are:

Table 11.

Group 46–50 Group 71–79

Link p-values adjusted p-values Link p values adjusted p values

24 36 0.001 0.03 31 78 0.001 0.03

30 77 0.008 0.232 22 31 0.003 0.087

69 78 0.009 0.252 28 75 0.006 0.168

31 78 0.012 0.324 22 78 0.01 0.27

28 29 0.012 0.324 28 29 0.014 0.364

29 76 0.013 0.325 30 77 0.018 0.45

30 31 0.024 0.576 30 78 0.018 0.45

28 76 0.026 0.598 75 76 0.028 0.644

75 76 0.031 0.682 29 76 0.03 0.66

31 77 0.036 0.756 69 78 0.031 0.66

28 75 0.078 1 77 78 0.031 0.66

29 75 0.08 1 48 75 0.039 0.741

77 78 0.083 1 28 48 0.041 0.741

31 69 0.084 1 21 22 0.046 0.782

48 75 0.097 1 47 94 0.067 1

22 69 0.124 1 24 36 0.082 1

47 94 0.133 1 30 31 0.088 1

36 83 0.191 1 22 69 0.09 1

30 78 0.204 1 31 77 0.091 1

22 31 0.237 1 1 48 0.102 1

22 78 0.355 1 28 76 0.103 1

69 70 0.486 1 1 28 0.167 1

22 77 0.566 1 23 47 0.205 1

1 48 0.601 1 36 83 0.305 1

23 47 0.601 1 69 70 0.728 1

1 28 0.635 1 29 75 0.776 1

28 48 0.714 1 31 69 0.803 1

21 22 0.929 1 54 64 1 1

54 64 1 1 22 77 1 1

Results of the local analysis for groups 46–50 and 71–79: for each link, the table reports the p-value and the adjusted p-value. The links with associated adjusted p-values

lower than 5% are highlighted in red and bold, while the ones with associated adjusted p-values lower than 10% are highlighted in blue and bold.

https://doi.org/10.1371/journal.pone.0206567.t011
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a. 31–78 (left precuneus–right precuneus)

b. 59–89 (right middle temporal gyrus, posterior division–right central opercular cortex)

c. 59–93 (right middle temporal gyrus, posterior division–right planum temporal, posterior

division)

d. 12–42 (left middle temporal gyrus, posterior division–left central opercular cortex)

We are induced to ascribe functional importance to the above connections, even if the cor-

responding nodes do not directly belong to the DMN. Actually, we cannot exclude that they

could play a role of some importance at resting state since they could be related to other resting

state functional networks. Indeed, the precuneus is well known to be a very interconnected

area [46]. Moreover, the connection between the precuneus and the DMN at resting state (as

well as during specific tasks) is justified by some studies in literature (see for example [47]).

Regarding the links 59–89 (middle temporal gyrus, posterior division right-central opercular
cortex, right) and 59–93 (middle temporal gyrus, right-planum temporal posterior division,

right), they are anatomically and reciprocally connected [48]. Despite the role of link 12–42

(left middle temporal gyrus, posterior division, left central opercular cortex) is not totally clear, it

seems that the posterior part of the middle temporal gyrus could be functionally related to the

DMN. In fact, it is recruited in automatic semantic processing [49], which is not so surprising

during a resting state condition.

The above speculations should be intended as a preliminary indication in view of possible

future analysis aiming at clarifying the precise role of the involved brain regions at resting

state.

Conclusions

In this paper we have investigated the FC intensity changes, and some related invariant prop-

erties, in healthy people across the life span and at resting state. To this, we have exploited the

recently proposed FD model [20], and we have applied it to a sample of 133 healthy partici-

pants, with age distributed throughout the lifespan. The main novelty of this approach, com-

pared to those typically used, includes the modification of the way of weighting the brain

network edges, which is done by accounting for the node degree and the physical distance

between nodes, as well as the correlation between the fMRI time course.

