
GPUs outperform current HPC and neuromorphic solutions in
terms of speed and energy when simulating a highly
connected cortical model

Article (Accepted Version)

http://sro.sussex.ac.uk

Knight, James C and Nowotny, Thomas (2018) GPUs outperform current HPC and neuromorphic
solutions in terms of speed and energy when simulating a highly-connected cortical model.
Frontiers in Neuroscience, 12 (941). pp. 1-19. ISSN 1662-453X

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/80748/

This document is made available in accordance with publisher policies and may differ from the
published version or from the version of record. If you wish to cite this item you are advised to
consult the publisher’s version. Please see the URL above for details on accessing the published
version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual
author(s) and/or other copyright owners. To the extent reasonable and practicable, the material
made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third
parties in any format or medium for personal research or study, educational, or not-for-profit
purposes without prior permission or charge, provided that the authors, title and full bibliographic
details are credited, a hyperlink and/or URL is given for the original metadata page and the
content is not changed in any way.

http://sro.sussex.ac.uk/

1

GPUs outperform current HPC and
neuromorphic solutions in terms of speed
and energy when simulating a
highly-connected cortical model
James C Knight 1;�, Thomas Nowotny 1

1Centre for Computational Neuroscience and Robotics, School of Engineering and
Informatics, University of Sussex, Brighton, United Kingdom
Correspondence*:
James C Knight
J.C.Knight@sussex.ac.uk

ABSTRACT2

While neuromorphic systems may be the ultimate platform for deploying spiking neural3
networks (SNNs), their distributed nature and optimisation for specific types of models makes4
them unwieldy tools for developing them. Instead, SNN models tend to be developed and5
simulated on computers or clusters of computers with standard von Neumann CPU architectures.6
Over the last decade, as well as becoming a common fixture in many workstations, NVIDIA7
GPU accelerators have entered the High Performance Computing field and are now used in8
50 % of the Top 10 super computing sites worldwide. In this paper we use our GeNN code9
generator to re-implement two neo-cortex-inspired, circuit-scale, point neuron network models on10
GPU hardware. We verify the correctness of our GPU simulations against prior results obtained11
with NEST running on traditional HPC hardware and compare the performance with respect to12
speed and energy consumption against published data from CPU-based HPC and neuromorphic13
hardware. A full-scale model of a cortical column can be simulated at speeds approaching 0:5�14
real-time using a single NVIDIA Tesla V100 accelerator – faster than is currently possible using15
a CPU based cluster or the SpiNNaker neuromorphic system. In addition, we find that, across16
a range of GPU systems, the energy to solution as well as the energy per synaptic event of17
the microcircuit simulation is as much as 14� lower than either on SpiNNaker or in CPU-based18
simulations. Besides performance in terms of speed and energy consumption of the simulation,19
efficient initialisation of models is also a crucial concern, particularly in a research context where20
repeated runs and parameter-space exploration are required. Therefore, we also introduce in this21
paper some of the novel parallel initialisation methods implemented in the latest version of GeNN22
and demonstrate how they can enable further speed and energy advantages.23

Keywords: GPU, high-performance computing, parallel computing, accuracy of simulation, energy to solution, benchmarking,24
computational neuroscience, spiking neural networks25

1 INTRODUCTION

Currently, the most common way to accelerate large-scale spiking neural network (SNN) simulations is26
to use CPU-based HPC clusters running software simulators such as NEST (Gewaltig and Diesmann,27

1

Knight and Nowotny GPUs outperform current SNN simulators

2007) or parallel Neuron (Carnevale and Hines, 2006). However, CPU-based systems are not well-suited28
to exploiting the large amounts of fine-grained parallelism present in spiking neural network simulations.29
Furthermore, in order to reduce simulation times, models must be spread across large numbers of compute30
nodes meaning that performance is ultimately constrained by the latency of the MPI interconnect.31

Neuromorphic systems use dedicated hardware, inspired by aspects of the brain, to address the problems32
of parallelism and efficient spike communication. The SpiNNaker system (Furber et al., 2014), developed33
as part of the Human Brain project (HBP) in Manchester, is a neuromorphic computer consisting of up to34
a million ARM cores, connected with an interconnect topology optimised for spike-like communication.35
The BrainScaleS system developed within HBP at Heidelberg (Schemmel et al., 2017), uses analog circuit36
elements rather than digital processors, to emulate the dynamics of point neurons. Spikes then propagate37
between these circuit elements through a digital interconnect network. Other neuromorphic systems based38
on various combinations of digital and analog hardware include the Loihi chip (Davies et al., 2018)39
developed by Intel, the TrueNorth chip (Merolla et al., 2014) built by IBM and the Dynapse system Qiao40
et al. (2015) developed at University of Zurich.41

While neuromorphic systems offer significant theoretical advantages in terms of power efficiency and42
simulation speed, this often comes at the expense of flexibility. In systems where physical circuit elements43
are used to model individual neurons and synapses, the most obvious restriction is that the physical circuits44
dictate what neuron and synapse models are supported. Furthermore, in neuromorphic systems of this45
type, these circuits are instantiated in a fixed ratio (for example 64k synapses to 256 neurons) meaning46
that Liebig’s law dictates that their scalability is limited by the availability of the scarcest of these circuits.47
Even fully-programmable systems such as SpiNNaker suffer from this issue as, for example, handling high48
incoming spike rates consumes a large number of CPU cycles, reducing the number of neurons that can be49
simulated on each core. Some of these issues are illustrated in a recent publication by van Albada et al.50
(2018) who investigated the comparative performance of simulations of a micro-column model (Potjans and51
Diesmann, 2014) in NEST-based simulations on an HPC cluster and an implementation on the SpiNNaker52
neuromorphic system. This model required smaller simulation timesteps and denser connectivity than53
SpiNNaker was designed for, meaning that, although SpiNNaker achieved the same accuracy as the HPC54
system, it had to be run 20� slower than realtime with only a small number of neurons simulated on each55
core. Running the model this slowly meant that the theoretical energy and performance advantages of using56
the SpiNNaker system – which had been previously demonstrated using models more specifically tuned to57
its characteristics (Sharp et al., 2012, 2014; Knight et al., 2016) – were lost and the model not only ran58
faster on the HPC system but also consumed less energy.59

Besides measuring the performance in terms of simulation speed, van Albada et al. (2018) also60
identified that efficiently initialising and loading large-scale models onto neuromorphic systems remains a61
computational challenge. For example, the cortical microcircuit model developed by Potjans and Diesmann62
(2014) took 10 h to initialise and load onto SpiNNaker. This confirms earlier observations (Diamond63
et al., 2016) that prototype neuromorphic systems are not efficient at accelerating their initialisation: Both64
SpiNNaker and a previous generation of the BrainScaleS system spent a significant amount of time and65
energy initialising network models on a host machine.66

These factors suggest that when developing SNNs, more flexible accelerators which can accelerate the67
construction, initialisation and simulation of large-scale SNNs are required. Field-Programmable Gate68
Arrays (FPGAs) are devices consisting of a large number of lookup-table based logic blocks, connected69
using a programmable fabric. FPGAs have been used to build various ‘hard-wired’ SNN accelerators (Moore70
et al., 2012; Wang and van Schaik, 2018), but Naylor et al. (2013) showed that they can also be used71

This is a provisional file, not the final typeset article 2

Knight and Nowotny GPUs outperform current SNN simulators

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

Warp scheduler

Register �le

Shared memory

L1 cache

SM

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

Warp scheduler

Register �le

Shared memory

L1 cache

SM

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

ALU

Warp scheduler

Register �le

Shared memory

L1 cache

SM

L2 cache

DRAM

Figure 1. Simplified illustration of an example GPU hardware architecture with 3 streaming
multiprocessors.

to develop more flexible, programmable accelerators with comparable performance. However, although72
systems of this sort could theoretically be used to accelerate the construction and initialisation of SNNs73
as well as their simulation, FPGAs are not yet commonplace in workstations and their lack of hardware74
support for floating point arithmetic makes them ill-suited for simulating some common classes of neuron75
and synapse models.76

Alternatively, GPU architectures are designed for high throughput applications with large amounts of77
fine-grained parallelism. They replace the large coherent caches, relied upon by modern CPU architectures78
to improve performance, with large numbers of floating point arithmetic units connected to high-bandwidth79
external memory. Programmable GPUs were originally developed to accelerate the rendering of 3D80
graphics which typically involves applying the same, independent computations to each pixel – for example81
to calculate its illumination. However, GPU acceleration has proven to be also very useful for accelerating82
many other tasks, including the training of deep learning systems, and GPUs are now used extensively83
in modern AI systems. The application of GPU acceleration to SNN simulations is also promising and84
there are a number of active SNN simulator projects which target GPUs. CARLsim (Chou et al., 2018) is a85
C++ based simulator using NVIDIA CUDA (Compute Unified Device Architecture) but, as CARLsim86
is not based on code generation, it is difficult for users without CUDA expertise to add new neuron and87
synapse models. EDLUT (Garrido et al., 2011) was initially an event-driven CPU based simulator for88
SNNs, but has evolved into a hybrid CPU/GPU system with support for both, time- and event-driven89
models. ANNarchy (Vitay et al., 2015) is a code generation based simulator which translates Python90
model descriptions into multi-core CPU or GPU code with a focus on hybrid rate- and spiking models.91
Other simulators that have seen less development in the last 2-4 years include NCS6 (Hoang et al., 2013),92
Myriad (Rittner and Cleland, 2016), and NeMo (Fidjeland et al., 2009) (see Brette and Goodman (2012)93
for a review). GeNN (Yavuz et al., 2016) is a code-generation library aimed at facilitating accelerated SNN94
simulations on GPU hardware. It has been designed to strike a balance between flexibility – allowing users95

Frontiers 3

Knight and Nowotny GPUs outperform current SNN simulators

to define their own model neurons and synapses – and efficiency in generating optimised CUDA code for96
the less obviously parallelisable phases of parallel SNN simulations such as spike propagation.97

In this paper we introduce novel methods for parallel initialisation of SNNs in the GeNN simulator and98
investigate the performance of a GPU based simulation of the micro-column network model (Potjans and99
Diesmann, 2014) using GeNN as well as a model using STDP in a highly connected network (Morrison100
et al., 2007). We then compare to other recent benchmarks (van Albada et al., 2018) and critically discuss101
the current state of the art for SNN simulations.102

2 MATERIAL AND METHODS

2.1 GPU architectures103

In this section we will briefly discuss GPU hardware architectures and the Single Instruction Multiple104
Thread (SIMT) paradigm typically used to program them. All GPU manufacturers (confusingly) use their105
own terminology but because in this paper we use NVIDIA hardware, we will refer to concepts using106
NVIDIA’s terminology. GPUs built by other manufacturers are relatively similar so that our description107
below applies to other GPUs after appropriate translation. For example, a ‘Stream Processor’ on an AMD108
GPU is equivalent to a ‘CUDA core’ on an NVIDIA GPU. Similarily, we will discuss SIMT programming109
in the context of CUDA because GeNN is implemented using CUDA, but OpenCL is conceptually quite110
similar.111

Figure 1 shows a simplified diagram of the hardware architecture of a typical GPU. As discussed in the112
introduction, GPUs are designed primarily for high throughput computation and therefore the majority113
of their die area is used for arithmetic logic units (ALUs) known as CUDA cores. Depending on the114
particular GPU, different CUDA cores might be dedicated to integer, single or double-precision floating115
point operations. While each CUDA core is independent, they have no capacity for directly executing116
instructions. Instead they are contained within Streaming multiprocessors (SMs) which schedule sequences117
of Single Instruction Multiple Data (SIMD) instructions known as warps to run on the CUDA cores using118
a piece of hardware known as a warp scheduler. The context associated with each active warp is stored in119
a large register file (64 kB on the Volta architecture) allowing the warp scheduler to very rapidly switch120
between active warps while they wait for data to be delivered from external memory or for CUDA cores121
to become available. Therefore, providing that there is sufficient computation to perform, GPUs can122
effectively hide memory latency by rapidly switching between warps.123

In all recent GPU architectures, SMs access the GPU’s DRAM through an L2 cache. While modern CPUs124
typically have 64 bit memory interfaces, modern GPUs have much wider memory interfaces (4096 bit on125
the Volta architecture). In order to use these wide memory interfaces efficiently, GPU memory controllers126
aim to combine DRAM accesses made by SMs to adjacent memory addresses into single transactions127
– a processed known as coalescing. Within each SM there is also a small amount (128 kB on the Volta128
architectures) of much faster local memory which can typically be partitioned by the programmer into129
software-controlled cache known as shared memory and read-only hardware controlled L1 cache.130

