Ultra-broadband terahertz coherent detection via a silicon nitride-based deep sub-wavelength metallic slit

Tomasino, Alessandro, Piccoli, Riccardo, Jestin, Yoann, Delprat, Sebastien, Chaker, Mohamed, Peccianti, Marco, Clerici, Matteo, Busacca, Alessandro, Razzari, Luca and Morandotti, Roberto (2018) Ultra-broadband terahertz coherent detection via a silicon nitride-based deep sub-wavelength metallic slit. APL Photonics, 3 (11). p. 110805. ISSN 2378-0967

[img] PDF - Published Version
Available under License Creative Commons Attribution.

Download (1MB)

Abstract

We present a novel class of CMOS-compatible devices aimed to perform the solid-state-biased coherent detection of ultrashort terahertz pulses, i.e. featuring a gap-free bandwidth at least two decades-wide. Such a structure relies on a 1-µm-wide slit aperture located between two parallel aluminum pads, embedded in a 1-µm-thick layer of silicon nitride, and deposited on a quartz substrate. We show that this device can detect ultra-broadband terahertz pulses by employing unprecedented low optical probe energies of only a few tens of nanojoules. This is due to the more than one order of magnitude higher nonlinear coefficient of silicon nitride with respect to silica, the nonlinear material employed in the previous generations. In addition, due to the reduced distance between the aluminum pads, very high static electric fields can be generated within the slit by applying extremely low external bias voltages (in the order of few tens of volts), which strongly enhance the dynamic range of the detected THz waveforms. These results pave the way to the integration of solid-state ultra-broadband detection in compact and miniaturized terahertz systems fed by high repetition-rate laser oscillators and low-noise, low-voltage generators.

Item Type: Article
Schools and Departments: School of Mathematical and Physical Sciences > Physics and Astronomy
Research Centres and Groups: Sussex Centre for Quantum Technologies
Subjects: Q Science > QC Physics > QC0350 Optics. Light > QC0395 Physical optics
Q Science > QC Physics > QC0350 Optics. Light > QC0395 Physical optics > QC0446.2 Nonlinear optics. Quantum optics
Q Science > QC Physics > QC0350 Optics. Light > QC0450 Spectroscopy > QC0454.T47 Terahertz spectroscopy
T Technology > TA Engineering (General). Civil engineering (General) > TA1501 Applied optics. Photonics
Depositing User: Marco Peccianti
Date Deposited: 14 Nov 2018 13:04
Last Modified: 02 Jul 2019 13:46
URI: http://sro.sussex.ac.uk/id/eprint/79694

View download statistics for this item

📧 Request an update
Project NameSussex Project NumberFunderFunder Ref
UK Quantum Technology Hub for Sensors and MetrologyG1511EPSRC-ENGINEERING & PHYSICAL SCIENCES RESEARCH COUNCILEP/M013294/1