
Kernel-based discretisation for solving matrix-valued PDEs
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KERNEL-BASED DISCRETISATION FOR SOLVING
MATRIX-VALUED PDES

PETER GIESL � AND HOLGER WENDLAND y

Abstract. In this paper, we discuss the numerical solution of certain matrix-valued partial
di�erential equations. Such PDEs arise, for example, when constructing a Riemannian contraction
metric for a dynamical system given by an autonomous ODE. We develop and analyse a new meshfree
discretisation scheme using kernel-based approximation spaces. However, since these approximation
spaces have now to be matrix-valued, the kernels we need to use are fourth order tensors. We
will review and extend recent results on even more general reproducing kernel Hilbert spaces. We
will then apply this general theory to solve a matrix-valued PDE and derive error estimates for
the approximate solution. The paper ends with applications to typical examples from dynamical
systems.

Keywords. Meshfree Methods, Radial Basis Functions, Autonomous Systems, Contraction
Metric.

AMS subject classi�cations. 65N35, 65N15, 37B25, 37M99

1. Introduction. Kernel-based discretisation methods provide an extremely

exible, general framework to approximate the solution to even rather unconven-
tional problems (see for example [7, 5, 47, 13, 15, 39]). They are meshfree methods,
requiring only a discrete data set for discretising the underlying domain. Since the
kernel can be chosen problem dependent, it is very easy to construct in particular
smooth approximation spaces and high order methods.

Kernel-based methods have extensively been used for solving partial di�erential
equations (see for example [17, 28, 14, 46]). They have been used in the context of
dynamical systems for constructing Lyapunov functions ([19, 24]) and they also play
a key role in learning theory ([10, 11, 35, 40, 43, 41]) and high-dimensional integration
(see for example [12]) and many other areas.

Our main motivation for extending these methods to solving matrix-valued PDEs
is the following application from the theory of dynamical systems. We consider the
autonomous ODE

_x = f (x) (1.1)

where f 2 C1(Rn ; Rn ). The solution x(t) with initial condition x(0) = � is denoted
by x(t) =: St � and is assumed to exist for allt � 0. A set G � Rn is called positively
invariant if St G � G for all t � 0.

We are interested in the existence, uniqueness and exponential stability of an
equilibrium, as well as the determination of its basin of attraction. An equilibrium
is a point x0 2 Rn such that f (x0) = 0 and its basin of attraction is de�ned by
A(x0) = f x 2 Rn j lim t !1 St x = x0g.

If the equilibrium is known, then Lyapunov functions are one way of analysing
the basin of attraction of the equilibrium as well as its basin of attraction, see the
recent survey article [23] for constructing such Lyapunov functions. A di�erent way of
studying stability and the basin of attraction, which does not require any knowledge
about the equilibrium and which is also robust with respect to perturbations of the
ODE uses contraction metrics.
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yApplied and Numerical Analysis, Department of Mathematics, University of Bayreuth, 95440
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A Riemannian contraction metric is a matrix-valued function M : Rn ! Rn � n ,
such that M (x) is symmetric and positive de�nite for every x. It de�nes a (point-
dependent) scalar product onRn by hv; wi M (x ) = vT M (x)w. For M to be a contrac-
tion metric, we require the distance between adjacent solutions of (1.1) to decrease
with respect to such a contraction metric. This can be expressed by the negative
de�niteness of

F (M )(x) := Df (x)T M (x) + M (x)Df (x) + M 0(x); (1.2)

see Theorem 1.1 below. Here,Df is the matrix of �rst-order deriviatives of f and
M 0 denotes the so-called orbital derivative, i.e. it is component-wise de�ned to be
(M 0(x)) ij = r M (x) ij � f (x). The existence of a contraction metric in a certain setG
gives information about the basin of attraction of a unique equilibrium in G.

Theorem 1.1 ( [20]). Let ; 6= G � Rn be a compact, connected and positively
invariant set and M be a Riemannian contraction metric in G, i.e.

