Fast Splitting Based Tag Identification Algorithm For Anti-collision in UHF RFID System

Jian Su, Zhenguo Sheng, Liangbo Xie, and Gang Li

Abstract—Efficient and effective objects identification using Radio Frequency Identification (RFID) is always a challenge in large scale industrial and commercial applications. Among existing solutions, the tree based splitting scheme has attracted increasing attention because of its high extendibility and feasibility. However, conventional tree splitting algorithms can only solve tag collision with counter value equals to zero and usually result in performance degradation when the number of tags is large. To overcome such drawbacks, we propose a novel tree-based method called Fast Splitting Algorithm based on Consecutive Slot Status detection (FSA-CSS), which includes a fast splitting (FS) mechanism and a shrink mechanism. Specifically, the FS mechanism is used to reduce collisions by increasing commands when the number of consecutive collision is above a threshold. Whereas the shrink mechanism is used to reduce extra idle slots introduced by FS. Simulation results supplemented by prototyping tests show that the proposed FSA-CSS achieves a system throughput of 0.41, outperforming the existing UHF RFID solutions.

Index Terms—RFID, UHF, anti-collision, FS mechanism, system throughput, time efficiency.

I. INTRODUCTION

RFID technology has greatly revolutionized tag based applications in retail industry such as warehouse management and inventory control [1-2]. A typical RFID system is composed of a reader and a large number of tags attached to tracked objects. Each object can be identified based on query response from the attached RFID tag. However, in large scale RFID applications, simultaneous query responses from multiple tags can cause significant tag collisions. Since passive tags are unable to perceive or identify such collisions, the development of anti-collision algorithms is of great importance for fast tag identification especially in high-density ultra high frequency (UHF) RFID environment.

Existing tag anti-collision algorithms can be categorized into dynamic framed slotted Aloha (DFSA)[3-5], query tree (QT)[6-8] and binary splitting (BS) based [9-10] algorithms. Among them, QT and BS algorithms are operated by recursively dividing responding tags into smaller subsets until each subset has at most one tag. The distinction between these two approaches is that, in QT solutions, tags are separated by their IDs. Whereas in BS approaches, tags are divided by binary random numbers generated in the splitting process. Strictly speaking, QT methods are derived from the bit tracking technology [11] which can detect the position of collided bit by the reader. However, with an increasing number of tags, the efficiency of such methods is deteriorated because of the wide deviation of backscatter link frequency among tags [12-14].

As a contrary, DFSA and BS algorithms are more preferable for UHF RFID systems. DFSA algorithms usually employ a frame structure which contains a certain number of time intervals (called time slots) per frame, and each tag responses to the reader by randomly choosing a time slot using its ID. During the identification process, the size of frame is dynamically updated according to the number of unread tags. When the frame size is equal to the backlog (number of unread tags), the maximum system throughput can be achieved. Recent works in DFSA include improved linearized combinatorial model (ILCM) [15] based anti-collision algorithm, an efficient anti-collision algorithm with early adjustment of frame length (EAAEA) [16], and access probability adjustment based fine-grained Q-algorithm (APAFQ) [17], etc. However, those algorithms have failed to prevent collisions completely, because of the tag starvation problem in which a specific tag may not be identified for a long time [9]. Furthermore, the performance of DFSA algorithms highly depends on the initial frame size. When the number of tags is much larger than the size of frame, most of DFSA solutions are unable to adjust frame size properly in order to cope with backlog, thus lead to performance degradation [3, 15]. That is to say, DFSA solutions are cardinality sensitive and shows inconsistent performance with a wide range of backlog. As a contrary, BS algorithms are insensitive to tag backlog particularly when the number of tags is increased, the system throughput is almost converged to a constant value. Although the BS approach can tackle tag starvation, it has a relatively long identification latency due to the splitting process starting from a single set with all tags. Specially, the system throughput of BS algorithms is about 0.348 [10] when the number of tags is larger than 100. Most of recent anti-collision algorithms with high performance are based on the integration of Aloha and QT (or BS) algorithms [18-19]. These methods usually need to estimate cardinality of tag population. Many efforts have also been made to improve estimation accuracy [3-4][15][20]. However, constant estimation of number of tags with high accuracy requires high computation overhead and thus leads to serious challenges in implementation [16].