Efficiently programming SIMD architectures such as SSE or AVX often involves manually inserting131
intrinisics into serial code to process data in parallel. However, not only is this difficult but, if the underlying132
architecture and thus the intrinsics which drive it change, applications need to be re-written. NVIDIA133
CUDA solves this problem by instead presenting the programmer with a more abstract SIMT programming134
model where programmers write serial code to be executed in parallel across many virtual threads. Threads135

This is a provisional file, not the final typeset article 4

Knight and Nowotny GPUs outperform current SNN simulators

are grouped into thread blocks which are scheduled so that they can share data via the shared memory136
and the thread blocks are grouped into grids which represent all the threads required to solve the entire137
problem. The CUDA compiler and GPU hardware take care of converting this representation into warps of138
SIMD instructions, scheduling these appropriately and enabling and disabling SIMD lanes within each139
warp when conditional control flow requires it. For example, adding two vectors x and y of length n could140
be implemented as follows using CUDA:141

__global__ void addVec (i n t n , cons t f l o a t �x , f l o a t �y)142
{143

cons t i n t i = (blockIdx . x � blockDim . x) + threadIdx . x ;144
i f (i < n) {145

y [i] += x [i] ;146
}147

}148

Aside from the __global__ function decorator which instructs the compiler to hand this function off to149
CUDA and the blockIdx, blockDim and threadIdx variables which allow the position of the current150
thread within the block and grid to be queried, the code is very similar to standard serial C code.151

2.2 GeNN152

As described by Yavuz et al. (2016), GeNN is a code-generation based system that generates model-153
and platform-optimised CUDA code for GPU accelerated SNN simulations. In doing so, it abstracts154
the hardware and model dependent code choices mentioned above away from its users. GeNN neuron155
models are defined by writing a C++ class which defines the model parameters and snippets of C-like156
code that describe how it should be simulated. For example the following LIF class describes a leaky157
integrate-and-fire neuron with normalised units, solved algebraically:158

c l a s s LIF : pub l i c NeuronModels : : Base159
{160
pub l i c :161

DECLARE_MODEL (LIF , 1 , 1) ;162
SET_SIM_CODE (" $ (V) = ($ (I s y n)� $ (TauM)� (1 .0� $ (ExpTC))) + ($ (ExpTC)� $ (V)) ; \ n ") ;163
SET_THRESHOLD_CONDITION_CODE (" $ (V) >=1.0 ") ;164
SET_RESET_CODE (" $ (V) = 0 . 0 ; ") ;165
SET_PARAM_NAMES ({ "TauM" }) ;166
SET_DERIVED_PARAMS ({167

{ "ExpTC" , [] (cons t vector<double > &pars , double dt)168
{ re turn exp(�dt / pars [0]) ; } } }) ;169

SET_VARS ({ { "V" , " s c a l a r " } }) ;170
} ;171
IMPLEMENT_MODEL (LIF) ;172

The DECLARE_MODEL and IMPLEMENT_MODEL macros insert boilerplate code used subsequently173
for defining parameters and initial model states in a type-safe manner. The SET_SIM_CODE,174
SET_THRESHOLD_CONDITION_CODE and SET_RESET_CODE macros specify the snippets of code used,175
respectively, to update the simulation state, check whether a spike should be emitted and to reset the176
neuron after a spike. The names of model parameters (constant across the entire population) are specified177
using the SET_PARAM_NAMES macro and any ‘pre-processing’ logic to be applied to these is specified with178
SET_DERIVED_PARAMS – in this case converting an exponential decay time constant to a multiplier to be179

Frontiers 5

Knight and Nowotny GPUs outperform current SNN simulators

applied every simulation timestep. Finally, the SET_VARS macro specifies the names and types of the180
per-neuron state variables. These macros provide some ‘syntactic sugar’ but are entirely optional – users181
can instead override the underlying virtual functions themselves. In GeNN, synapse models are defined182
using very similar classes with the option to define code snippets for time-driven and event-driven updates.183
Event-driven updates can be triggered by pre or postsynaptic spikes as well as by custom events, for184
example the pre or postsynaptic neuron’s membrane voltages crossing a threshold. Once the required185
models have been defined, the values of parameters and initial state variables can be set and populations of186
neurons can be added to a network:187

InitVarSnippet : : Uniform : : ParamValues vDist (0 . 0 , 1 . 0) ;188
LIF : : ParamValues params (2 0 . 0) ;189
LIF : : VarValues initState (initVar<InitVarSnippet : : Uniform>(vDist)) ;190
network . addNeuronPopulation<LIF>(" pop " ,1000 ,params , initState) ;191

This listing also illustrates how, in the latest version of GeNN, the approach used for defining models can192
also be used to configure how variables are initialised. In the listing the membrane voltage V of our 1000193
LIF neurons is sampled from the uniform distribution using one of GeNN’s built in variable initialisation194
snippets. These are definied in a similar manner to the neuron model presented earlier in this section and, by195
using this mechanism, GeNN can offload network initialisation to the GPU using the same parallelisation196
strategies it employs for simulating models. This approach is advantageous as it removes the need to197
transfer the model state from the CPU to the GPU and allows the GPU to be used to accelerate potentially198
costly initialisation operations such as sampling random numbers.199

Once network models have been defined using the C++ interface, GeNN will generate a neuron CUDA200
kernel for updating the neuronal state, a synapse kernel for simulating the propagation of spikes through201
synaptic connections and, for models with synaptic plasticity, a postsynaptic learning kernel. GeNN also202
generates functions for allocating memory (allocateMem), launching the initialisation kernel (initialize)203
and launching each simulation kernel required to advance the simulation state (stepTimeGPU). The204
generated code can then be linked against a simulation loop provided by the user:205

inc lude "model_CODE / d e f i n i t i o n s . h "206
207

i n t main ()208
{209

allocateMem () ;210
initialize () ;211
whi le (t < 100 .0f) {212

stepTimeGPU () ;213
}214
re turn 0 ;215

}216

While this approach allows a lot of flexibility and means that visualisation tools and closed-loop robotics can217
be tightly coupled to GeNN simulations, when combined with the use of C++ for model definition, this does218
make using GeNN a somewhat daunting prospect for users more used to Python-based simulators such as219
Brian (Stimberg et al., 2014) or PyNN (Davison et al., 2008) or graphical tools such as SpineCreator (Cope220
et al., 2017). For these users, GeNN can be used as a backend for other simulators. Brian2GeNN (Stimberg221
et al., 2018) allows models defined in Brian 2 to be translated, using code generation, into a valid GeNN222
simulation. Using Brian 2’s backend device design, using GeNN through Brian2GeNN is as simple as223

This is a provisional file, not the final typeset article 6

Knight and Nowotny GPUs outperform current SNN simulators

0.08 0.05

0.11 0.050.004 0.008 0.020.009 0.07 0.04

0.00030.470.380.020.008

0.16 0.26

0.050.150.170.0060.0020.020.0005

0.190.150.0060.0030.060.030.0070.001

2/3

4

5

6

0.003 0.0070.08 0.03 0.090.06 0.03 0.06

0.14 0.1 0.10.06 0.04 0.020.07 0.008

0.03 0.04 0.050.03 0.003 0.02

0.18

20,683

21,915

4,850

14,395

5,479

5,834

1,065

2,948

IE

E I

IE

E I

Layer

Figure 2. Illustration of the microcircuit model. Blue triangles represent excitatory populations, red circles
represent inhibitory populations and the numbers beneath each symbol shows the number of neurons in
each population. Connection probabilities are shown in small bold numbers at the appropriate point in
the connection matrix. All excitatory synaptic weights are normally distributed with a mean of 0:0878 nA
(unless otherwise indicated in green) and a standard deviation of 0:008 78 nA. All inhibitory synaptic
weights are normally distributed with a mean of 0:3512 nA and a standard deviation of 0:035 12 nA.

issuing the command set_device("brian2genn") within a standard Brian 2 script. A similar interface exist224
for SpineCreator and an interface to PyNN (Davison et al., 2008) is currently under development.225

2.3 Cortical microcircuit model226

This model of 1 mm3 of early-sensory cortex was developed by Potjans and Diesmann (2014) and consists
of 77 169 neurons, divided into separate populations representing cortical layers 2/3, 4, 5 and 6. Each layer
is modelled by an excitatory and an inhibitory neuron population as shown in figure 2. Neurons in each
population are connected randomly with population-specific densities derived from an extensive review of
the anatomical literature resulting in a total of approximately 0:3� 109 synapses. Beside this structured
connectivity, all synaptic strengths and transmission delays are normally distributed. The membrane voltage
(Vj) of each neuron is modelled as a leaky integrate-and-fire (LIF) unit:

�m
dVj
dt

=(Vj � Vrest) +RmIinj (1)

where �m and Rm represent the time constant and resistance of the neuron’s cell membrane, Vrest defines227
the membrane voltage the neuron returns to if it receives no synaptic input and Iinj represents the input228

Frontiers 7

Knight and Nowotny GPUs outperform current SNN simulators

Global memory

Sh
ar

ed
m

em
or

y

i3 li3 ji30 ji31 ji32 ji33

i2 li2 ji20 ji21 ji22 ji23

i1 li1 ji10 ji11 ji12 ji13

i0 li0 ji00 ji01 ji02 ji03

Global memory

Sh
ar

ed
m

em
or

y

i3 li3 ji34 ji35 ji36

i2 li2 ji24 ji25 ji26 ji27

i1 li1 ji14

i0 li0 ji04 ji05

Figure 3. GPU parallelisation of sparse synaptic matrix processing across two thread blocks each with
4 threads. i0; : : : ; i3 contain the indices of presynaptic spikes. li0 ; : : : ; li3 contain the lengths of the
corresponding matrix rows. j contains the indices of the postsynaptic target neurons. Snaking lines indicate
CUDA threads. Hatching indicates padding entries.

current to the neuron. When the membrane voltage crosses a threshold (Vthresh) a spike is emitted, the229
membrane voltage is reset back to Vrest and a countdown timer is started which, while running, disables230
the integration of further input thus providing a simulated refractory period. Incoming spikes induce an231
exponentially-shaped input current in Iinj :232

�syn
dIinj
dt

=� Iinj + Ipj +
nX
i=0

wij
X
tfi

�(t� tfi) (2)

where �syn represents the time constant with which any spikes (modelled as Dirac delta functions �)233
from n presynaptic input neurons occuring at time t are integrated. In addition to its synaptic input, each234
neuron in the network also receives an independent Poisson input current Ipj (also exponentially shaped235
by equation 2) which represents input from adjacent cortical regions. Finally, wij represents the peak236
synaptic input current of the synapse between the presynaptic neuron i and the postsynaptic neuron j. For237
a full description of the model parameters please refer to Potjans and Diesmann (2014, tables 4 and 5).238
In the remainder of this section we will concentrate on describing the strategies used to parallelise the239
initialisation and subsequent simulation of this network.240

Although the equations describing the neuron dynamics (equations 1 and 2) are coupled, in our GeNN241
model, the continuous terms of the two equations are solved separately so that the synaptic input current242
Iinj entering into equation 1 is effectively treated as a constant during each simulation timestep. As Rotter243
and Diesmann (1999) explain, this approach leads to a delay of one simulation timestep compared to the244
exact solution. However, by separating the solving of these equations, populations of neurons whose input245
synapse have different dynamics can be trivially supported. For example, while a single exponential may246
be a good approximation of some inhibitory synapses, for other types of synapse the rise time of the post247
synaptic potential may be vital (Van Vreeswijk et al., 1994). Additionally, from a software engineering248
point-of-view, separating the solving of these equations allows for better encapsulation of neurons and249
synapses.250