� M 2 C1(G; Rn � n ), such that M (x) is symmetric and positive de�nite for all
x 2 G.

� F (M )(x) is negative de�nite for all x 2 G.
Then there exists one and only one equilibriumx0 in G; x0 is exponentially stable and
G is a subset of the basin of attractionA(x0).

The di�culty of this approach is to constructively �nd such a contraction metric.
In [20], a contraction metric is characterised as the solution of a �rst-order PDE of
the form F (M )(x) = � C for all x 2 A(x0), where C 2 Rn � n is a given constant,
symmetric and positive de�nite matrix.

As we do not know A(x0) in advance, we thus seek to reconstruct the matrix-
valued function M : 
 � Rn ! Rn � n from the matrix-valued PDE

F (M )(x) = � C; x 2 
 � Rn ; (1.3)

where 
 � Rn is a given, su�ciently large domain. We then need to ensure that the
solution M is also symmetric and positive de�nite.

In the accompanying paper [25], we will prove the theoretical results required in
the dynamical system context. In this paper, however, we will concentrate on deriving
the numerical framework for discretising even more general PDEs of the form

F (M )(x) = � C(x); x 2 
 ; (1.4)

where F is not necessarily of the form (1.2) but can be a rather general di�erential
operator which maps matrix-valued Sobolev functions of order� to matrix-valued
Sobolev functions of order� and C is a smooth, not necessarily constant matrix-
valued function.

Other applications for matrix-valued valued PDEs arise, e.g., in image processing,
in particular magnetic resonance imaging in the medical sciences [8]. While many
models rely on nonlinear PDEs [9], in [44] linear matrix-valued di�usion techniques
are compared to nonlinear improvements. For a study of linear matrix-valued PDEs
from a theoretical point of view see [34].

The paper is organised as follows. In Section 2 we will review and extend results
on optimal recovery in general reproducing kernel Hilbert spaces, going far beyond
the usual de�nition. In Section 3 we will employ these general results in the concrete
situation of reproducing kernel Hilbert spaces of matrix-valued functions which are
also Sobolev spaces. In Section 4 we will derive error estimates for the optimal recovery
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processes of solutions to (1.4). Section 5 then deals with the application to the above
mentioned problem to construct a contraction metric for an autonomous system by
solving (1.3). The �nal section gives numerical examples.

2. Optimal Recovery in Reproducing Kernel Hilbert Spaces. Reproduc-
ing kernel Hilbert Spaces (RKHS) have �rst been introduced to describe real-valued
functions f : 
 ! R on a domain 
 � Rd (see for example [2]). They require a
kernel � : 
 � 
 ! R with the reproduction property f (x) = hf; �( �; x)i H for
f 2 H , x 2 
 where H denotes a Hilbert space of functionsf : 
 ! R. Later,
so-called matrix-valued kernels � : 
 � 
 ! Rn � n with the reproduction property
f (x)T � = hf; �( �; x)� i H , have been introduced to recover vector-valued functions
f : 
 ! Rn where H denotes a Hilbert space of functions 
 ! Rn and � 2 Rn is an
arbitrary vector (see for example [1, 4, 18, 33, 36, 48]).

In this paper, we are interested in reproducing kernel Hilbert spaces of matrix-
valued functions. While it is possible to describe such Hilbert spaces using vector-
valued functions, it is, in particular when it comes to the consideration of subspaces,
much cleaner to take a broader point of view and employ a more general approach,
which we will shortly describe now. More details and applications in learning theory
can, for example, be found in [35] and the literature therein.

Let W be a real Hilbert space and denote the linear space of all linear and bounded
operators L : W ! W by L(W ). For any L 2 L (W ), we will denote the adjoint
operator by L � 2 L (W ). Let 
 � Rd be a given domain and letH (
; W ) be a Hilbert
space ofW -valued functions f : 
 ! W .