In this paper, we focus on the UHF RFID anti-collision algorithm and propose a fast splitting algorithm based on
consecutive slot status detection (FSA-CSS) to improve the identification and stability performance of BS algorithm. The proposed solution is based on the pure BS algorithm which is rarely investigated given concerns of marginal performance improvement by the existing literature. Different to the existing solutions in which the average performance is only investigated, i.e., incoming and outgoing tags are allowed to be identified multiple times [21-22], we focus on a practice-driven and challenging scenario in which a tag can only be identified once and propose to improve individual performance for identifying a batch of tags. It shows from the results that FSA-CSS can still maintain high performance in large-scale RFID systems without estimation of backlog. The contributions of this paper can be summarized as follows.

1) We propose an enhanced anti-collision algorithm namely FSA-CSS for passive UHF RFID systems. In order to accelerate the splitting process, the reader allows the tags with counter value above zero to be split into subsets in advance. Meanwhile, the reader can avoid over-splitting by using the shrink mechanism to reduce the extra idle slots.

2) We provide the theoretical analysis and carry out simulations to evaluate the performance of FSA-CSS with a massive number of tags. The results have been compared with various legacy anti-collision algorithms. The optimal parameters and performance boundaries have been derived.

3) We implement FSA-CSS in a practical UHF RFID system, which includes a passive RFID reader and 20 tags. The identification time of the proposed FSA-CSS is reduced by 32.5% compared to the standard BS used in ISO/IEC 18000-6B.

The rest of this paper is organized as follows. Section II reviews and analyzes the mainstream tag identification strategies for UHF RFID systems. Section III discusses the novel anti-collision algorithm FSA-CSS and analyzes its performance. Section IV illustrates the simulation results. The experimental results are presented in Section V. Finally, the paper is concluded in Section VI.

II. RELATED WORKS

A. Binary splitting (BS) algorithm

The principle of BS algorithm is to continuously divide collided tags into smaller subsets by using random binary numbers. Each tag has an integer counter \(T_c \) which is used to record its position in the splitting process and a random binary number generator \(T_R \). Different values of \(T_c \) lead tags into different subsets. Only tags with \(T_c = 0 \) respond to the reader immediately, while tags with \(T_c > 0 \) should wait in the pipeline. At the initial stage of identification process, all tags in reader’s vicinity should respond simultaneously and thus are formed as one set. Depending on received responses, the reader will send a feedback, e.g., ID-idle, ID-collision or ID-success, to all tags for further actions. When the feedback is ID-success or ID-idle, all tags act \(T_c = T_c - 1 \). The tags already identified by the reader will be silent during the next identification process. If the feedback is ID-collision, the collided tags will be divided into two subsets. Tags with \(T_c = 0 \) add \(T_R \) to its \(T_c \), while tags with \(T_c > 0 \) increase its \(T_c \) by 1.

The reader also uses a counter \(R_c \) to terminate the identification process. \(R_c \) denotes the number of unidentified tags and its initial value is 0. When a collision occurs, the reader performs \(R_c = R_c + 1 \), given the number of identifiable tags is increased. Otherwise, \(R_c \) is decreased by 1. When \(R_c < 0 \), the identification process is ceased. Compared to Aloha-based algorithms, the BS algorithm is insensitive to tag cardinality particularly when the number of tags is increased.

B. DFSA protocol with backlog estimation

In DFSA protocols, time is divided into a series of discrete intervals called time slots. Several time slots are packaged into a frame [3][15]. Each tag can randomly select a slot to respond to the reader in each identification round. At the end of each frame, the reader counts the number of idle, success, and collision slots. If collision slots exist, the reader will estimate the number of unidentified tags and adjust the frame length accordingly. The identification process continues until no collision occurs during a frame, i.e., all tags are successfully identified.

It is noted that the reader needs to accurately estimate the backlog to achieve the best performance. To improve estimation accuracy, most previous methods [3-5] are implemented with high complexity. However, typical RFID readers are computation constrained due to the limited processing power provided by single-chip microprocessor. As a result, estimation methods with high computation overhead are characterized as energy inefficient. Recently, many state-of-the-art algorithms [15-16] have been proposed to achieve energy efficiency. However, the system throughput of these solutions is still below 0.36. In addition, it is worth mentioning that most of existing DFSA studies are simulation based [3-5][15-17], thus the practical performance cannot be verified.