This is a provisional file, not the final typeset article 8

Knight and Nowotny GPUs outperform current SNN simulators

Simulating a homogeneous population of neurons is an ideal task for a SIMD or SIMT device such as a251
GPU: the neurons do not communicate with each other within a timestep and, aside from the relatively252
rare times that they spike, each neuron will be simulated using exactly the same code path. Therefore,253
neural simulation can be trivially parallelised by simulating each neuron on a single thread that fetches254
the neuron’s state variables from global memory into registers at the start of each timestep, advances the255
simulation state and writes back the state variables. As long as the state variables are laid out correctly256
in memory, the required memory operations can be coalesced so that a 4 B state variable can be read257
for 32 neurons in a single 128 B transaction – the most efficient way to access the global memory. The258
Poisson input current (Ipj) is calculated by generating a Poisson deviate every simulation timestep, using259
the technique described by Devroye (2013, p504), and multiplying this by a population-specific weight.260
When a neuron’s spiking threshold condition is met, the thread simulating the neuron writes the index of261
the neuron within the population to a shared memory array. After all the neurons in a population have been262
updated, the shared memory arrays containing the indices of the neurons in each thread block which spiked263
are combined into a global memory array – forming a record of all the neurons in the population which264
have spiked in the current simulation timestep.265

Simulating the spikes propagating between two populations of neurons through sparsely connected266
synapses is, at first glance, less suitable for GPU parallelism. However, on modern GPU hardware, this can267
also be implemented in an efficient manner using the data structures shown in figure 3. These structures268
consist of multiple 2D arrays with rows representing the synapses coming from individual presynaptic269
neurons and with enough columns to contain the largest number of postsynaptic targets any presynaptic270
neuron connects to. One of these 2D arrays contains the indices of the postsynaptic neurons (j) and271
additional arrays are allocated for any individual synaptic state variables such as the synaptic weight (wij)272
or dendritic delay (dij). In order to simulate dendritic delays, GeNN also allocates a delay ring-buffer273
between each pair of connected populations consisting of a Dmax �Npost 2D array where Dmax is the274
maximum dendritic delay and Npost is the number of postsynaptic neurons. Each block of Nblock CUDA275
threads (in figure 3 Nblock = 4) is responsible for processing Nblock columns of the matrix. Processing276
begins by using theNblock threads to fetch the indices ofNblock presynaptic spikes written to global memory277
by the presynaptic population’s neuron kernel (i0; : : : ; iNblock�1) and the lengths of the corresponding rows278
of the matrix (li0 ; : : : ; liNblock�1) into shared memory (so that these will be accessable to all threads in279
the block during the next phase). Threads are then synchronised and loop through the Nblock rows with280
each thread processing the synapse in their column. In the case of the simple static synapses described by281
equation 2, this processing simply consists of reading the index of the postsynaptic target neuron along282
with the weight wij and delay dij associated with the connection and using an atomic add operation to283
add the weight to row (i+ dij) mod Dmax of the dendritic delay ring-buffer. Postsynaptic neurons then284

read their synaptic input (the
Pn

i=0wij
P

tfi
�(t� tfi) term in equation 2) from row i mod Dmax of the285

dendritic delay ring buffer.286

This process is repeated until all incoming spikes are processed. While this parallelism strategy may287
seem counter-intuitive, it typically performs much better than the naïve approach of using one thread288
per incoming spike as it not only exposes much more parallelism, but also results in perfectly coalesced289
memory read operations. For example, in a simulation with a 0:1 ms timestep, a population of 10 000290
neurons firing at an average rate of 10 Hz will only, on average, emit 10 spikes in a single timestep. However,291
if this population is connected to another population of same size with a 10 % connection probability, the292
connection matrix will have over 1000 columns resulting in 2 orders of magnitude more parallelism being293

Frontiers 9

Knight and Nowotny GPUs outperform current SNN simulators

0.10.1 0.1 0.1
90,000 22,500

IE

Figure 4. Illustration of the balanced random network model. The blue triangle represents the excitatory
population, the red circle represents the inhibitory population, and the numbers beneath each symbol show
the number of neurons in each population. Connection probabilities are shown in small bold numbers at the
appropriate point in the connection matrix. All excitatory synaptic weights are initialised to 0:045 61 nA
and all inhibitory synaptic weights are initialised to 0:228 05 nA.

exposed. Using the data structures described in this section, a GeNN simulation of the cortical microcircuit294
model requires 3:1 GB of device memory.295

An additional advantage of the data structure shown in figure 3 is that, as long as we know the maximum296
length of any row, memory can be allocated by the host without having to perform any further calculations,297
meaning that the connectivity itself can be initialised on the GPU. In this model the density of the298
synaptic connections between a pair of neuronal populations is specified in terms of a total number of299
random synapses (Nsyn) (a FixedNumberTotal connector in PyNN). The maximum row length when300
connecting a presynaptic population with Npre neurons to a postsynaptic population with Npost neurons301
using this connectivity can be obtained by evaluating the inverse cumulative distribution function (CDF)302

of Binom[Nsyn;
Npost

Npost�Npre
] with a suitably high probability (we use P = 0:9999

1
Npre). Once memory303

is allocated for the data structure, the first stage in initialising the connectivity is to determine how304
many of the total synapses Nsyn end up in each row by sampling from the multinomial distribution305

Mult[Npre � Npost; fProw; Prow; : : : ; Prowg] where Prow =
Npost
Nsyn

. This operation cannot be efficiently306
parallelised so must be performed on the host but, once the length of each row is determined, the307
postsynaptic targets of the synapses can be initialised in parallel by sampling from the discrete uniform308
distribution Unif[0; Npost] using Npre CUDA threads. While this works mathematically, in order to improve309
the locality of memory accesses, synapses should be sorted into ascending order. This would be trivial310
to implement in CPU code but, without enough shared memory for each CUDA thread to store a copy311
of its corresponding row, an in-place sort in global memory would be very slow. It would be possible312
to use a more complex parallel sorting algorithm such as that proposed by Awan and Saeed (2016)313
but, as GPU architectures typically have very high floating point maths throughput, we instead take an314
alternative approach. Rather than sampling directly from Unif[0; Npost] we sample from its 1st order315
statistic – Beta[1; Npost] – essentially the next smallest value. In general, the Beta distribution cannot be316
sampled from in constant time. However, if X � Beta[1; Npost], 1 � X � Beta[Npost; 1] and therefore317
�ln(1�X) � Exponential[Npost] – a much simpler problem as the exponential distribution can be sampled318
in constant time using the inversion method (Devroye, 2013, p29).319

2.4 Balanced random network with spike-timing dependent plasticity320

This model, as illustrated in figure 4, consists of an exitatory neuron populations with 90 000 excitatory321
neurons and an inhibitory population containing 22 500 inhibitory neurons. This scale is necessary to322

This is a provisional file, not the final typeset article 10

Knight and Nowotny GPUs outperform current SNN simulators

Global memory

Sh
ar

ed
m

em
or

y

0 0 1 0

1 0 0 0

0 0 0 1

0 0 1 0i0

i1

i2

i3

Figure 5. GPU parallelisation of the processing of 4 postsynaptic neurons’ synaptic input using a bitmask
synaptic matrix and one thread blocks with 4 threads. i0; : : : ; i3 contain the indices of presynaptic spikes.
Snaking lines indicate CUDA threads. 0s and 1s indicate individual bitmask bits.

achieve a realistic number of incoming connections per neuron of � 10000 (Braitenberg and Schüz, 2013)323
with a biologically plausible connection probability of � 0:1.324

Similar to the microcircuit model described in the previous section, this model uses LIF neurons with
current inputs. However, rather than filtering the input current (Iinj) using a single exponential, this model
uses slightly more complex alpha synapses (Rall, 1967) which provide a closer match to the dynamics of
biological synapses,

�syn
dIinj
dt

=xj � Iinj (3)

�syn
dxj
dt

=� xj + Ipj +
nX
i=0

wij
X
tfi

�(t� tfi) (4)

where xj represents a second state variable and all other terms maintain the same meanings they had in325
equation 2. Nonetheless, equations 3 and 4 have trivial algebraic solutions meaning they can be simulated326
using the same scheme described in the previous section.327

The synapses in this model are plastic, i.e. the weights wij are changing over time according to an
STDP rule. Even leaving aside synaptic plasticity rules which use postsynaptic membrane voltage (Brader
et al., 2007; Clopath et al., 2010) rather than postsynaptic spike times or include ‘third factors’ such as
dopamine (Izhikevich, 2007), there is a plethora of different STDP formalisations (see Morrison et al.
(2008) for a review). For the model described in this section, Morrison et al. (2007) chose to use a rule
that modifies the synaptic weight (wij) between a pre and postsynaptic neuron based solely on the relative
timing of pre (tpre) and postsynaptic (tpost) spikes (�t = tpost � tpre):

�wij =

(
�w1��

0 w�ije
� j�tj� if �t > 0

���wije� j�tj� if �t � 0
(5)

where � represents the learning rate, w0 defines a reference weight and � allows the potentiation term to be328
set as entirely multiplicative (� = 1), entirely additive (� = 0) or somewhere in between. As discussed by329
Morrison et al. (2007), in the model presented in this section, � is set to 0:4 so as to match the data recorded330

Frontiers 11

Knight and Nowotny GPUs outperform current SNN simulators

by Bi and Poo (1998). Finally � defines the time constant of the STDP kernel and � controls the relative331
strength of potentiation and depression. Morrison et al. use this rule with an all-to-all spike-pairing scheme332
meaning that each of the pairs formed by a presynaptic spike and all preceding postsynaptic spikes (and333
vice-versa) should be considered. For the full description of the model parameters, please refer to Morrison334
et al. (2007, sections 3 and 4.1). In the remainder of this section we will concentrate on describing the335
additional steps required to parallelise models with synaptic plasticity using GeNN.336

In order to implement the all-to-all spike pairing required for the model, rather than repeatedly evaluating
equation 5, we calculate updates based on per-neuron spike traces (Song et al., 2000; Morrison et al., 2007)
with the following dynamics:

dsi
dt

= �si
�

+
X
tfi

�(t� tfi) (6)

The value of these traces can be thought of as representing the sums of the exponential terms from
equation 5 if they were calculated for every pair or spikes. Therefore, the potentiation (�w+

ij) induced by

the spike pairs formed by a postsynaptic spike occuring at tfj and all preceding presynaptic spikes can be
calculated using the following single update:

�w+
ij(t

f
j) = �w1��

0 w�ijsi(t
f
j) (7)

Similarily, the depression (�w�
ij) induced by the spike pairs formed by a presynaptic spike occurring at tfi

and all preceding postsynaptic spikes can be calculated using the following single update:

�w�
ij(t

f
i) = ���wijsj(tfi) (8)

In GeNN, if a neuron has fired in the current timestep, its trace variables are updated in the neuron337
kernel by evaluating equation 6. Synaptic depression is calculated by applying equation 8 to each synaptic338
weight processed in the synapse kernel described in the previous section. Similarly, calculating synaptic339
potentiation involves applying equation 7 to each synapse targetting a spiking postsynaptic neuron. However340
this is tricky as while the data structure shown in figure 3 supports efficient row-wise access to the synapses341
associated with a presynaptic neuron, like many sparse matrix data structures, it does not support efficient342
column-wise accesses to the synapses associated with a postsynaptic neuron. This is a problem shared343
by all SNN simulators that support STDP (Brette and Goodman, 2012). Some small-scale neuromorphic344
systems have solved this problem in hardware using custom SRAM memories which allow both column345
and row-wise accesses (Seo et al., 2011). However, custom SRAMs are expensive in terms of silicon346
area, so many neuromorphic systems avoid the problem entirely by implementing synaptic plasticity rules347
which use the membrane voltage of the postsynaptic neuron rather than its spike times – meaning that348
no updates triggered by postsynaptic spikes are required (Frenkel et al., 2018; Qiao et al., 2015). Intel’s349
Loihi system (Davies et al., 2018) and the SpiNNaker software developed by Galluppi et al. (2014) take350
an alternative approach and defer all STDP updates until the end of a “learning epoch” after which time351
they are processed sequentially row by row. NEST (Morrison et al., 2007) and the more recent SpiNNaker352
software (Knight et al., 2016) both buffer postsynaptic spikes until the next presynaptic spike occurs –353
allowing weight updates triggered by pre and postsynaptic spikes to be applied in order without having354
to make any column-wise accesses to the synaptic matrix. However, buffering postsynaptic spikes makes355

This is a provisional file, not the final typeset article 12

Knight and Nowotny GPUs outperform current SNN simulators

access to other postsynaptic variables difficult as they would also need to be buffered for an unbounded356
length of time until the next presynaptic spike occurs.357