Definition 2.1. The Hilbert space H(
; W ) is called a reproducing kernel
Hilbert space (RKHS) if there is a function � : 
 � 
 ! L (W ) with

1. �( �; x)� 2 H (
; W ) for all x 2 
 and all � 2 W .
2. hf (x); � i W = hf; �( �; x)� i H for all f 2 H (
; W ), all x 2 
 and all � 2 W .

The function � is called thereproducing kernel of H (
; W ).
The following results are proven as in the real-valued case, see [35] for details.
Lemma 2.2.
1. The reproducing kernel� of a Hilbert spaceH(
; W ) is uniquely determined.
2. The reproducing kernel satis�es �( x; y) � = �( y; x) for all x; y 2 
 .
3. The reproducing kernel is positive semi-de�nite, i.e. it satis�es

NX

i;j =1

h� i ; �( x i ; x j )� j i W � 0

for all x1; : : : ; xN 2 
 and all � 1; : : : ; � N 2 W .
If the functions �( �; x j )� j are linearly independent, the kernel is even positive

de�nite in the sense of the following de�nition.
Definition 2.3. A kernel � : 
 � 
 ! L (W ) which satis�es �( x; y) � = �( y; x)

for all x; y 2 
 is called positive de�nite if for all N 2 N, for all x1; : : : ; xN 2 
 ,
pairwise distinct, and for all � 1; : : : ; � N 2 W , not all of them zero, we have

NX

i;j =1

h� i ; �( x i ; x j )� j i W > 0:

As usual in the theory of reproducing kernel Hilbert spaces, it is also possible to
start with a kernel and to build its Hilbert space from scratch. This is done as
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follows. Suppose we have a positive de�nite kernel � : 
 � 
 ! L (W ) as in De�nition
2.3. Then, we can form the space

F � (
; W ) = span f �( �; x)� : x 2 
 ; � 2 W g

and equip this space with an inner product de�ned by

h�( �; x)�; �( �; y)� i � := h�( x; y)�; � i W :

The closure ofF � (
; W ) with respect to the norm induced by this inner product is
then the corresponding Hilbert spaceH(
; W ) for which � is the reproducing kernel.

Within this general framework, we now want to discuss the more general concept
of optimal recovery. Hence, letH (
; W ) be our reproducing kernel Hilbert space with
reproducing kernel � : 
 � 
 ! L (W ). As usual, we denote the dual ofH (
; W ) by
H(
; W ) � .

Definition 2.4. Given N linearly independent functionals � 1; : : : ; � N 2
H(
; W ) � and N values f 1 = � 1(f ); : : : ; f N = � N (f ) 2 R generated by an element
f 2 H (
; W ). The optimal recovery of f based on this information is de�ned to be
the elements� 2 H (
; W ) which solves

min fk skH : s 2 H (
; W ) with � j (s) = f j ; 1 � j � N g:

The solution to this minimisation problem is well-known and follows directly from
standard Hilbert space theory; it works in any Hilbert space, not only in reproducing
kernel Hilbert spaces. We quote the following result from [47, Theorem 16.1]:

Theorem 2.5. Let H be a Hilbert space. Let� 1; : : : ; � N 2 H � be linearly inde-
pendent linear functionals with Riesz representersv1; : : : ; vN 2 H . Then the element
s� 2 H which solves

minfk skH : s 2 H with � j (s) = f j ; 1 � j � N g

is given by

s� =
NX

k=1

� k vk ;

where the coe�cients � k 2 R are determined by the generalised interpolation condi-
tions � i (s� ) = f i , 1 � i � N , which lead to the linear systemA � � = f with the
positive de�nite matrix A � = ( aik ) having entries aik = � i (vk ) = hvk ; vi i H .

If we want to to apply this general result to our speci�c situation H = H(
; W )
then we need to know the Riesz representers of the functionals� 2 H (
; W ) � . In the
case of a separable Hilbert spaceW the Riesz representers are given as stated in the
next Proposition.