C. Hybrid protocol combining DFSA with BS

So far it has been shown that the BS performs better when the number of tags is relatively small [10]. This result has inspired further studies to design hybrid anti-collision algorithms combining DFSA and BS. The authors in [23] propose an adaptive binary tree slotted Aloha (ABTSA) algorithm. In ABTSA, tags are randomly assigned to slots in a frame. If multiple tags are collided in a slot, collision will be solved by the BS algorithm while other tags in the following slots will be in waiting state. The benefit of using ABTSA is that the adjustment of frame size is simplified because the reader has the knowledge of the status in every slot and thus can obtain an appropriate frame size accordingly. Since the ABTSA combines both DFSA and BS algorithms, it can achieve an average system throughput of 0.40, which is higher
than that of DFSA or BS algorithm alone. However, it is with a complex structure, hence much more difficult to be implemented.

In summary, aforementioned anti-collision algorithms do provide solutions to solve the tag collision problem, however, with sacrifices in identification efficiency, complexity and stability, etc. The characteristics of existing anti-collision algorithms are summarized in Tab. I. In the following, we will introduce the proposed solution based on the BS algorithm to improve the identification efficiency of RFID system and reduce the implementation cost.

III. The Proposed FSA-CSS Algorithm

A. Fast splitting mechanism

In the fast splitting (FS) mechanism, the counter value \(T_c \) of all tags are initialized to zero. When a collision occurs, the collided tags (i.e., tags with \(T_c = 0 \)) perform \(T_c = T_c + T_R \), while the tags with \(T_c > 0 \) perform \(T_c = M \cdot T_c + T_R \). That is,

\[
T_c = \begin{cases}
T_c + T_R, & \text{if } T_c = 0 \\
M \cdot T_c + T_R, & \text{if } T_c > 0 .
\end{cases}
\]

where \(T_R \in \{0, 1, \cdots, N - 1\} \) denotes a random binary number generator at an arbitrary time, \(N \) determines the maximum subsets needed. That is to say, the collided tags can be potentially allocated into \(N \) subsets. \(T_c \) denotes the value of counter at an arbitrary time. An integer \(M > 0 \) is a splitting coefficient, which denotes the splitting level of collided tags. The larger the \(M \), the more available subset slots can be provided during a single splitting process.

In order to illustrate the FS mechanism, we describe a simple case with five tags using \(M = N = 2 \). Assume the tags \(a, b, c, d, e \) collide in the slot 0, given \(T_c = 0 \) is for all tags, the reader will randomly divide them into two subsets, e.g., \(S_1 = \{a, d, e\} \) with random number 0 and \(S_2 = \{b, c\} \) with random number 1. The FS mechanism will trigger the reader to split \(S_2 \) into \(\{b\} \) and \(\{c\} \) in slot 1. According to (1), no collision will happen between \(b \) and \(c \). Meanwhile, tags \(a, d, \) and \(e \) will collide again in slot 1 and the FS will continue to assist the splitting until all collisions are solved. It is noted that we consider the case where a tag can be identified only once, whereas tags are identified repeatedly can be referred to [9][20-21].

By generalizing cases with \(N > 2 \), we can derive the following result for the splitting coefficient \(M \).

Result 1. The performance of FS mechanism depends on the choice of \(M \) and leads to the following result.

\[
\begin{cases}
M > N, \text{ yield extra idle slots} \\
M = N, \text{ no extra idle and collision slots} \\
M < N, \text{ yield extra collision slots}
\end{cases}
\]

Proof: See the Appendix A.

According to the Result 1, \(M = N \) is the best choice for FS mechanism. Examples of four tags using FS mechanism with different \(M \) and \(N \) are illustrated in Fig. 1. The depth of a node is defined as the path length (number of solid branches) from that node to the root (top) node. As can be seen in Fig. 1 (a), all tags collided in slot 0 are further divided into two subsets, e.g., \(S_1 = \{a, c\} \), \(S_2 = \{b, d\} \). Since tags in \(S_1 \) are continually collided in slot 1, they act \(T_c = T_c + T_R \), while the tags in \(S_2 \) act \(T_c = 2 \cdot T_c + T_R \). After reading in slot 1, all tags are divided into four subsets. Each subset contains only one tag. In total, the FSA-CCS consumes six slots to identify four tags by using FS mechanism with \(M = N = 2 \).