Deferring STDP updates ideally requires a dynamic memory structure to store postsynaptic events, which,358
when combined with the need to search through this data structure for events to apply, means that this359
approach does not appear to be well-suited for GPU implementation. Furthermore, GeNN aims to support a360
wide range of synaptic plasticity rules with full access to pre and postsynaptic neuron variables. Therefore,361
GeNN builds an additional column-major sparse matrix using the same data structure shown in figure 3,362
containing indices into the original row-wise arrays containing synaptic weights. This has the downside363
of doubling the memory requirements of connections when STDP is required and, as Yavuz et al. (2016)364
demonstrated, the resultant non-coalesced accesses to the synaptic matrix reduce performance on lower-end365
GPUs. However, the approaches involving buffering of events and variables described above come with366
their own challenges in terms of memory management and minimising the divergence of execution between367
CUDA threads. Furthermore, the performance reductions due to non-coalesced memory accesses are much368
less severe on modern GPUs due to the ever-increasing size of their L2 cache.369

In the balanced random network model, the synaptic weights of the non-plastic connections are initialised370
to a constant value so the GeNN code generator can compile these constants directly into the synapse371
kernels. While this results in significant memory savings, it is not enough to fit the model onto GPUs with372
12 GB of memory using either of GeNN’s standard sparse matrix formats. We, therefore, use the alternative373
bitmask data structure shown in figure 5 to store the non-plastic connections on these GPUs. When using374
the bitmask data structure, the connections between a presynaptic population with Npre neurons and a375
postsynaptic population with Npost neurons are stored using a Npre �Npost bit bitfield (rounded up to the376
nearest 32 bit word). For example, the connections between the excitatory (90 000 neurons) and inhibitory377
populations (22 500 neurons) in the balanced random network model can be stored in 241 MiB using a378
bitmask rather than 867 MiB when using the data structure described in the previous section. Using the379
bitmask approach reduces the total amount of device memory required to simulate this model in GeNN380
from 11:5 GB to 10:2 GB. The bitmask data structure is processed using a CUDA thread to accumulate381
each postsynaptic neuron’s input into a register every simulation timestep. Each of these threads loops382
through the incoming spikes stored in the shared memory data structure described in the previous section383
and, if the corresponding bit in the bitmask is set, adds the synaptic weight to the register.384

Similarly to the data structure shown in figure 3, the amount of memory required to store synapses in the385
bitmask data structure can be be calculated without any knowledge of the connectivity within, meaning that386
synapses stored in this format can also be initialised on the GPU. In this model, the density of the synaptic387
connections is described using a probability of connection P (a FixedProbabilityConnector connector388
in PyNN). Therefore, whether a synapse exists between a pair of pre and postsynaptic neurons can be389
described using a Bernoulli distribution Bern[Pconn]. While the Bernoulli distribution can be sampled390
by repeatedly drawing from the uniform distribution Unif[0; 1] and comparing each sample to P , this is391
innefficient for sparse connectivity. Instead we sample from the geometric distribution Geom[Pconn] which392
describes how the number of Bernoulli trials required to get a success (i.e. a synapse) is distributed. The393
geometric distribution can be sampled in constant time by inverting the cumulative density function (CDF)394

of the equivalent continuous distribution (the exponential distribution) to obtain log(Unif[0;1])
log(1�Pconn) (Devroye,395

2013, p499). Using this approach, generating fixed probability connectivity can be performed entirely in396
parallel by initialising each row of connectivity using an independent CUDA thread.397

Frontiers 13

Knight and Nowotny GPUs outperform current SNN simulators

Figure 6. Spiking output of cortical microcircuit model with Poisson input. All measures are calculated
over the last 9 s of the simulation and histogram bin widths are determined using the Freedman-Diaconis
rule.
(A) Raster plot showing spike times (dots) of neurons from each population. The spikes of 5% of neurons
(vertical) are shown.
(B) Single-neuron firing rates of all neurons.
(C) CV ISI, a measure of irregularity of all neurons.
(D) Correlation coefficients between binned spike trains for 200 neurons in each population.

Statistic Value reported by Value obtained from
Morrison et al. (2007) GeNN simulation

Mean weight [pA] 45:65 46:25
Weight standard deviation [pA] 3:99 4:07

Mean spike rate [Hz] 8:8 8:8
Covariance of interspike interval 0:88 0:86

Fano factor 8:5 8:3

Table 1. Comparison of statistics reported by Morrison et al. (2007) with those obtained from our GeNN
simulations.

3 RESULTS

We implemented and tested two established computational neuroscience models. The first model is a model398
of a cortical microcircuit developed by Potjans and Diesmann (2014). It consists of eight populations of399
neurons, representing the excitatory and inhibitory populations of neurons in cortical layers 2/3, 4, 5 and 6400
of a micro-column. Neurons are connected with random connectivity of densities that follow experimental401
observations. The model has been shown to reproduce firing characteristics observed in the cortex (Potjans402
and Diesmann, 2014).403

The second model is a balanced random network with spike-timing dependent plasticity (Morrison404
et al., 2007). Synaptic plasticity is a family of mechanisms responsible for changing the strength of405

This is a provisional file, not the final typeset article 14

Knight and Nowotny GPUs outperform current SNN simulators

�
� 	� 	� �� �� ��� ���
�����

����	

�
��

�

�
� 	� 	� �� �� ��� ���
���

����
��

�

�
� 	� 	� �� �� ��� ���
���

���

�
��

����������� �����������!� ���
�������������������

���������
����

Figure 7. Comparison of per-population distributions of dynamical properties shown in figure 6.
Comparisons calculated using the Kullback-Leibler (KL) divergence with NEST running in ‘precise’
mode as a reference. For comparison, KL divergences for NEST running in ‘grid-aligned’ mode and
SpiNNaker are read off figure presented by van Albada et al..
(A) Single-neuron firing rates.
(B) CV ISI.
(C) Correlation coefficients.

�� �� �� �� �� �� ��
��������
�

����

����

����

����

���	

����

��
��

���
��
��
��
��

��
��
�

Figure 8. Histogram of the synaptic weight distribution obtained after 2000 s of simulation. The solid red
line shows the gaussian distribution with �w = 46:25 and �w = 4:07.

Frontiers 15

Knight and Nowotny GPUs outperform current SNN simulators

synaptic connections in response to neural activity and has been shown to be fundamental to biological406
learning (Nabavi et al., 2014). In particular, Spike Timing Dependent Plasticity (STDP) (Markram, 1997; Bi407
and Poo, 1998) is a popular theory which postulates that these changes are driven by the difference in timing408
between presynaptic spikes arriving at a synapse and the times at which the postsynaptic neuron itself409
spikes. In excitatory cortical (Markram, 1997) and Hippocampal (Bi and Poo, 1998) neurons, synapses at410
which a presynaptic spike is closely followed by a postsynaptic spike are strengthened, whereas those at411
which a postsynaptic spike precedes a presynaptic spike are weakened, so introducing a causal learning rule.412
Adding STDP to spiking neural network simulations, however, typically increases the computational cost413
of simulating them significantly. Morrison et al. (2007) reported that adding plasticity to their simulations414
slowed them down by “a factor of less than 10” and Knight and Furber (2016) found that, in the best case,415
simple STDP plasticity reduced the performance of the SpiNNaker neuromorphic system by approximately416
6�. Furthermore, the dynamics of neural systems with plasticity operating on biologically-plausible417
time scales take several orders of magnitude more time to stabilise meaning that longer simulations are418
required and, as Morrison et al. argue, it is vital to perform experiments on STDP in models with full-scale419
connectivity to avoid synchronization artefacts.420

Balanced random networks such as this have been shown to reproduce some of the dynamics seen in421
the neocortex (Brunel and Hakim, 1999; Brunel, 2000). Morrison et al. showed that adding STDP to their422
model did not disrupt its dynamics and, as long as a suitable STDP rule is used, the synaptic weights will423
settle into a stable unimodal distribution.424

3.1 Correctness425

In this section we will focus on confirming the correctness of our simulations of the microcircuit426
model (Potjans and Diesmann, 2014) described in section 2.3 using the methodology described by van427
Albada et al. (2018). Additionally we will compare the results of simulations of the balanced random428
network model described in section 2.4 to those reported by Morrison et al. (2007).429

3.1.1 Cortical microcircuit model430

van Albada et al. (2018) performed an in-depth analysis of the correctness of simulations of the431
microcircuit model – running both on NEST and on the SpiNNaker neuromorphic system – using NEST432
running in ‘precise’ mode as a ground-truth. In ‘precise’ mode, rather than constraining spike events to433
simulation time steps, NEST communicates the exact time at which neurons’ membrane voltages cross the434
threshold between the nodes simulating the model (Hanuschkin et al., 2010).435

In order to assess correctness, we simulated 10 s biological time of the model. As van Albada et al.436
describe, the first 1 s of spike data from each 10 s simulation was discarded in order to remove any transients.437
We then calculated the average firing rates and the covariance of interspike intervals (CV ISI) for each438
neuron in the model over the remaining 9 s of the simulation using the Elephant (Yegenoglu et al., 2018)439
package. We also picked 200 (this was a trade-off between accuracy and analysis time chosen by van440
Albada et al.) active neurons from each population, binned their spike trains into 2 ms bins (corresponding441
to the refractory time of the neurons) and calculated the Pearson correlation coefficients matrix between442
each disjoint pair of neurons.443

The same measures were calculated for GeNN and for a NEST simulation run in ‘precise’ mode and444
histograms of all three measures were produced for both simulations using bins calculated from the NEST445
data using the Freedman-Diaconis rule (Freedman and Diaconis, 1981). The histograms were smoothed446

This is a provisional file, not the final typeset article 16

Knight and Nowotny GPUs outperform current SNN simulators

with Gaussian kernel density estimation performed using the scipy.stats.gaussian_kde function with447
bandwidths of 0:3 s�1, 0:04 and 0:002 for the average firing rates, CV ISI and correlation respectively.448

Figure 6 shows the results of this analysis. Visually it is clear that the per-population distributions are449
highly similar and, to quantify this, we calculated the Kullback-Leibler (KL) divergences using the ‘precise’450
NEST data as the reference. Figure 7 shows the KL divergences calculated from our GeNN simulation as451
well as those reported by van Albada et al. (2018) for their grid-aligned NEST and SpiNNaker simulations452
and between two ‘precise’ NEST simulations with different random number generator seeds. Similarly to453
those calculated from the SpiNNaker and grid-aligned NEST simulations, the KL divergences from our454
GeNN simulation are comparable in size to those caused by changing the random number generator seed.455

3.1.2 Balanced random network456

To assess the correctness of our implementation of the balanced random network model described457
in section 2.4, we simulated the network for 2000 s of biological time and compared the final weight458
distribution and the statistics of the last 50 s of spiking activity with those reported by Morrison et al.459
(2007). The calculated statistics are listed in table 1 and the final weight distribution is shown in figure 8. To460
quantify the network dynamics resulting from these synaptic weights, we calculate the mean firing rate and461
CV ISI of all the excitatory neurons in the network using the Elephant (Yegenoglu et al., 2018) package.462
The mean firing rate and CV ISI values listed in table 1 suggest that our model had settled into a very463
similar asynchronous-irregular regime to that reported by Morrison et al. (2007). Our model exhibited fast464
oscillations throughout the simulation and, to quantify the resultant variation in spike rate, we calculated a465
histogram with 3 ms bins from the output spike trains of 1000 excitatory neurons. By dividing the variance466
of each bin’s spike count by its mean we calculated a Fano factor which, again, was very simular to that467
reported by Morrison et al. (2007). As Pauli et al. (2018) thoroughly demonstrate, reproducing results468
from spiking neural network models on different simulators can be difficult, especially with models of469
this age where the original code is not publically available. Therefore we believe that the remaining small470
differences in results are likely to be due either to numerical differences caused by single-precision floating471
point and our use of CUDA’s approximate exponential and power functions; or to subtle differences in the472
order of operations between GeNN and NEST.473

3.2 Performance474

To assess the performance of our GPU simulations we chose a selection of GPUs listed in table 2 –475
covering a range of financial and power budgets. CUDA abstracts away the degree of parallelism exposed476
by the application from the amount of hardware parallelism available so we can run a model that uses477
80 000 threads on a GPU with many fewer CUDA cores. However, memory is a harder constraint so, while478
all of the GPUs listed in table 2 can run the microcircuit model described in section 2.3, due to the increased479
memory requirements of STDP connections, only the two ‘Tesla’ GPUs have enough memory to run the480
balanced random network model described in section 2.4.481

We measured the performance of both models by querying the std::chrono::high_resolution_clock482
around the simulation loop to obtain a total simulation time. In order to analyse how time was spent in the483
different GPU kernels we also used used CUDA’s own event timing system (NVIDIA Corporation, 2018a,484
Section 3.2.5.6.2) to record the time taken by the neuron and synapse simulation kernels as well as the485
postsynaptic learning kernel in the balanced random network model. By dividing the simulation time by486
the length of the simulation in biological time, we can then obtain an estimate of the average simulation487
performance relative to real-time.488

Frontiers 17

Knight and Nowotny GPUs outperform current SNN simulators

Figure 9. A Simulation times of the microcircuit model running on various GPU hardware for 10 s of
biological time. SpiNNaker and fastest HPC simulation times (12 nodes) presented by van Albada et al.
(2018) included for comparison. ‘Overhead’ in GPU simulations refers to time spent in simulation loop but
not within CUDA kernels. The dotted horizontal line indicates realtime performance.
B Initialisation times of the microcircuit model running on various GPU hardware. SpiNNaker and fastest
HPC simulation times (32 nodes) presented by van Albada et al. (2018) included for comparison.