Proposition 2.6. Assume that the Hilbert spaceW is separable and that
f � j gj 2 J is an orthonormal basis ofW . Then, the Riesz representer of a functional
� 2 H (
; W ) � is given by

v� (x) =
X

j 2 J

� (�( �; x)� j )� j ; x 2 
 :
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Proof. Since v� (x) 2 W for every x 2 
 and since f � j gj 2 J is an orthonormal
basis ofW , we can expandv� (x) within this basis using its Fourier representation

v� (x) =
X

j 2 J

hv� (x); � j i W � j :

The result then follows immediately from the reproducing kernel property:

hv� (x); � j i W = hv� ; �( �; x)� j i H = h�( �; x)� j ; v� i H = � (�( �; x)� j ):

Thus, the optimal recovery problem can be recast as a linear system. From now
on, we will write � y (�( y; x)� ) to indicate that the functional � acts on the variabley
of the kernel.

Corollary 2.7. Assume that f � j gj 2 J is an orthonormal basis of W . The
solution of the minimisation problem of Theorem 2.5 is given by

s� =
NX

k=1

� k

X

j 2 J

� y
k (�( y; �)� j )� j ;

and the coe�cients � k 2 R are determined by

NX

k=1

� x
i

2

4� y
k

X

j 2 J

(�( y; x)� j ) � j

3

5 � k = f i ; 1 � i � N:

3. Matrix-Valued Theory. After establishing the general theory, we will, in
this section, consider special cases to which we will apply the main result of the
previous section stated in Corollary 2.7.

To be more precise, we will chooseW to be the spaceRn � n of real-valued n � n
matrices or its subspaceSn � n of symmetric matrices. Moreover, we will consider
speci�c RKHS spaces, namely matrix-valued Sobolev spacesH � (
; Sn � n ), where the
kernel is built from the kernel of the corresponding real-valued Sobolev space. The
next section is then devoted to speci�c functionals and an error analysis.

We start this section by setting W = Rn � n or W = Sn � n , the space of all
symmetric n � n matrices. On W we de�ne the following inner product to make it a
Hilbert space.

h�; � i W =
nX

i;j =1

� ij � ij = tr( �� T ); � = ( � ij ); � = ( � ij ): (3.1)

According to the general theory of the last section, a kernel � is now a mapping
� : 
 � 
 ! L (Rn � n ) and can be represented by a tensor of order 4. To this end, we
will write � = (� ijk` ) and de�ne its action on � 2 Rn � n by

(�( x; y)� ) ij =
nX

k;` =1

�( x; y) ijk` � k` : (3.2)

By the second statement of Lemma 2.2, a necessary requirement for the kernel is
the adjoint condition h�( x; y)�; � i W = h�; �( y; x)� i W , which means in the given
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situation

nX

i;j =1

nX

k;` =1

�( x; y) ijk` � k` � ij =
nX

i;j =1

nX

k;` =1

�( y; x) ijk` � ij � k`

=
nX

i;j =1

nX

k;` =1

�( y; x)k`ij � k` � ij :

Hence, we require our tensor kernel to satisfy

�( x; y) ijk` = �( y; x)k`ij : (3.3)

This will motivate the choice of a kernel in (3.6) later on. The kernel � is positive
de�nite, see De�nition 2.3, if

NX

�;� =1

h� ( � ) ; �( x � ; x � )� ( � ) i W =
NX

�;� =1

nX

i;j =1

nX

k;` =1

�( x � ; x � ) ijk` � ( � )
ij � ( � )

k` � 0 (3.4)

and the sum is positive if not all of the � ( � ) are zero. The associated reproducing
kernel Hilbert spaceH(
; W ) = H(
; Rn � n ) consists of matrix-valued functions.