Fig. 1 (b) shows the example of \(M < N \). In the depth 1, tag \(a \) acts \(T_c = T_c + T_R = 0 + 2 = 2 \), while tag \(d \) also acts \(T_c = 2 \cdot T_c + T_R = 2 + 0 = 2 \). As a result, two tags from different sets generate the same \(T_c \), which results in an extra collision slot. Similarly as can be observed in Fig. 1 (c), many idle slots are introduced due to \(M > N \). It thus indicates that
The proposed FSA-CSS algorithm

According to the analysis above, the FS mechanism can accelerate the splitting speed and reduce collision during the identification process. However, the question is how to apply the FS mechanism and avoid over-splitting, given the number of tags is unknown at the beginning? To tackle the over-splitting problem, we propose the fast splitting algorithm with consecutive slot status detection (FSA-CSS). The main idea is that the reader implements the FS mechanism only when it detects a consecutive collision. The consecutive collision indicates a large number of tags coexist in the same identification process. In contrast, when the reader detects a consecutive idle, it performs the shrink mechanism by sending a Decrease command to decrease counter value of tags. The shrink mechanism is defined as follows.

\[T_c = \text{trunk}\left(\frac{T_c}{2}\right). \]

where \(\text{trunk()} \) is a truncation function. The flowchart of the proposed FSA-CSS algorithm is illustrated in Fig. 2. Two thresholds \(\mu \) and \(\sigma \) are denoted as the upper tolerance limit of the number of consecutive collision slots and idle slots, respectively, and two counters \(T_{CCN} \) and \(T_{CIN} \) are used at the reader to count the number of consecutive collision slots and idle slots. If \(T_{CCN} \geq \mu \), the reader should perform the FS mechanism. If \(T_{CIN} \geq \sigma \), the reader should perform the shrink mechanism due to the occurrence of over-splitting.

As can be observed in Fig. 2, the reader sends the corresponding feedback commands according to the slot type. Similar to BS, the reader also has a counter \(R_c \) to terminate the identification process when \(R_c < 0 \). By receiving feedback commands from the reader, each tag acts as follows.

- **Splitting 0 command**: Tags with \(T_c = 0 \) act \(T_c = T_R \), while tags with \(T_c > 0 \) act \(T_c = T_c + 1 \). It is similar to the ID-collision feedback of the BS algorithm. After sending this command, the reader acts \(R_c=R_c+1 \).
- **Splitting 1 command**: Tags with \(T_c = 1 \) act \(T_c = T_R \). Tags with \(T_c > 0 \) will be split into two groups. The potential advantage is to reduce the collisions.
- **Increase command**: All tags act \(T_c = 2 \cdot T_c + T_R \). Beside the current collided tags, tags with \(T_c > 0 \) will be divided after receiving this command. This is essentially different to the BS algorithm. After sending this command, the reader acts \(R_c=2: R_c+1 \).
- **Decrease command**: All tags act \(T_c = \text{trunk}\left(\frac{T_c}{2}\right) \). This command is allowed to alleviate the over-splitting. After sending this command, the reader acts \(R_c=\text{round}\left(\frac{R_c}{2}\right) \).
- **QueryRep command**: All tags act \(T_c = T_c - 1 \). This is similar to the ID-idle and ID-success of the BS algorithm. After sending this command, the reader acts \(R_c=R_c-1 \).

It is worth noting that the optimal \(M \) cannot be directly derived by the algorithm. In this paper, we choose an appropriate value \(M \) by using experimental method. Intuitively, a larger \(M \) can provide more splitting subsets and hence reduce collisions. However, it also introduces idle slots. In our proposed solution, we choose \(M = N = 2 \) to best achieve the simplicity and balance between the performance and complexity of using random number generator by each tag. Additional analysis and discussion can be found from Section IV and Fig. 3 which compares the number of slots consumed by FSA-CSS by adopting different \(M \).

Table I illustrates an example of seven tags by implementing the proposed FSA-CSS algorithm. Assume \(\mu = 3 \) and \(\sigma = 3 \), the reader performs the FS mechanism in the slot 3 due to \(T_{CCN} = 3 \). Then the reader performs the BS in each tag subset. After the tag \(c \) is identified, three consecutive idle slots occur, the reader performs the shrink mechanism in slot 11 to decrease the counter value of unidentified tags in order to alleviate over-splitting. Thereafter, the tags \(g, e \) and \(f \) are identified in slot 13, slot 15 and slot 16, respectively. The detailed communication procedure is also illustrated in Tab. II. In essence, compared to the conventional BS algorithm, the proposed FSA-CSS algorithm can reduce collisions but introduce extra idle slots. However, the FSA-CSS can use the Increase command to alleviate the negative impact from the idle slots.