����� ����� ����� ����� ����� ����� 	����
�!����������!����

��

���

���

���

���

��
�

��
��

�

���������
����������

��
��������� �
�� �������

Figure 10. Simulation times of the microcircuit model running for 10 s of biological time at different
scales on various GPU hardware. Downscaling rules described by van Albada et al. (2015) are employed to
maintain spiking statistics at all scales. The dotted horizontal line indicates realtime performance.

This is a provisional file, not the final typeset article 18

Knight and Nowotny GPUs outperform current SNN simulators

Model Thermal Design Architecture Num. Memory Memory Max single-precision
Power (TDP) CUDA capacity bandwidth performance

[W] cores [GB] [GB s�1] [GFLOPS]
GeForce 1050 Ti 75 Pascal 768 4 112 2100

Jetson TX2 15 Pascal 256 8 1 58:4 750
Tesla K40c 235 Kepler 2880 12 288 4290
Tesla V100 250 Volta 5120 16 900 14 000

Table 2. GPU devices.
1 Memory is shared between CPU and GPU.

3.2.1 Cortical microcircuit model489

Figure 9A shows the simulation times of the microcircuit model running on each GPU for 10 s of490
biological time, including the times taken by neuron and synapse simulation kernels. Compared to the491
smaller point neuron benchmark presented by Yavuz et al. (2016), even though each neuron in our model492
receives up to 10� as many synaptic inputs, the simulation time is more evenly split between the simulation493
of neurons and synapses. This is partly because our simulations are running with a smaller 0:1 ms timestep494
meaning that less presynaptic spikes are processed each timestep. Additionally, in the newer version of495
GeNN used in this paper, the generation of Poisson noise takes place in the neuron kernel rather than in the496
separate kernel used by Yavuz et al. (2016).497

In general, as one would expect, the two Tesla GPUs perform best with the newer Tesla V100 system498
achieving a faster simulation speed than was possible on the CPU-based HPC cluster (van Albada et al.,499
2018). However even the GeForce 1050ti – which is a low-end gaming GPU – can simulate the model500
faster than the SpiNNaker system.501

As discussed in section 2.2, as well as parallelising neuron and synapse simulation code, the latest502
version of GeNN also parallelises the initialisation of model state variables and connectivity using the GPU.503
Figure 9B shows the initialisation time of the microcircuit simulation when initialisation is performed on504
the CPU compared to the GPU. Even on the two Tesla systems which have Intel Xeon CPUs with high505
single-threaded performance, using the GPU for initialisation, results in a speedup of around 20� and on506
the Jetson TX2, with its much slower ARM A57 CPU, GPU initialisation is more than 150� faster.507

Figure 9B also includes the initialisation times for SpiNNaker and the fastest HPC configuration presented508
by van Albada et al. (2018). The scaling plot for HPC initialisation presented by van Albada et al. confirms509
the trivially parallelisable nature of network initialisation compared to simulation – performance continued510
to increase up to 32 nodes rather than just 12 in the simulation. However, all three desktop GPU systems511
still perform network initialisation in a shorter time than the HPC system. Diamond et al. (2016) concluded512
that initialisation and loading time was a big problem for neuromorphic systems and SpiNNaker clearly513
still has issues in this area as initialising and loading the microcircuit network onto the SpiNNaker system514
takes approximately 10 h. This is approximately 50� slower than the Jetson TX2 when only one of its515
ARM cores is used for initialisation.516

To illustrate how the run-time of GPU simulations varies with model size, we also simulated scaled down517
versions of the microcircuit model on all four GPU devices. Scaling is performed by using the downscaling518
rules described by van Albada et al. (2015) to produce versions of the microcircuit model with a total519
of Nt neurons using a scaling factor K = Nt

77169 . The size of each population of neurons and the total520
number of connections between them are scaled down by K. The firing rate of the Poisson background521

Frontiers 19

Knight and Nowotny GPUs outperform current SNN simulators

�
��

��
�
��

�
�
� �

��
�

�
��

��
��

��
�
� �

��
�

�
��

��
��

��
�

��
��

��

�

����

����

����

����

�����

�
�

��
��

�

	�!�������!�� ���
�#���������!�� ���

��� �#��� �����������

"������

Figure 11. Simulation times of the balanced random network model running on various GPU hardware
for 200 s of biological time. ‘Overhead’ in GPU simulations refers to time spent in simulation loop but
not within CUDA kernels. ‘Standard’ and ‘Bitmask’ refer to the data structure used for representing the
model’s non-plastic connections – the standard synaptic matrix data structure described in section 2.3 or the
bitmask data structure described in section 2.4 respectively. The dotted horizontal line indicates realtime
performance.

input provided to each population is also scaled down by K and partially replaced by a DC input current522
scaled by (1 �

p
K) (meaning that it is not present in the full-scale model). Finally the mean synaptic523

weights are multiplied by
p
K. The effect of these scaling rules is to preserve the spiking statistics at all524

model scales. Figure 10 shows the results of these simulations and suggests that, because at the tested525
scales there are always many more neurons than CUDA cores and the activity remains constant, simulation526
times scale approximately linearly with the number of neurons and synapses. For a more in depth analysis527
of the scaling properties of GeNN simulations we refer the reader to Yavuz et al. (2016) and Stimberg et al.528
(2018).529

3.2.2 Balanced random network530

Figure 11 shows the runtime of simulations of the balanced random network model described in531
section 2.4. The Tesla V100 has enough memory (16 GB) to represent the model’s non-plastic connections532
using the standard synaptic matrix data structure described in section 2.3 as well as the bitmask data533
structure described in section 2.4. However, figure 11 shows that this has a negligible impact on the534
simulation time, suggesting that both data structures are equally efficient for large-scale models. While535
Morrison et al. (2007) report that their simulations of this model took 60 h to run for 1000 s of biological536
time on their HPC cluster – which is around 4� slower than our simulations run on the Tesla K40c – we537
have not included this in figure 11 as a comparison with decade-old CPU hardware would not be a fair one.538

This is a provisional file, not the final typeset article 20

Knight and Nowotny GPUs outperform current SNN simulators

�

���

���

�
�
��
��

�

�

�

���

�

�
��
��

�

�

� �� ��� ��� ��� ��� ���
������������������

�

��

�
�
��
��

�

�

	���
	�������������

����������
�������������

Figure 12. Power consumption during 10 s microcircuit simulation. Power was measured using consumer
power measurement device with minimum resolution of 0:1 W at mains socket.
(A) Tesla K40c in a workstation with a Intel Xeon E5-1620 v2 processor running Ubuntu 16.04 LTS.
(B) GeForce 1050Ti in a desktop PC with an Intel Core i5 750 processor running Windows 7.
(C) NVIDIA Jetson TX2 development kit running Ubuntu 16.04 LTS and JetPack 3.2.1 in maximum
performance mode.

3.3 Power and energy539

As well as recording the runtimes of the microcircuit benchmark described in the previous section, we also540
recorded the power usage of the systems being benchmarked using a consumer power measurement device541
at the mains socket. The screen of the power measurement device was recorded using a webcam, optical542
character recognition was performed using ‘Seven Segment Optical Character Recognition’ developed by543
Auerswald and Fontana (2018) and the resultant power measurements were tagged with a time and written544
to disk. Figure 12 shows the power usage over time for simulations of the microcircuit model running for545
10 s of biological time on each of the devices listed in table 2 except for the Tesla V100 to which we do not546
have local access.547

By integrating the power time series using the numpy.trapz function we calculated the energy to solution548
for each device as well as the energy per synaptic event – a common measure for comparing the energy549
efficiency of neuromorphic systems. These energy costs are listed in table 3 alongside the energy costs550
presented by van Albada et al. (2018) for simulations running on SpiNNaker and a CPU-based cluster.551
Whilst we were unable to measure the energy of the Tesla V100 system directly, Tesla GPUs have built552
in power monitoring which shows that the Tesla V100 drew a maximum of 88 W compared to 107 W for553
the Tesla K40c. As the workstation containing the Tesla K40c drew 218 W while simulating the model,554
compared to an idle power draw of 84 W, we can estimate that the single CPU core being used by the555
simulation was drawing 27 W more than when the system was idle. Therefore we can estimate that, if a556
Tesla V100 was attached to the same workstation, the maximum power draw would be reduced to 199 W557

Frontiers 21

Knight and Nowotny GPUs outperform current SNN simulators

Model Energy to solution Simulation energy Energy per synaptic event
[kW h] [kW h] [µJ]

GeForce 1050 Ti 0:0053 0:0051 2:0
Jetson TX2 0:000 80 0:000 78 0:30
Tesla K40c 0:0030 0:0028 1:08
SpiNNaker – 0:017 5:91

NEST (lowest energy) – 0:012 4:4

Table 3. Energy cost of simulations. Energy to solution and simulation energy of GPU are calculated
using the numpy.trapz function and the simulation energy is divided by the total number of synaptic events
processed to obtain the energy per synaptic event. For comparison, simulation energies and energies per
synaptic event for SpiNNaker and the NEST simulation with the lowest simulation energy (2 nodes) are
read off the figure presented by van Albada et al. (2018). 1 This energy per synaptic event is calculated
after the ‘idle’ power of the SpiNNaker system has been taken into account.

suggesting that, based on the reduced simulation time of 22 s, the simulation energy for such a system558
would be 0:0012 kW h and the energy per synaptic event would be 0:47 µJ.559

From figure 12 we can see that even an idling workstation draws on the order of 100 W and, as van Albada560
et al. (2018) discuss, a single Infiniband switch has a thermal design power of over 200 W. Therefore it is561
somewhat unsurprising that any accelerator that allows equivalent simulations to be run on fewer nodes562
would significantly improve energy usage.563

4 DISCUSSION

4.1 Suitability of GPU architectures for SNN simulations564

The 3:5� increase in peak performance and the 3:1� increase in memory bandwidth between the565
Tesla K40c (released in 2013) and the Tesla V100 (released in 2017) listed in table 2 illustrate just566
how much GPUs have taken advantage of Moore’s law scaling. This scaling is reflected in the runtime567
of our simulations where the cortical microcircuit model ran approximately twice as fast on the newer568
Tesla V100 GPU. However, the simulations of the plastic model ran more than 10� faster on the Tesla569
V100, suggesting that recent architectural changes have further improved the suitability of GPUs for SNN570
simulations. Figure 11 shows that the improved performance of the Tesla V100 is almost entirely due to571
the reduction of time spent in the postsynaptic learning kernel. This kernel is where synaptic potentiation572
is applied using the approach outlined in section 2.4 in which an additional column-major sparse matrix573
structure is used to select weights to update in response to postsynaptic spikes. We believe that two new574
features of the Volta architecture (NVIDIA Corporation, 2017) used by the V100 GPU are playing a575
crucial role in accelerating this kernel. Firstly, Volta GPUs have 6144 KiB of L2 cache compared to only576
1536 KiB in the older Kepler architecture used by the Tesla K40c, which helps to mediate the cost of577
non-coalesced accesses to synaptic weights. Additionally, Volta GPUs can now simultaneously execute578
integer and floating point operations, meaning that the pointer arithmetic required to calculate the indices579
into the synaptic weight matrix can be performed simultaneously with the learning rule update itself.580

In our simulations of both models, we copy all spikes from the GPU to the host computer at the end of581
each simulation timestep. Along with the overhead involved in launching CUDA kernels every simulation582
timestep, the copying of spikes accounts for the majority of the ‘overhead’ shown in figures 9A and 11.583
Furthermore, because the microcircuit model has four times as many neuronal populations as the balanced584
random network model, copying its spiking output requires more interactions with the GPU driver, resulting585