Finally, for a given functional � 2 H (
; Rn � n ) � , we can write its Riesz representer
as follows. LetE �� 2 Rn � n be the matrix with value 1 at position ( �; � ) and value zero
everywhere else. Then,f E �� : 1 � �; � � ng is an orthonormal basis ofW = Rn � n

and the Riesz representer of� hence becomes, by Proposition 2.6,

v� (x) =
nX

�;� =1

� (�( �; x)E �� )E �� ; x 2 
 :

In the case of symmetric matrices, we can proceed quite similarly. However, we need
to consider a di�erent orthonormal basis, namely f E s

�� : 1 � � � � � ng. We de�ne
E s

�� to be the matrix with value 1 at position ( �; � ) and value zero everywhere else.
For � < � , we de�ne E s

�� to be the matrix with value 1 =
p

2 at positions (�; � ) and
(�; � ) and value zero everywhere else. It is easy to see thatf E s

�� : 1 � � � � � ng is
an orthonormal basis ofW = Sn � n .

For a given functional � 2 H (
; Sn � n ) � , the Riesz representer of� is, by Propo-
sition 2.6, hence given by

v� (x) =
X

1� � � � � n

� (�( �; x)E s
�� )E s

�� ; x 2 
 : (3.5)

In the following, we will be concerned with speci�c functionals de�ned on speci�c
reproducing kernel Hilbert spaces. We end this section with discussing the spaces.
The functionals will be subject of the next section.

Throughout this paper, we will assume that H � (
) denotes the Sobolev space of
order � > d= 2, where the weak derivatives are measured in theL 2(
)-norm. However,
� does not necessarily have to be an integer and the space can then be de�ned,
for example, by interpolation. We will always assume that � > d= 2 such that the
Sobolev embedding theorem yieldsH � (
) � C(
) which particularly means that
H � (
) has a reproducing kernel. The kernel is uniquely determined by the inner
product. However, it is possible to de�ne equivalent norms onH � (
) using other
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inner products. This then leads to other reproducing kernels. Examples of such kernels
comprise the Sobolev (or Mat�ern) kernels and Wendland's radial basis functions (see
[13, 45, 38]). We will also assume that 
 � Rd is a bounded domain with a boundary
which is at least Lipschitz continuous.

Definition 3.1. Let 
 � Rd and � > d= 2 be given. Then, the matrix-valued
Sobolev spaceH � (
; Rn � n ) consists of all matrix-valued functions M having each
component M ij in H � (
) . Similarly, the Sobolev spaceH � (
; Sn � n ) consists of all
symmetric matrix-valued functions M having each componentM ij in H � (
) .

H � (
; Rn � n ) and H � (
; Sn � n ) are Hilbert spaces with inner product given by

hM; S i H � (
; Rn � n ) :=
nX

i;j =1

hM ij ; Sij i H � (
) ;

the same inner product can be used forH � (
; Sn � n ). They are also reproducing
kernel Hilbert spaces. The next result shows that a reproducing kernel of such a
space can simply be given by using adiagonal kernel.

Lemma 3.2. Let 
 � Rd and � > d= 2 be given. Assume that� : 
 � 
 ! R
is a reproducing kernel of H � (
) . Then, H � (
; Rn � n ) and H � (
; Sn � n ) are also
reproducing kernel Hilbert spaces with reproducing kernel� de�ned by

�( x; y) ijk` := � (x; y)� ik � j` (3.6)

for x; y 2 
 and 1 � i; j; k; ` � n.
Proof. We have to verify the two de�ning properties of a reproducing kernel given

in De�nition 2.1. First of all, we obviously have �( �; x)� 2 H � (
; Rn � n ) for all x 2 

and all � 2 Rn � n since

(�( �; x)� ) ij =
nX

k;` =1

�( �; x) ijk` � k` =
nX

k;` =1

� (�; x)� ik � j` � k` = � (�; x)� ij

and � is a reproducing kernel of H � (
). For H � (
; Sn � n ), note that �( �; x)� is
symmetric if � is symmetric.