Table I

<table>
<thead>
<tr>
<th>Method</th>
<th>Category</th>
<th>implementation</th>
<th>tag starvation</th>
<th>cardinality sensitive</th>
<th>system throughput</th>
<th>identification latency</th>
<th>complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAP [3]</td>
<td>√</td>
<td>medium</td>
<td>√</td>
<td>medium</td>
<td>medium</td>
<td>high</td>
<td>medium</td>
</tr>
<tr>
<td>MFM-FDSA [4]</td>
<td>√</td>
<td>medium</td>
<td>√</td>
<td>medium</td>
<td>medium</td>
<td>high</td>
<td>medium</td>
</tr>
<tr>
<td>FuzzyQ [5]</td>
<td>√</td>
<td>medium</td>
<td>√</td>
<td>low</td>
<td>medium</td>
<td>medium</td>
<td>high</td>
</tr>
<tr>
<td>ILCM [15]</td>
<td>√</td>
<td>easy</td>
<td>√</td>
<td>low</td>
<td>low</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>ds-FDSA [13]</td>
<td>√</td>
<td>difficult</td>
<td>√</td>
<td>high</td>
<td>low</td>
<td>low</td>
<td>low</td>
</tr>
<tr>
<td>BS [10]</td>
<td>√</td>
<td>easy</td>
<td>×</td>
<td>×</td>
<td>medium</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>ABS [9]</td>
<td>√</td>
<td>easy</td>
<td>×</td>
<td>×</td>
<td>medium</td>
<td>high</td>
<td>low</td>
</tr>
<tr>
<td>ABTSA [23]</td>
<td>√</td>
<td>difficult</td>
<td>√</td>
<td>high</td>
<td>high</td>
<td>high</td>
<td>high</td>
</tr>
</tbody>
</table>

a large \(M \) may cause too many idle slots. In our proposed algorithm, we define such a result with a large number of idle slots as over-splitting.

C. Upper bound performance of FSA-CSS

In this section, we analyze the system throughput of FSA-CSS. The system throughput \(T_{sys} \) is defined as follows

\[T_{sys} = \frac{m}{N_m}. \]
average number of identified tags per slot. In the FSA-CSS, the reader splits the collided tags via the fast splitting mechanism with \(M = N = 2 \). The identification process can be viewed as a binary tree. The depth of a node is the path length from that node to the root (top) of the tree. Assuming the FSA-CSS identifies \(m \) tags using the maximum \(L \)-th depth of the binary tree, the identification process can be viewed as a \(2^L \) space to accommodate the \(m \) units. If the generated random number of all tags are uniformly distributed, the probability that \(r \) tags involved in a node on the \(L \)-th depth of the tree is

\[
P (r|m, L) = C^m_r \left(\frac{1}{2L} \right)^r \left(1 - \frac{1}{2L} \right)^{m-r}. \tag{5}
\]

We then obtain the following expression for the probabilities of idle, success, and collision results from an independent probe at \(L \)-th depth of the tree.

\[
P (0|m, L) = \left(1 - \frac{1}{2L} \right)^m, \tag{6}
\]

\[
P (1|m, L) = \frac{m}{2L} \left(1 - \frac{1}{2L} \right)^{m-1}, \tag{7}
\]

\[
P (r > 1|m, L) = 1 - P (0|m, L) - P (1|m, L) = 1 - \left(1 - \frac{1}{2L} \right)^m - \frac{m}{2L} \left(1 - \frac{1}{2L} \right)^{m-1}, \tag{8}
\]

As can be observed from Fig. 4, the reader always performs the BS to identify tags after the FS mechanism is finished. We
We use the numerical method to search the optimal combination of \(\mu \) and \(\sigma \). Experiments are performed under the following cases: the number of tags are set as 200, 400, 600, and 800, respectively. \(\mu \) and \(\sigma \) vary from 1 to 10 in steps of 1. As can be observed from Fig. 5, the optimal system throughput relies on the combination of \(\mu \) and \(\sigma \). In Fig. 5 (a), the maximum system throughput of FSA-CSS is 0.4049 which can be obtained when \(\mu = 4 \) and \(\sigma = 9 \). Similarly in Fig. 5 (b), the system throughput of FSA-CSS peaks at 0.4128 when \(\mu = 4 \) and \(\sigma = 9 \). Fig. 5 (c) shows that the pair of \(\mu = 4 \) and \(\sigma = 7 \) can achieve the maximum system throughput of 0.4178. In Fig. 5(d), \(\mu = 4 \) and \(\sigma = 7 \) can also achieve the best performance at 0.4188 when \(n = 800 \). In general, no constant parameter setting of \(\mu \) and \(\sigma \) can maintain the best performance as the number of tags varies in a large scale. The optimal values of \(\mu \) and \(\sigma \) rely on exhaustive search using computer simulations.

The system throughput of FSA-CSS under specific pairs of \(\mu \) and \(\sigma \) when the number of tags varies from 100 to 1000 are illustrated in Fig. 6. The average throughput of six curves from highest to lowest are 0.4128, 0.4123, 0.4122, 0.4102, 0.4086, and 0.4083, respectively. The corresponding pairs of \(\mu \) and \(\sigma \) are (4, 7), (4, 8), (4, 6), (4, 9), (3, 4), and (3, 5), respectively. We can found that no constant parameter setting can always maintain the best performance. When the number of tags varies in a large-scale, the expectation of system throughput of FSA-CSS is maximum at \((\mu = 4, \sigma = 7) \). In practical implementation of fast RFID systems, it might be too costly to search the optimal combination of these two parameters and keep real-time updating by introducing extra overhead strategy. Therefore, a default parameter setting is preferable during the whole identification process with recommendation of \((\mu = 4, \sigma = 7) \).
IV. SIMULATION RESULTS

In this section, we compare FSA-CSS with the existing state-of-the-art including ABS [9], APAFQ [17], ds-DFSA [13], EAAEA [16], ILCM [15], and ABTSA [23] in terms of system throughput and time efficiency. Simulations with a reader and a various number of tags have been evaluated using MATLAB, where the tags are uniformly distributed in the reader vicinity in order to receive reader command directly. The evaluations are mainly focused on the MAC layer, whereas physical layer effects such as radio propagation effects are not considered in the proposed model. The similar assumption has been widely applied in the literatures [4, 10, 13-16]. The simulation results are average over 1000 iterations.

Fig. 7 illustrates the simulation results of system throughput under different initial frame size. Since ABS and FSA-CSS are not Aloha-based algorithms, their performances are not affected by varying initial frame size. The FSA-CSS only shows minor improvement when the number of tags is below 200. The reason is that the frequent use of FS mechanism introduces too many idle slots when the size of tag is small, and hence decreases the system throughput. As the number of tags is increased, the FSA-CSS shows its advantage over other algorithms. From Fig. 7, the FSA-CSS outperforms all other algorithms and achieves an average system throughput of 0.4128, where the average throughput of ABS, APAFQ, ABTSA, ds-DFSA, EAAEA, and ILCM are 0.3448, 0.3573, 0.4083, 0.4079, 0.3361, and 0.3252, respectively. It is noted that although ABTSA adopts a complex hybrid structure to enhance its performance, our proposed FSA-CSS still outperforms ABTSA by 1.10%. Similarly, the FSA-CSS is superior to the ds-DFSA and APAFQ with lower implementation cost.

In Fig. 8, we compare FSA-CSS ($\mu = 4, \sigma = 7$) with ABS in terms of total number of slots, collision slots and idle slots. The number of unread tags is progressively increased from 100 to 1000. Compared to ABS, FSA-CSS has fewer collision slots but more idle slots. The simulation results indicate that significant collision slots are reduced by the FS mechanism, and hence the total slots consumed by the FSA-CSS. Although the shrink mechanism is expected to overcome the over-splitting, the extra idle slots are unavoidable by the FS mechanism. As a result, the practical performance of FSA-CSS is slightly lower than its theoretical results.

Consider the disparity between slot durations such as the duration of non-idle slot is always longer than that of idle slot [22], the system throughput metric is ineffective to evaluate the performance of identification in terms of identification time. Therefore, we use time efficiency in the simulations. Assume the time durations of success, collision and idle slots are denoted as T_s, T_c and T_e, the time efficiency is defined as [16]

$$T_{eff} = \frac{S \cdot T_s + E \cdot T_e + C \cdot T_c}{S \cdot T_s}.$$ \hspace{1cm} (11)
CSS can always achieve the best time efficiency under various ratios by reducing collision and idle slots.

