University of Sussex
Browse
Fritz, Christopher.pdf (2.75 MB)

Aspects of non-locality in gravity

Download (2.75 MB)
thesis
posted on 2023-06-09, 15:20 authored by Christopher Fritz
Since the beginning of the 20th century, much time and effort has been invested in the search for a theory of quantum gravity. While this provided a myriad of possibilities, it has so far failed to find a definitive answer. Here we take an alternative approach: instead of constructing a theory of quantum gravity and examining its low energy limit, we start with the conventional theory and ask what are the first deviations induced by a possible quantization of gravity. It is proposed that in this limit quantum gravity, whatever the ultimate theory might be, manifests itself as non-locality. In this thesis are explored two different approaches to effective theories. In the first, it is demonstrated how combining quantum field theory with general relativity naturally gives rise to non-locality. This is explored in the context of inflation, a natural place to look for high energy phenomena. By considering a simple scalar field theory, it is shown how non-locality results in higher dimensional operators and what the effects are on inflationary models. The second approach looks at a theory which naturally incorporates a minimal scale. Noncommutative geometry parallels the phase space or deformation quantization approach of quantum mechanics. It supposes that at short scales, the structure of spacetime is algebraic rather than geometric. In the first instance, we follow the first section and look at cosmological implications by replacing normal scalar theory with its noncommutative counterpart. In the second, we take a step back and examine the implications of quantization on the differential geometry. The formalism is developed and applied to generic spherically symmetric spacetimes where it is shown that to first order in deformation, the quantization is unique

History

File Version

  • Published version

Pages

117.0

Department affiliated with

  • Physics and Astronomy Theses

Qualification level

  • doctoral

Qualification name

  • phd

Language

  • eng

Institution

University of Sussex

Full text available

  • Yes

Legacy Posted Date

2018-10-11

Usage metrics

    University of Sussex (Theses)

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC