The X-ray structure of human calbindin-D28K: an improved model

Article (Supplemental Material)

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/79457/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.
Supporting information for article:

The X-ray structure of human calbindin-D28K: an improved model

James W. Noble, Rehab Almalki, Stephen M. Roe, Armin Wagner, Ramona Duman and John R. Atack
Figure S1 Anomalous Fourier map and heavy atoms computed with ANODE (Thorn & Sheldrick, 2011). Only the calcium binding EF hands contain strong peaks in the Fourier synthesis, allowing the direct visualization of the calcium atoms from crystal condition 1. EF hand 1, 3, 4 and 5 contain calcium with EF1 having two strong peaks indicating it binding calcium in two different conformations.
Figure S2 This figure is colour coded, blue APO and pink for calcium bound Calbindin-D28K A. Log10 SAXS intensity versus scattering vector, q. Plotted range represents the positive only data within the specified q-range. B. Pair-distance, P(r), distribution function. Maximum dimension, d_{max}, is the largest non-negative value that supports a smooth distribution function. The Guinier fitting for both data sets are also shown. C. Dimensionless Kratky plot. Cross-hair marks the Guinier-Kratky point (1.732, 1.1), the main peak position for globular particles. D. *Ab initio* envelopes with 6FIE superimposed.