V. EXPERIMENTAL RESULTS WITH A PRACTICAL RFID TESTBED

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>922.375 MHz</td>
</tr>
<tr>
<td>Backscatter link frequency</td>
<td>64 KHz</td>
</tr>
<tr>
<td>Modulation</td>
<td>DSB-ASK</td>
</tr>
<tr>
<td>Deviation</td>
<td>20 HHz</td>
</tr>
<tr>
<td>Channel width</td>
<td>250 KHz</td>
</tr>
<tr>
<td>Read-tag data coding</td>
<td>TPP</td>
</tr>
<tr>
<td>Reader-tag data coding</td>
<td>Miller-8</td>
</tr>
<tr>
<td>Reader-tag preamble</td>
<td>137.5 µs</td>
</tr>
<tr>
<td>Tag-reader data coding</td>
<td>2000 µs</td>
</tr>
<tr>
<td>T1</td>
<td>154 µs</td>
</tr>
<tr>
<td>T2</td>
<td>130 µs</td>
</tr>
<tr>
<td>T3</td>
<td>436 µs</td>
</tr>
</tbody>
</table>

To further evaluate the performance of FSA-CSS algorithm in a practical UHF RFID system, we conduct experiments using a testbed in an indoor environment. Experiments include an active RFID reader and 20 passive tags. The reader is equipped with ARM Cortex A9 processor, which is a 32-bit reduced instruction set (RISC) processor with a maximum operating frequency of 1 GHz and an off-chip memory 512M to ensure high speed and stable operation of programs. The external interface of the reader includes UART, JTAG, ETH and USB, which greatly facilitates the software and hardware debugging. The UART interface is used for communication between the host computer and the reader. The JTAG interface facilitates the developer to debug the reader hardware. ETH
and USB provide various ways to upload tag data by the reader. Compared to the BS commercial tag, the custom tag has added some control logic codes in its state machine, which is used to support the reader commands of FSA-CSS.

Tab. III lists the link parameters configured for radio frequency communication between the reader and tags. In order to comply with ISO/IEC 18000-6B, the carrier frequency is set to 922.875MHz and Miller coding is used.

The experiments are carried out by placing 20 tags in the antenna interrogation zone of RFID reader with a fixed transmitting power. We evaluate and compare the performance of standard BS used in ISO/IEC 18000-6B and the proposed FSA-CSS in total identification time (defined as the total time required to identify all tags) and identification rate (defined as the number of tags can be identified per second). The experimental environment is captured in Fig. 10. We vary the number of tags from 2 to 20 and repeat the experiment in 50 trials to get average performance. In parallel, we also perform simulations using the same parameters.

Fig. 11 compares the experimental results of FSA-CSS with that of ABS which is used in ISO/IEC 18000-6B. In the experiments, the proposed FSA-CSS reduces the identification time by 32.5% and improves the average identification rate by 50% compared with ABS. The simulation results are closed to the experimental results. Both simulation and experiment results indicate that the proposed FSA-CSS outperforms the ABS constantly in the practical RFID system.

VI. CONCLUSIONS

We have proposed a novel design of BS-based anti-collision algorithm namely FSA-CSS to improve the low identification efficiency of traditional BS-based algorithms. Unlike the existing methods, the FSA-CSS allows tags which are in the waiting state to participate in the splitting process via fast splitting mechanism, thus the number of collision slots can be reduced. Meanwhile, the shrink mechanism has been introduced to avoid the over-splitting problem. The proposed FSA-CSS has been shown to improve the identification efficiency without estimation of number of tags and extra hardware cost. The simulation results have shown that FSA-CSS outperforms ABS by 23.3% in system throughput. We have also prototyped a RFID system and evaluated its performance in a real-world RFID environment. The experimental results have been shown that the proposed FSA-CSS can reduce the total identification time by 32.5% for identifying 20 tags. Both simulations and
experiments have indicated that the proposed FSA-CSS is a suitable candidate for the resource-constrained RFID systems.

APPENDIX A

PROOF OF RESULT 1

Assuming the i-th and j-th ($i<j$) subsets on the depth k have counters $T^{(i,k)}_c$, $T^{(j,k)}_c$, respectively, we have

$$T^{(j,k)}_c = T^{(i,k)}_c + (j-i),$$ \hspace{1cm} (12)

If the FS mechanism is performed when a collision occurs, the two subsets extend into the depth $(k+1)$, and the counters can be expressed as

$$T^{(i,k+1)}_c = M \cdot T^{(i,k)}_c + T^{(i,k)}_R,$$ \hspace{1cm} (13)

$$T^{(j,k+1)}_c = M \cdot T^{(j,k)}_c + T^{(j,k)}_R,$$ \hspace{1cm} (14)

where $T^{(i,k)}_R, T^{(j,k)}_R \in \{0, 1, \ldots, N-1\}$. According to Eqs. (3)-(5), $T^{(j,k+1)}_c$ can be rewritten as

$$T^{(j,k+1)}_c = M \cdot [T^{(i,k)}_c + (j-i)] + T^{(j,k)}_R.$$ \hspace{1cm} (15)