Secondly, we have the reproduction property. If once again� 2 Rn � n and f 2
H � (
; Rn � n ) then the computation just made shows

hf; �( �; x)� i H � (
; Rn � n ) =
nX

i;j =1

hf ij ; (�( �; x)� ) ij i H � (
)

=
nX

i;j =1

hf ij ; � (�; x)� ij i H � (
)

=
nX

i;j =1

� ij f ij (x) = hf (x); � i Rn � n ;

using the reproduction property of � in H � (
). The proof for H � (
; Sn � n ) is the
same.

Corollary 3.3. Let the assumptions of Lemma 3.2 hold with a positive de�nite
kernel � : 
 � 
 ! R. Then, also the tensor-valued kernel� is positive de�nite.
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Proof. The kernel is positive de�nite in the sense of (3.4), since we have

NX

�;� =1

nX

i;j =1

nX

k;` =1

�( x � ; x � ) ijk` � ( � )
ij � ( � )

k` =
NX

�;� =1

nX

i;j =1

nX

k;` =1

� (x � ; x � )� ik � j` � ( � )
ij � ( � )

k`

=
nX

i;j =1

NX

�;� =1

� (x � ; x � )� ( � )
ij � ( � )

ij � 0

and at least one of the inner sums is positive.

4. Error Analysis of the Reconstruction Process. After having speci�ed
the reproducing kernel Hilbert spaces in the last section, we will now analyse the error
of the reconstruction process of Theorem 2.5 in this speci�c setting. To this end, we
have to de�ne the relevant functionals on H � (
; Rn � n ) and H � (
; Sn � n ) that we
are interested in. Note that using a kernel of the form (3.6) together with point
evaluations would simply lead to a component-wise treatment. In such a situation,
dealing with each component separately would be more e�cient. Here, however, we
are interested in the following situation. SupposeF : H � (
; Rn � n ) ! H � (
; Rn � n )
(or F : H � (
; Sn � n ) ! H � (
; Sn � n )) is a linear and bounded map, i.e. there is a
constant C > 0 such that

kF (M )kH � (
; Rn � n ) � CkM kH � (
; Rn � n ) ; M 2 H � (
; Rn � n ):

Suppose further that � > d= 2 so that F (M ) 2 C(
; Rn � n ) is continuous. Then, we
can de�ne functionals of the form

� ( i;j )
k (M ) = eT

i F (M )(xk )ej

for 1 � i; j � n (or 1 � i � j � n for Sn � n ) and 1 � k � N , where X = f x1; : : : ; xN g
is a given discrete point set in 
. We will specify the mapping F later on but we can
derive a general theory using just these assumptions.

To derive our error estimates, we will follow general ideas from scattered data
approximation. In particular, we will measure the error in terms of the so-called �ll
distance or mesh norm

hX; 
 := sup
x 2 


min
x i 2 X

kx � x i k2:

This means that we can derive the classical error estimates based upon sampling
inequalities also in this case. We will require the following result (see [37]).

Lemma 4.1. Let 
 � Rd be a bounded domain with Lipschitz continuous bound-
ary. Let � > d= 2 and let X = f x1; : : : ; xN g � 
 . If f 2 H � (
) vanishes onX , then
there is a constantC > 0 independent ofX and f such that

kf kL 1 (
) � Ch� � d=2
X; 
 kf kH � (
) :

We can now use this result component-wise to derive estimates for the matrix-
valued set-up. We will do this immediately for the situation we are interested in,
which gives our �rst main result of this paper.

Theorem 4.2. Let 
 � Rd be a bounded domain with Lipschitz continuous
boundary. Let either W = Rn � n or W = Sn � n . Let �; � > d= 2 be given andF :
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H � (
; W ) ! H � (
; W ) be linear and bounded. Finally, letX = f x1; : : : ; xN g � 

be given and let

� ( i;j )
k (M ) := eT

i F (M )(xk )ej ; 1 � k � N;

(
1 � i; j � n if W = Rn � n ;
1 � i � j � n if W = Sn � n :

Then each� ( i;j )
k belongs to the dual ofH � (
; W ).