This is a provisional file, not the final typeset article 22

Knight and Nowotny GPUs outperform current SNN simulators

in the higher overhead seen in the simulations of this model. The overhead is particularly high on the586
GeForce 1050ti system which we believe is due to a combination of the slower PCI express bus in this587
machine (PCIe Gen 2 rather than Gen 3) and issues using CUDA on display devices under Windows. When588
simulating the microcircuit at smaller scales this problem is exacerbated so, at the smallest scale shown589
in figure 10 (19 292 neurons), these overheads account for between 65� 90% of the simulation time on590
the three desktop GPUs. However, CUDA allows for memory operations to be performed asynchronously591
and overlapped with computation, which should allow some of this overhead to be minimised in future592
versions of GeNN. Because the Jetson TX2 is a system-on-chip in which the CPU and GPU cores share the593
same physical memory, no copying of data over the PCI Express bus is required and the overhead of the594
simulations running on this system are significantly lower than on any of the discrete GPUs. In fact, when595
we simulated the microcircuit model at the smallest scale, figure 10 shows that the Jetson TX2 simulations596
actually ran faster than those run on the GeForce 1050ti.597

In sections 2.2, 2.3 and 2.4 we discuss how GeNN uses the GPU to parallelise network initialisation598
and, in section 3.2.1, we show how this benefits overall simulation run-times. A similar approach could be599
used for analysis of simulation results, for example to reduce the 810� 106 plastic synaptic weights in the600
balanced random network model to the histogram shown in figure 8, before downloading them to the host.601
Because of the low-level flexible nature of GeNN, this could already be implemented in a CUDA kernel602
provided by the user. However, downloading the plastic weights of the balanced random network model603
from the GPU to the host computer only takes around 300 ms, making it more practical to simply write604
these weights to disk and analyse them offline using one of the many CPU-based analysis tools available.605

Unlike the simulations typically run on CPU-based systems, the GPU simulations presented in this paper606
use single rather than double-precision floating point and therefore have the potential for more numerical607
instability. Additionally, the non-associative nature of floating point operations means that, if the results608
from a large number of parallel threads are summed together in a non-deterministic order, results can609
differ between runs due to rounding errors. Villa et al. (2009) demonstrated that the result of summing610
28 000 double-precision floating point numbers across 16 000 threads of a CRAY XMT system (which,611
in this context, has similar properties to a GPU) varied by up to 24:64 %. However, in this experiment,612
more numbers were summed than would occur when using any of the parallelisation schemes used in our613
simulations and it is unclear what absolute errors the reported relative errors correspond to. Furthermore,614
based on the analysis we presented in section 3.1, this potential source of error did not appear to affect our615
simulations suggesting that using single-precision floating point and summing inputs in a non-deterministic616
order has a minimal effect on the dynamics of the microcircuit model.617

As we discussed in the introduction, the computational requirements of training Artificial Neural618
Networks (ANNs) of ever-increasing size and complexity has been a major driver in the development of619
GPU hardware (Schmidhuber, 2015). These applications and the growing need to deploy ready-trained620
ANNs to perform inference in real time on low-power ‘edge computing’ devices mean that available621
memory bandwidth is beginning to limit performance. Although upcoming technologies such as third622
generation High Bandwidth Memory (HBM3) are likely to offer increases in memory bandwidth in the623
future, alternative strategies are still going to be required to better utilise current GPUs for SNN simulation624
as well as to increase the size of models that can be simulated using embedded GPUs such as the Jetson625
TX2. One solution, used successfully in ANN inference and training, has been to use lower precision 16 bit626
floating point and even fixed point integer representations for weights (Micikevicius et al., 2018). Using627
smaller data types not only saves memory and memory bandwidth but, on some newer GPU hardware628
including the Jetson TX2, each CUDA thread can perform four 8 bit or two 16 bit operations simultaneously629

Frontiers 23

Knight and Nowotny GPUs outperform current SNN simulators

– significantly increasing peak performance. While lower precision types are unlikely to provide enough630
numerical stability for storing neuron state variables, as discussed by van Albada et al. (2018), the 16 bit631
fixed-point synaptic weights used by SpiNNaker provide sufficient accuracy for the microcircuit model632
described in section 2.3. While GeNN does not currently support these lower-precision types, we plan on633
extending the algorithms described in section 2 to support 16 bit floating point synaptic weights which634
should offer a significant performance improvement while not sacrificing the convenience of floating point635
programming.636

In this paper we have only considered single-GPU simulations of circuit-scale SNN models. However,637
using supercomputer systems, models with up to a billion neurons can now be simulated (Jordan et al.,638
2018) and computational neuroscientists are beginning to use this capability to investigate the interactions639
between multiple circuit-scale models. For example, Schmidt et al. (2015) developed a model of the640
Macaque visual cortex consisting of 32 cortical areas, each modelled as a customised version of the641
model described in section 2.3. Even if such a model were implemented using half-precision floating642
point weights, a single GPU would not have enough memory to simulate it. However, systems such as the643
NVIDIA DGX-2 (NVIDIA Corporation, 2018c) are now available which contain several Tesla V100 GPUs,644
connected through a crossbar with a 900 GB s�1 bisection bandwidth. While GeNN does not currently645
target such multi-GPU systems, because all of their GPUs are connected to a single host system and are646
all mapped into its memory space, they maintain many of the advantages of the single-GPU simulations647
discussed in this paper. Beyond this scale, further parallelism could be achieved by using MPI to distribute648
GPU-accelerated simulations across multiple HPC nodes. While using MPI would lead to simulation649
becoming communication bound, as is currently the case with CPU simulations, fewer more powerful650
GPU-equipped nodes should allow to reduce this problem as well as reducing power usage. Additionally,651
communication overheads could be reduced by using NVIDIA’s GPUDirect (NVIDIA Corporation, 2018b)652
technology, allowing data to be transferred directly between remote GPUs via compatible network cards.653

4.2 Comparison to neuromorphic systems654

In section 3.3 we showed that our GPU simulations of the microcircuit model required less energy than655
those run on SpiNNaker. As van Albada et al. (2018) discuss, this poor energy efficiency comes from656
slowing SpiNNaker simulations down by a factor of 20 and only simulating 80 neurons on each core.657
However, because SpiNNaker is a software-programmable system, these limitations are not set in stone658
and Knight and Furber (2016) present some potential solutions to the underlying problems. Knight and659
Furber (2016) showed how models can be distributed more efficiently across a SpiNNaker machine and660
how Poisson background input could be directly injected into neurons to reduce the cost of incoming661
spike processing. Additionally, other software techniques we present in the context of GeNN such as the662
bitmask connectivity format and the parallel connectivity initialisation would be potentially applicable to663
software-programmable neuromorphic systems such as SpiNNaker. Therefore, it seems possible that, purely664
through software improvements, SpiNNaker could simulate the microcircuit model with a much lower665
energy cost – perhaps closer to the 0:11 µJ per synaptic event measured by Sharp et al. (2012). Furthermore,666
by using more advanced power management techniques as well as reducing the manufacturing process667
size from 130 nm to 22 nm, the next generation SpiNNaker system aims to improve energy efficiency668
by a factor of 10 (Hoppner et al., 2017). Neuromorphic systems based on custom circuits rather than669
programmable CPUs still require much less energy. Digital system such as Intel’s Loihi (Davies et al.,670
2018) or IBM’s TrueNorth (Merolla et al., 2014) only require around 20 pJ per-synaptic event and analogue671
systems such as Dynapse (Qiao et al., 2015) only require around 100 fJ per synaptic event. However,672

This is a provisional file, not the final typeset article 24

Knight and Nowotny GPUs outperform current SNN simulators

beside from SpiNNaker, only the Intel Loihi supports the degree of connectivity required to implement the673
microcircuit model.674

Simulating the balanced random network model described in section 2.4 would be an even greater675
challenge for a neuromorphic system as, again, only SpiNNaker and Loihi would be able to support its high676
degree of connectivity. Additionally, while Loihi has a relatively flexible microcode-based ‘learning engine’,677
it does not directly support the operations required to calculate the w�ij term in equation 7. While several678
relatively complex synaptic plasticity rules have previously been implemented on SpiNNaker (Knight679
et al., 2016; Mikaitis et al., 2018b), these only required exponential decays and logarithms which could680
be implement using lookup tables, whereas, evaluating w�ij would be likely to require a series expansion.681
Moise (2012) implemented several transcendental functions on SpiNNaker using series expansions and682
showed that they typically required in the order of 100 CPU cycles. Knight and Furber (2016) analysed683
the performance of STDP processing on SpiNNaker and found that performing an additive weight update684
in response to a postsynaptic spikes took around 31 CPU cycles. Therefore, adding the 100 extra CPU685
cycles required to evaluate w�ij to this update, would be likely to severely reduce the STDP processing686
performance of SpiNNaker to the point that it would be unable to efficiently simulate this model. However,687
the next generation SpiNNaker system is likely to include bespoke accelerators to provide acceleration for688
exp(x) and ln(x) (Mikaitis et al., 2018a; Partzsch et al., 2017) which could be used to implement w�ij as689
exp(� � log(x)).690

4.3 Neurorobotics691

Neurorobotics involves the development of robots with controllers inspired by the brain, allowing neural692
function to be studied in an embodied context. Neuro robots have been developed with controllers inspired693
by the mammalian Hippocampus (Krichmar et al., 2005) as well as the honey bee (Cope et al., 2016) and694
other insects (Blanchard et al., 2000). However, computational constraints have meant that these systems695
had to be operated either in simulation or their brain-inspired controllers had to be simulated externally696
to the robot. While using an external controller removes any constraints on the power and weight of the697
controller, it also introduces latency, meaning robots must operate slower. Additionally, communicating698
with an external controller typically means that a robot has to be ‘tethered’ to a WiFi base station, restricting699
where it can operate.700

The low power requirements and real-time performance of neuromorphic systems make them obvious701
candidates for building on-board neurorobotics controllers. However, in order to interface with the robots’702
hardware and convert sensor data into spike trains, these systems typically need to be accompanied by a703
standard CPU. For example, Kreiser et al. (2018) developed a path integration model on the Dynapse (Qiao704
et al., 2015) neuromorphic system which used a Parallela (Olofsson et al., 2015) board to interface with the705
robot and Hwu et al. (2017) developed a self-driving robot using a spiking convolutional neural network706
running on a TrueNorth NS1e development board which includes a Zynq SoC (Xilinx Inc, 2018). While707
both the Dynapse and TrueNorth systems have a negligible power consumption, the NS1e development708
board draws between 2 W to 3 W (Sawada et al., 2016) and the Parallela 5 W, somewhat out-weighing709
their theoretical advantages over embedded GPUs such as the Jetson TX2 which draws a maximum of710
15 W (although figure 12C suggests that, when simulating spiking neuron networks, the Jetson TX2 draws711
significantly less power).712

Because SpiNNaker is built from programmable ARM cores, these can be repurposed for interfacing713
with robot hardware directly, for example using the interface board developed by Denk et al. (2013)714
which supports a variety of robots developed at the Technical University of Munich. However, the 48 chip715

Frontiers 25

Knight and Nowotny GPUs outperform current SNN simulators

SpiNNaker board used on the robot developed by Conradt et al. (2015) is around 10� larger than a Jetson716
TX2, restricting its use to large ground-based robots whereas the Jetson TX2 is small and light enough to717
be used on both ground and aerial robots. GeNN allows the development of SNN-based controllers that718
run on embedded GPUs such as the Jetson TX2 allowing them to control mobile robots of comparably719
small form factors with simulated brain circuits. While the simulations presented in this paper are too720
complex and are simulated on too small a simulation timestep to run in real-time, GPUs can simulate721
suitable models fast enough that, on average, simulation timesteps will complete in real-time. Although this722
does not guarantee that every simulation timestep will complete on time, neurorobotic controllers typically723
perform some form of low-pass filtering to convert spike trains to motor commands, meaning that some724
variability in the time taken to simulate each timestep is often acceptable. For example, the neurorobotic725
controller used by Kreiser et al. (2018) calculates motor commands from the number of spikes emitted in a726
50 ms window (Milde et al., 2017).727

This offers a very competitive alternative approach for neurorobotics research. For example, the “Brains728
on Board” project (www.brainsonboard.co.uk) is using GeNN on Jetson TX1 and TX2 GPUs to729
develop autonomous flying robots with navigational and learning abilities inspired by honeybees.730