Comparing between Eq. (13) and (15), we have

$$T^{(j,k+1)}_c - T^{(i,k+1)}_c = M \cdot (j-i) + \left(T^{(j,k)}_R - T^{(i,k)}_R \right),$$ \hspace{1cm} (16)
Since $T_R^{(i, k)}$, $T_R^{(j, k)} \in \{0, 1, \ldots, N - 1\}$, we have

$$-(N - 1) \leq T_R^{(j, k)} - T_R^{(i, k)} \leq (N - 1),$$

(17)

Without loss of generality, we assume $0 < M < N$, then we have

$$0 < M \cdot (j - i) < N(j - i),$$

(18)

Since $j > i$, (18) can be re-expressed as

$$M < M \cdot (j - i) < N(j - i),$$

(19)

According to (16), (17), and (19), we have

$$M - (N-1) \leq T_c^{(j, k+1)} - T_c^{(i, k+1)} \leq N(j+1-i)-1,$$

(20)

Since i, j, M and N are natural number above 0, (20) can be re-expressed as

$$0 \leq T_c^{(j, k+1)} - T_c^{(i, k+1)} \leq N(j+1-i)-1.$$

(21)

which indicates that the nodes in different subsets at the depth k may be collided in the same subset at depth $(k+1)$. Consequently, the extra collision slot is yielded. Suppose $M = N$, we have

$$1 \leq T_c^{(j, k+1)} - T_c^{(i, k+1)} \leq N(j+1-i)-1.$$

(22)

which indicates that the nodes in two subsets at depth k extending into depth $(k+1)$ will not be collided. Based on the discussion above, we know that $M = N = 2$ can avoid the extra collision slot.

On the other hand, if $M > N$, according to (20), we have

$$2 \leq T_c^{(j, k+1)} - T_c^{(i, k+1)} \leq N(j+1-i)-1.$$

(23)

which indicates that the minimum gap between counter value in adjacent subsets is above 1. That means the extra idle slot is generated when $M > N$ compared to (22). Therefore, the Result 1 can be yielded.

APPENDIX B

PROOF OF RESULT 2

As the prior knowledge of number of tags is known to the reader, it is straightforward that the FS should be repeated until all tags have been divided into m subsets and each subset contains few tags in equal probability. Then the conventional BS can be adopted to identify these tags in each subsets. The maximum depth L_{max} of the binary tree using FSA-CSS to identify m tags can be derived as

$$L_{max} = \lfloor \log_2 m \rfloor,$$

(24)

where $\lfloor \cdot \rfloor$ denotes the operation of round down to the nearest integer. Substituting Eq. (24) into Eq. (9) leads to

$$N_r^{FSA-CSS} = L_{max} + \frac{L_{max} \cdot (1 - \frac{1}{2^{r_{max}}})^m - 1}{1 - \frac{1}{8}}
+ m \cdot (1 - \frac{1}{2^{r_{max}}})^m - 1 + \sum_{r=2}^m \frac{L_{max} \cdot (1 - \frac{1}{2^{r_{max}}})^m - 1 - 1}{1 - \frac{1}{2^{r_{max}}})^r \cdot N_r^{BS}},$$

(25)

When $2^{L_{max}} = m$, FSA-CSS algorithm consumes the least number of slots to identify m tags. When $2^{L_{max}} = m$ and $m \rightarrow \infty$, the Eq. (25) can be further expressed as

$$N_r^{FSA-CSS} \approx 2^{L_{max}} + \frac{2^{L_{max}} \cdot m \cdot (1 - \frac{1}{2^{r_{max}}})^m - 1}{1 - \frac{1}{2^{r_{max}}})^r \cdot N_r^{BS}}$$

$$\approx L_{max} + \frac{2^{L_{max}} \cdot m \cdot (1 - \frac{1}{2^{r_{max}}})^m - 1}{1 - \frac{1}{2^{r_{max}}})^r \cdot N_r^{BS}}$$

$$\approx 2.212 m.$$

(26)

According to Eqs. (4) and (26), the Result 2 can be yielded.

REFERENCES

