Functionalization of silver nanowire transparent electrodes with self-assembled 2-dimensional tectomer nanosheets

Article (Supplemental Material)

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/79489/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

http://sro.sussex.ac.uk
SUPPORTING INFORMATION

FOR

Functionalization of Silver Nanowire Transparent Electrodes with
Self-Assembled 2-Dimensional Tectomer Nanosheets

Izabela Jurewicz¹*, Rosa Garriga², Matthew J. Large³, Jake Burn¹, Niki Bardi¹, Alice A.K. King³, Eirini G. Velliou⁴, John F. Watts⁵, Steven Hinder⁵, Edgar Muñoz⁶*, Alan B. Dalton³

¹Department of Physics, Faculty of Engineering & Physical Sciences, University of Surrey, Guildford GU2 7XH, UK

²Departamento de Química Física, Universidad de Zaragoza, 50009 Zaragoza, Spain

³Department of Physics, University of Sussex, Brighton, BN1 9RH, UK

⁴Bioprocess and Biochemical Engineering group (BioProChem), Department of Chemical and Process Engineering, Faculty of Engineering & Physical Sciences, University of Surrey, Guildford, GU2 7XH, UK

⁵The Surface Analysis Laboratory, Department of Mechanical Engineering Sciences, University of Surrey, Guildford GU2 7XH, UK

⁶Instituto de Carboquímica ICB-CSIC, Miguel Luesma Castán 4, 50018 Zaragoza, Spain

* Corresponding authors: izabela.jurewicz@surrey.ac.uk, edgar@icb.csic.es
Figure S1. (a) XPS survey spectra and (b) high resolution XPS N1s spectra of AgNWs, showing a very low N1s signal, almost at the noise level, indicating very low presence of polyvinylpyrrolidone (PVP) on the nanowire surface. (Inset: chemical structure of PVP, typically used as capping agent in AgNW fabrication. PVP adsorbed on the AgNW surface acts as electrical insulating barrier at wire-wire junctions, therefore for best performing electrodes this polymer layer should be removed).1,2

Figure S2. TEM micrographs of AgNWs studied in this work, showing a discontinuous extremely thin PVP layer of thickness ≤ 1 nm, as low as that obtained after removal procedures reported in the literature.1,2

REFERENCES