4.4 Interactive simulation731

As discussed in the introduction, one of the major uses of SNN simulations in computational neuroscience732
is for characterising and exploring the subset of models’ parameter spaces left under-constrained by733
experimental data.734

In common with many other application areas, computational neuroscience simulations are typically735
performed in a non-interactive ‘batch’ mode in which a simulation is started (either on a remote HPC736
system or locally) and some time later results are returned. The results of such simulations are then analysed737
offline to determine whether a particular combination of parameters has resulted in a successful emulation738
of a brain circuit. However, it is difficult to determine what data will be required for this analysis ahead739
of time. Recording too much data requires large amounts of disk space and potentially slows down both,740
simulation and analysis. Computational steering (Parker et al., 1997) could be one solution to this problem741
– a technology that allows researchers to change the parameters of a running simulation as well as which742
state variables are being visualised.743

With the development of large-scale models such as those discussed in the previous section, the need for744
approaches such as computational steering in computational neuroscience is becoming apparant. Nowke745
et al. (2018) developed a computational steering system for visualising and steering NEST simulations.746
However, when running this system across a CPU-based HPC system, Nowke et al. found that its scalability747
was dictated by the amount of data that had to be transferred across the network at each simulation748
timestep. The next generation of supercomputer systems are being designed specifically to address these749
issues (Lippert and Orth, 2014). However, as discussed in section 4.3, GPUs are a more natural fit for750
this type of tight interaction between visualisation and simulation as they exist within the host system’s751
memory space, allowing data to be exchanged at the speed of the PCI express bus, rather than of an external752
network. Additionally, because CUDA can interact directly with graphics APIs such as OpenGL, some753
simple visualisations could be rendered without any interaction with the host computer’s CPU at all.754

This is a provisional file, not the final typeset article 26

www.brainsonboard.co.uk

Knight and Nowotny GPUs outperform current SNN simulators

CONFLICT OF INTEREST STATEMENT

The authors declare that the research was conducted in the absence of any commercial or financial755
relationships that could be construed as a potential conflict of interest.756

AUTHOR CONTRIBUTIONS

JK and TN wrote the paper. TN is the original developer of GeNN. JK is currently the primary GeNN757
developer and was responsible for extending the code generation approach to the parallel initialisation of758
networks. JK performed the experiments and the analysis of the results that are presented in this work.759

FUNDING

This work was funded by the EPSRC (Brains on Board project, grant number EP/P006094/1).760

ACKNOWLEDGMENTS

We would like to thank Andrew Webb for his thoughts on efficient parallel connectivity generation.761
We would also like to thank Sacha van Albada for providing the data from her NEST simulations762
and clarifying some parts of the accuracy analysis – without these contributions section 3.1 would not763
have been possible. Additionally we gratefully acknowledge the Gauss Centre for Supercomputing e.V.764
(www.gauss-centre.eu) for funding this project by providing computing time through the John von765
Neumann Institute for Computing (NIC) on the GCS Supercomputer JUWELS at Jülich Supercomputing766
Centre (JSC). Finally we would like to thank our reviewers for their helpful and valuable feedback.767

DATA AVAILABILITY STATEMENT

All models, data and analysis scripts used for this study can be found in https://github.com/768
BrainsOnBoard/frontiers_genn_paper.769

REFERENCES

Auerswald, E. and Fontana, C. (2018). Seven Segment Optical Character Recognition, https://www.unix-770
ag.uni-kl.de/ auerswal/ssocr/771

Awan, M. G. and Saeed, F. (2016). GPU-ArraySort: A Parallel, In-Place Algorithm for Sorting Large772
Number of Arrays. Proceedings of the International Conference on Parallel Processing Workshops773
2016-September, 78–87. doi:10.1109/ICPPW.2016.27774

Bi, G. Q. and Poo, M. M. (1998). Synaptic modifications in cultured hippocampal neurons: dependence on775
spike timing, synaptic strength, and postsynaptic cell type. The Journal of neuroscience : the official776
journal of the Society for Neuroscience 18, 10464–72777

Blanchard, M., Rind, F. C., and Verschure, P. F. M. J. (2000). Collision avoidance using a model of the locust778
LGMD neuron. Robotics and Autonomous Systems 30, 17–38. doi:10.1016/S0921-8890(99)00063-9779

Brader, J. M., Senn, W., and Fusi, S. (2007). Learning real-world stimuli in a neural network with780
spike-driven synaptic dynamics. Neural computation 19, 2881–912. doi:10.1162/neco.2007.19.11.2881781

Braitenberg, V. and Schüz, A. (2013). Cortex: statistics and geometry of neuronal connectivity (Springer782
Science & Business Media)783

Frontiers 27

www.gauss-centre.eu
https://github.com/BrainsOnBoard/frontiers_genn_paper
https://github.com/BrainsOnBoard/frontiers_genn_paper
https://github.com/BrainsOnBoard/frontiers_genn_paper

Knight and Nowotny GPUs outperform current SNN simulators

Brette, R. and Goodman, D. F. (2012). Simulating spiking neural networks on GPU. Network: Computation784
in Neural Systems 23, 167–182. doi:10.3109/0954898X.2012.730170785

Brunel, N. (2000). Dynamics of Sparsely Connected Networks of Excitatory and Inhibitory Spiking786
Neurons. Journal of computational neuroscience 8, 183–208. doi:10.1016/S0925-2312(00)00179-X787

Brunel, N. and Hakim, V. (1999). Fast Global Oscillations in Networks of Integrate-and-Fire Neurons with788
Low Firing Rates. Neural Computation 11, 1621–1671. doi:10.1162/089976699300016179789

Carnevale, N. T. and Hines, M. L. (2006). The NEURON book (Cambridge University Press)790

Chou, T.-s., Kashyap, H. J., Xing, J., Listopad, S., Rounds, E. L., Beyeler, M., et al. (2018). CARLsim 4 :791
An Open Source Library for Large Scale , Biologically Detailed Spiking Neural Network Simulation792
using Heterogeneous Clusters , 1158–1165793

Clopath, C., Büsing, L., Vasilaki, E., and Gerstner, W. (2010). Connectivity reflects coding: a model of794
voltage-based STDP with homeostasis. Nature neuroscience 13, 344–352. doi:10.1038/nn.2479795

Conradt, J., Galluppi, F., and Stewart, T. C. (2015). Trainable sensorimotor mapping in a neuromorphic796
robot. Robotics and Autonomous Systems 71, 60–68. doi:10.1016/j.robot.2014.11.004797

Cope, A. J., Richmond, P., James, S. S., Gurney, K., and Allerton, D. J. (2017). SpineCreator: a798
Graphical User Interface for the Creation of Layered Neural Models. Neuroinformatics 15, 25–40.799
doi:10.1007/s12021-016-9311-z800

Cope, A. J., Sabo, C., Gurney, K., Vasilaki, E., and Marshall, J. A. R. (2016). A Model for an Angular801
Velocity-Tuned Motion Detector Accounting for Deviations in the Corridor-Centering Response of the802
Bee. PLoS Computational Biology 12, 1–22. doi:10.1371/journal.pcbi.1004887803

Davies, M., Srinivasa, N., Lin, T.-h., Chinya, G., Cao, Y., Choday, S. H., et al. (2018). Loihi : a804
Neuromorphic Manycore Processor with On-Chip Learning. IEEE Micro 30, 82–99. doi:10.1109/MM.805
2018.112130359806

Davison, A. P., Brüderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., et al. (2008). PyNN: a807
common interface for neuronal network simulators. Frontiers in neuroinformatics 2, 11. doi:10.3389/808
neuro.11.011.2008809

Denk, C., Llobet-Blandino, F., Galluppi, F., Plana, L. A., Furber, S., and Conradt, J. (2013). Real-time810
interface board for closed-loop robotic tasks on the SpiNNaker neural computing system. Lecture Notes811
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in812
Bioinformatics) 8131 LNCS, 467–474. doi:10.1007/978-3-642-40728-4_59813

Devroye, L. (2013). Non-uniform random variate generation (New York: Springer-Verlag New York)814

Diamond, A., Nowotny, T., and Schmuker, M. (2016). Comparing neuromorphic solutions in action:815
Implementing a bio-inspired solution to a benchmark classification task on three parallel-computing816
platforms. Frontiers in Neuroscience 9, 491. doi:10.3389/fnins.2015.00491817

Fidjeland, A. K., Roesch, E. B., Shanahan, M. P., and Luk, W. (2009). NeMo: A platform for neural818
modelling of spiking neurons using GPUs. Proceedings of the International Conference on Application-819
Specific Systems, Architectures and Processors , 137–144doi:10.1109/ASAP.2009.24820

Freedman, D. and Diaconis, P. (1981). On the histogram as a density estimator: L 2 theory. Zeitschrift für821
Wahrscheinlichkeitstheorie und verwandte Gebiete 57, 453–476822

Frenkel, C., Legat, J.-d., and Bol, D. (2018). A 0.086-mm$ˆ2$ 9.8-pJ/SOP 64k-Synapse 256-Neuron823
Online-Learning Digital Spiking Neuromorphic Processor in 28nm CMOS824

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The SpiNNaker Project. Proceedings of825
the IEEE 102, 652–665. doi:10.1109/JPROC.2014.2304638826

This is a provisional file, not the final typeset article 28

Knight and Nowotny GPUs outperform current SNN simulators

Galluppi, F., Lagorce, X., Stromatias, E., Pfeiffer, M., Plana, L. A., Furber, S. B., et al. (2014). A framework827
for plasticity implementation on the SpiNNaker neural architecture. Frontiers in Neuroscience 8, 1–16.828
doi:10.3389/fnins.2014.00429829

Garrido, J. A., Carrillo, R. R., Luque, N. R., and Ros, E. (2011). Event and time driven hybrid simulation830
of spiking neural networks. Lecture Notes in Computer Science (including subseries Lecture Notes831
in Artificial Intelligence and Lecture Notes in Bioinformatics) 6691 LNCS, 554–561. doi:10.1007/832
978-3-642-21501-8_69833

Gewaltig, M.-O. and Diesmann, M. (2007). NEST (NEural Simulation Tool). Scholarpedia 2, 1430834

Hanuschkin, A., Kunkel, S., Helias, M., Morrison, A., and Diesmann, M. (2010). A General and Efficient835
Method for Incorporating Precise Spike Times in Globally Time-Driven Simulations. Frontiers in836
Neuroinformatics 4, 1–19. doi:10.3389/fninf.2010.00113837

Hoang, R. V., Tanna, D., Jayet Bray, L. C., Dascalu, S. M., and Harris, F. C. (2013). A novel838
CPU/GPU simulation environment for large-scale biologically realistic neural modeling. Frontiers in839
Neuroinformatics 7, 1–10. doi:10.3389/fninf.2013.00019840

Hoppner, S., Yan, Y., Vogginger, B., Dixius, A., Partzsch, J., Neumarker, F., et al. (2017). Dynamic voltage841
and frequency scaling for neuromorphic many-core systems. In 2017 IEEE International Symposium on842
Circuits and Systems (ISCAS) (IEEE), 1–4. doi:10.1109/ISCAS.2017.8050656843

Hwu, T., Isbell, J., Oros, N., and Krichmar, J. (2017). A Self-Driving Robot using Deep Convolutional844
Neural Networks on Neuromorphic Hardware. Neural Networks (IJCNN), 2017 International Joint845
Conference on , 635–641846

Izhikevich, E. M. (2007). Solving the Distal Reward Problem through Linkage of STDP and Dopamine847
Signaling. Cerebral Cortex 17, 2443–2452. doi:10.1093/cercor/bhl152848

Jordan, J., Ippen, T., Helias, M., Kitayama, I., Sato, M., Igarashi, J., et al. (2018). Extremely Scalable849
Spiking Neuronal Network Simulation Code: From Laptops to Exascale Computers. Frontiers in850
Neuroinformatics 12, 2. doi:10.3389/fninf.2018.00002851

Knight, J. and Furber, S. (2016). Synapse-centric mapping of cortical models to the SpiNNaker852
neuromorphic architecture. Frontiers in Neuroscience 10, 420. doi:10.3389/fnins.2016.00420853

Knight, J. C., Tully, P. J., Kaplan, B. A., Lansner, A., and Furber, S. B. (2016). Large-Scale Simulations of854
Plastic Neural Networks on Neuromorphic Hardware. Frontiers in neuroanatomy 10, 37. doi:10.3389/855
fnana.2016.00037856