After grouping the 133 subjects into 28 different groups (14 of males and 14 of females)

according to their age, we used the FD model and the related thresholding procedure to iden-

tify the strongest links within each one of the groups. This leads to the construction of a repre-

sentative graph G(V,E) of the neural network over the life span and at resting state.

In order to investigate the differences in connectivity between males and females in the dif-

ferent age classes, we have performed a careful statistical analysis based on the set L of emerg-

ing links. We found out one significant difference in the age classes 46–50 and 71–19, that we

have extensively commented. In addition, in the latter class the adjusted p-value of link 22–31

is equal to 0.087, suggesting a weak evidence that also this link is different between males and

females.

Analogies and differences have been also investigated between the usual approach, i.e.

the analysis led with the pFC data, and the results obtained with the adopted FD model. We

found that all the most important link at resting state, found via the pFC analysis, are found

also with the FD model, which remarkably contributes to the validation of the proposed

model. Furthermore, by means of the FD model analysis we found three further links, not

selected by the pFC analysis. The corresponding nodes do not directly belong to the DMN but
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could connect to other resting state functional networks. This would deserve a specific topic

for future studies.

The global analysis shows that there are not great differences, in terms of functional con-

nectivity intensity, between healthy males and females at resting state. Indeed, only two age

groups present significant differences in functional connectivity between males and females.

The two groups are subjects from 46 to 50 years (adjusted p-value ~pi0 ¼ 0:042)) and subjects

from 71 to 79 years (adjusted p-value ~pi0 ¼ 0:035). All other groups have adjusted p-values

higher than 10%, meaning that they show significant analogies in functional connectivity

between males and females. Note that similar conclusions can be drawn from the unadjusted

p-values, meaning that in this case, the multiplicity adjustment is not highly conservative.

The local analysis performed on the two groups showing significant differences enables us

to select at least one link showing significant differences between males and females. Interest-

ingly, such link is not the same in the two age groups emerging from the global analysis:

we select at 5% level the link 24–36 for the group 46 to 50 years, and the link 31–78 for the

age group 71 to 79 years. In addition, for this latter group, the link 22–31 has an adjusted p-

value lower than 10%. In this case, note that the number of tests that are jointly performed is

higher than in precedence (29 against 7). As a consequence, the adjustment for multiplicity is

also stronger. While there is a lot of links with associated unadjusted p-values lower than 5%,

the ones with adjusted p-values lower than such threshold reduce to only one for each group.

This latter consideration suggests that the adjustment performed by the Bonferroni-Holm

method might be too conservative in this case, and suggests performing a deeper analysis (e.g.,

based on a higher number of subjects) to further investigate the differences between the links).

This is also why we suggest using a higher value of FWER (i.e., 10%) for selecting links in this

case.

Note that–being all analyses based on non-parametric permutation tests–we do not need to

require any parametric model for the data distribution. In particular, we do not assume that

data are distributed as a Gaussian, and even in presence of non-Gaussian data, the results

reported here are exact. The only assumption that is needed here is that the data belonging to

the same group are independent and identically distributed.

Regarding the model comparison analysis, the adopted strategy pointed out a few connec-

tions that seem to have an active role at resting state. Even if the corresponding nodes are not

always directly related to the DMN, they should be considered in view of possible deeper

analysis.

Our results are intended to be a contribution in shedding more light on the neuroscience of

the resting state. This topic is fundamental in translational neuroscience, just think about the

role of the (different) development of functional and structural connectivity in males and

females [50], [51]. The DMN is associated with the free wandering of the human mind, one’s

self, i.e. one’s reminiscence of the past, one’s introspection of the present thoughts, feelings

and one’s plans for the future [52], this wandering could reflect the inner mental state of the

subjects and the basic traits of their personality. Future perspective leads towards the study of

DMN and functional connectivity changing over life in males and females affected by neuro-

psychiatric diseases, as well as the inclusion of possible negative correlations in the model.
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