Kreiser, R., Cartiglia, M., Martel, J. N., Conradt, J., and Sandamirskaya, Y. (2018). A Neuromorphic857
Approach to Path Integration: A Head-Direction Spiking Neural Network with Vision-driven Reset. In858
2018 IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE), 1–5. doi:10.1109/ISCAS.859
2018.8351509860

Krichmar, J. L., Seth, A. K., Nitz, D. A., Fleischer, J. G., and Edelman, G. M. (2005). Spatial861
Navigation and Causal Analysis in a Brain-Based Device Modeling Cortical–Hippocampal Interactions.862
Neuroinformatics 3, 197–222. doi:10.1385/NI:3:3:197863

Lippert, T. and Orth, B. (2014). Supercomputing Infrastructure for Simulations of the Human Brain. In864
IET Computers & Digital Techniques, vol. 10. 198–212. doi:10.1007/978-3-319-12084-3_16865

Markram, H. (1997). Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs.866
Science 275, 213–215. doi:10.1126/science.275.5297.213867

Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J., Akopyan, F., et al. (2014). A868
million spiking-neuron integrated circuit with a scalable communication network and interface. {S}cience869
345, 668–673. doi:10.1126/science.1254642870

Frontiers 29

Knight and Nowotny GPUs outperform current SNN simulators

Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen, E., Garcia, D., et al. (2018). Mixed Precision871
Training. In Proceedings of the 6th International Conference on Learning Representations (Vancouver)872

Mikaitis, M., Lester, D. R., Shang, D., Furber, S., Liu, G., Garside, J., et al. (2018a). Approximate873
Fixed-Point Elementary Function Accelerator for the SpiNNaker-2 Neuromorphic Chip. In 2018 IEEE874
25th Symposium on Computer Arithmetic (ARITH) (IEEE), vol. 15, 37–44. doi:10.1109/ARITH.2018.875
8464785876

Mikaitis, M., Pineda García, G., Knight, J. C., and Furber, S. B. (2018b). Neuromodulated Synaptic877
Plasticity on the SpiNNaker Neuromorphic System 12, 1–13. doi:10.3389/fnins.2018.00105878

Milde, M. B., Blum, H., Dietmüller, A., Sumislawska, D., Conradt, J., Indiveri, G., et al. (2017). Obstacle879
avoidance and target acquisition for robot navigation using a mixed signal analog/digital neuromorphic880
processing system. Frontiers in Neurorobotics 11, 1–17. doi:10.3389/fnbot.2017.00028881

Moise, M. (2012). A fixed point arithmetic library for SpiNNaker. Ph.D. thesis, The University of882
Manchester883

Moore, S. W., Fox, P. J., Marsh, S. J., Markettos, a. T., and Mujumdar, A. (2012). Bluehive - A Field-884
Programable Custom Computing Machine for Extreme-Scale Real-Time Neural Network Simulation.885
2012 IEEE 20th International Symposium on Field-Programmable Custom Computing Machines ,886
133–140doi:10.1109/FCCM.2012.32887

Morrison, A., Aertsen, A., and Diesmann, M. (2007). Spike-timing-dependent plasticity in balanced888
random networks. Neural computation 19, 1437–67. doi:10.1162/neco.2007.19.6.1437889

Morrison, A., Diesmann, M., and Gerstner, W. (2008). Phenomenological models of synaptic plasticity890
based on spike timing. Biological Cybernetics 98, 459–478. doi:10.1007/s00422-008-0233-1891

Nabavi, S., Fox, R., Proulx, C. D., Lin, J. Y., Tsien, R. Y., and Malinow, R. (2014). Engineering a memory892
with LTD and LTP. Nature doi:10.1038/nature13294893

Naylor, M., Fox, P. J., Markettos, A. T., and Moore, S. W. (2013). Managing the FPGA memory wall:894
Custom computing or vector processing? 2013 23rd International Conference on Field Programmable895
Logic and Applications, FPL 2013 - Proceedings doi:10.1109/FPL.2013.6645538896

Nowke, C., Diaz-Pier, S., Weyers, B., Hentschel, B., Morrison, A., Kuhlen, T. W., et al. (2018).897
Toward Rigorous Parameterization of Underconstrained Neural Network Models Through Interactive898
Visualization and Steering of Connectivity Generation. Frontiers in Neuroinformatics 12, 1–21.899
doi:10.3389/fninf.2018.00032900

NVIDIA Corporation (2017). NVIDIA Tesla V100 GPU Architecture. White Paper , 53901

NVIDIA Corporation (2018a). CUDA C Programming Guide902

NVIDIA Corporation (2018b). Developing a Linux Kernel Module Using RDMA for GPUDirect903

NVIDIA Corporation (2018c). DGX-2904

Olofsson, A., Nordström, T., and Ul-Abdin, Z. (2015). Kickstarting high-performance energy-efficient905
manycore architectures with Epiphany. Conference Record - Asilomar Conference on Signals, Systems906
and Computers 2015-April, 1719–1726. doi:10.1109/ACSSC.2014.7094761907

Parker, S. G., Johnson, C. R., and Beazley, D. (1997). Computational steering software systems and908
strategies. IEEE computational science & engineering 4, 50–59. doi:10.1109/99.641609909

Partzsch, J., Hoppner, S., Eberlein, M., Schuffny, R., Mayr, C., Lester, D. R., et al. (2017). A fixed910
point exponential function accelerator for a neuromorphic many-core system. Proceedings - IEEE911
International Symposium on Circuits and Systems doi:10.1109/ISCAS.2017.8050528912

Pauli, R., Weidel, P., Kunkel, S., and Morrison, A. (2018). Reproducing Polychronization: A Guide to913
Maximizing the Reproducibility of Spiking Network Models. Frontiers in Neuroinformatics 12, 1–21.914
doi:10.3389/fninf.2018.00046915

This is a provisional file, not the final typeset article 30

Knight and Nowotny GPUs outperform current SNN simulators

Potjans, T. C. and Diesmann, M. (2014). The Cell-Type Specific Cortical Microcircuit: Relating Structure916
and Activity in a Full-Scale Spiking Network Model. Cerebral Cortex 24, 785–806. doi:10.1093/cercor/917
bhs358918

Qiao, N., Mostafa, H., Corradi, F., Osswald, M., Stefanini, F., Sumislawska, D., et al. (2015). A919
reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K920
synapses. Frontiers in Neuroscience 9, 1–17. doi:10.3389/fnins.2015.00141921

Rall, W. (1967). Distinguishing theoretical synaptic potentials computed for different soma-dendritic922
distributions of synaptic input. Journal of Neurophysiology 30, 1138–1168. doi:10.1152/jn.1967.30.5.923
1138924

Rittner, P. and Cleland, T. A. (2016). Model definition and benchmarks for the Myriad parallel simulator.925
In Society for Neuroscience (Abstract) (San Diago), 755.11926

Rotter, S. and Diesmann, M. (1999). Exact digital simulation of time-invariant linear systems with927
applications to neuronal modeling. Biological cybernetics 81, 381–402928

Sawada, J., Akopyan, F., Cassidy, A. S., Taba, B., Debole, M. V., Datta, P., et al. (2016). TrueNorth929
Ecosystem for Brain-Inspired Computing : Scalable Systems , Software , and Applications TrueNorth930
Ecosystem for Brain-Inspired Computing : Scalable Systems , Software , and Applications. International931
Conference for High Performance Computing, Networking, Storage and Analysis, SC 16932

Schemmel, J., Kriener, L., Muller, P., and Meier, K. (2017). An accelerated analog neuromorphic hardware933
system emulating NMDA- and calcium-based non-linear dendrites. Proceedings of the International934
Joint Conference on Neural Networks 2017-May, 2217–2226. doi:10.1109/IJCNN.2017.7966124935

Schmidhuber, J. (2015). Deep Learning in neural networks: An overview. Neural Networks 61, 85–117.936
doi:10.1016/j.neunet.2014.09.003937

Schmidt, M., Bakker, R., Shen, K., Bezgin, G., Hilgetag, C.-C., Diesmann, M., et al. (2015). Full-density938
multi-scale account of structure and dynamics of macaque visual cortex939

Seo, J.-S., Brezzo, B., Liu, Y., Parker, B. D., Esser, S. K., Montoye, R. K., et al. (2011). A 45nm CMOS940
neuromorphic chip with a scalable architecture for learning in networks of spiking neurons. 2011 IEEE941
Custom Integrated Circuits Conference (CICC) , 1–4doi:10.1109/CICC.2011.6055293942

Sharp, T., Galluppi, F., Rast, A., and Furber, S. B. (2012). Power-efficient simulation of detailed cortical943
microcircuits on SpiNNaker. Journal of neuroscience methods 210, 110–8. doi:10.1016/j.jneumeth.944
2012.03.001945

Sharp, T., Petersen, R., and Furber, S. B. (2014). Real-time million-synapse simulation of rat barrel cortex.946
Frontiers in Neuroscience 8, 1–9. doi:10.3389/fnins.2014.00131947

Song, S., Miller, K. D., and Abbott, L. F. (2000). Competitive Hebbian learning through spike-timing-948
dependent synaptic plasticity. Nature neuroscience 3, 919–26. doi:10.1038/78829949

Stimberg, M., Goodman, D. F. M., Benichoux, V., and Brette, R. (2014). Equation-oriented specification950
of neural models for simulations. Frontiers in Neuroinformatics 8, 1–14. doi:10.3389/fninf.2014.00006951

Stimberg, M., Goodman, D. F. M., and Nowotny, T. (2018). Brian2genn: a system for accelerating a large952
variety of spiking neural networks with graphics hardware. bioRxiv doi:10.1101/448050953

van Albada, S. J., Helias, M., and Diesmann, M. (2015). Scalability of Asynchronous Networks Is Limited954
by One-to-One Mapping between Effective Connectivity and Correlations. PLoS Computational Biology955
11, 1–37. doi:10.1371/journal.pcbi.1004490956

van Albada, S. J., Rowley, A. G., Senk, J., Hopkins, M., Schmidt, M., Stokes, A. B., et al. (2018).957
Performance Comparison of the Digital Neuromorphic Hardware SpiNNaker and the Neural Network958
Simulation Software NEST for a Full-Scale Cortical Microcircuit Model. Frontiers in Neuroscience 12,959
1–20. doi:10.3389/fnins.2018.00291960

Frontiers 31

Knight and Nowotny GPUs outperform current SNN simulators

Van Vreeswijk, C., Abbott, L. F., and Bard Ermentrout, G. (1994). When inhibition not excitation961
synchronizes neural firing. Journal of Computational Neuroscience 1, 313–321. doi:10.1007/962
BF00961879963

Villa, O., Chavarria-Miranda, D., Gurumoorthi, V., Márquez, A., and Krishnamoorthy, S. (2009). Effects964
of Floating-Point non-Associativity on Numerical Computations on Massively Multithreaded Systems.965
Proceedings of Cray User Group Meeting (CUG)966

Vitay, J., Dinkelbach, H. Ü., and Hamker, F. H. (2015). ANNarchy: a code generation approach to neural967
simulations on parallel hardware. Frontiers in Neuroinformatics 9, 1–20. doi:10.3389/fninf.2015.00019968

Wang, R. and van Schaik, A. (2018). Breaking Liebig ’ s Law : An Advanced Multipurpose Neuromorphic969
Engine. Frontiers in Neuroscience 12, 1–14. doi:10.3389/fnins.2018.00593970

Xilinx Inc (2018). Zynq-7000 SoC971
Yavuz, E., Turner, J., and Nowotny, T. (2016). GeNN: a code generation framework for accelerated brain972

simulations. Scientific reports 6, 18854. doi:10.1038/srep18854973
Yegenoglu, A., Davison, A., Holstein, D., Muller, E., Torre, E., Hagen, E., et al. (2018). Elephant974

This is a provisional file, not the final typeset article 32

	Introduction
	Material and Methods
	GPU architectures
	GeNN
	Cortical microcircuit model
	Balanced random network with spike-timing dependent plasticity

	Results
	Correctness
	Cortical microcircuit model
	Balanced random network

	Performance
	Cortical microcircuit model
	Balanced random network

	Power and energy

	Discussion
	Suitability of GPU architectures for SNN simulations
	Comparison to neuromorphic systems
	Neurorobotics
	Interactive simulation