Let us further assume that the functionals are linearly independent. IfS denotes
the optimal recovery of M 2 H � (
; W ) in the sense of De�nition 2.4 using these
functionals and a reproducing kernel ofH � (
; W ) then

kF (M ) � F (S)kL 1 (
; Rn � n ) � Ch� � d=2
X; 
 kM kH � (
; Rn � n ) ;

where kAkL 1 (
; Rn � n ) = max i;j =1 ;:::;n kaij kL 1 (
) .
Proof. We only consider the caseW = Rn � n as the proof for W = Sn � n is

essentially the same. Obviously, the� ( i;j )
k are linear. Because of our assumptions,

F (M ) is indeed continuous by the Sobolev embedding theorem, i.e. the functionals
are well-de�ned. Furthermore,

j� ( i;j )
k (M )j � CkF (M )kH � (
; Rn � n ) � CkM kH � (
; Rn � n ) ; M 2 H � (
; Rn � n );

by the Sobolev embedding theorem and by the continuity ofF . This means that all
functionals indeed belong to the dual ofH � (
; Rn � n ).

For the error estimate we note that the matrix-valued function F (M ) � F (S) 2
H � (
; Rn � n ) vanishes on the data setX . Hence, we can apply Lemma 4.1 to each
component ofF (M ) � F (S) yielding

kF (M ) � F (S)kL 1 (
; Rn � n ) � Ch� � d=2
X; 
 kF (M � S)kH � (
; Rn � n )

� Ch� � d=2
X; 
 kM � SkH � (
; Rn � n )

� Ch� � d=2
X; 
 kM kH � (
; Rn � n ) ;

using also the continuity of F and the fact that S is the H � (
; Rn � n ) optimal recovery
of M .

To show linear independence, we follow the scalar-valued case [24] and de�ne
singular points for a general linear di�erential operator F , mapping matrix-valued
functions to matrix-valued functions. We will then apply the rather general result of
Theorem 4.2 to a particular class of operatorsF .

Definition 4.3. Let n; d 2 N, 
 � Rd, � > m + d=2 and � = � � m. Let
W = Rn � n or W = Sn � n . Let F : H � (
; W ) ! H � (
; W ) be a di�erential operator
of degreem of the form

F (M )(x) =
X

j � j� m

c� (x)[D � M (x)]

where D � is applied component-wise andc� : 
 ! L (W ) is such that x 7!
c� (x)[D � M (x)] 2 H � (
; W ) for every M 2 H � (
; W ).

We de�ne x to be asingular point of F if for all j� j � m the linear map c� (x) is
not invertible.

In the next lemma we will show symmetry properties for F , de�ned on the sym-
metric matrices, which will later be needed for explicit calculations.
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Lemma 4.4. Assume that F : H � (
; Sn � n ) ! H � (
; Sn � n ) is a di�erential
operator as in De�nition 4.3, i.e. in particular c� (x)(M ) 2 Sn � n for M 2 Sn � n .
Assume furthermore that the kernel �( x; y) ijk` = � (x; y)� ik � j` from (3.6) is used.
Then

F (�( �; x) � ;� ;�;� ) ij = F (�( �; x) � ;� ;�;� ) ji : (4.1)

Proof. The linear map c� (x) can, similar to (3.2), be described by a tensor of
order 4, i.e.

(c� (x)(M )) ij =
nX

k;` =1

c� (x) ijk` M k` : (4.2)

We show that we can assume

c� (x) ijk` = c� (x) ij`k (4.3)

for all x 2 
 without loss of generality. Indeed, let c� be given satisfying (4.2) and
de�ne ~c� by

~c� (x) ijk` :=
1
2

(c� (x) ijk` + c� (x) ij`k ) :

It is clear that ~c satis�es (4.3) and we also have, usingM 2 Sn � n ,

nX

k;` =1

~c� (x) ijk` M k` =
nX

k=1

~c� (x) ijkk M kk +
X

1� k<` � n

~c� (x) ijk` [M k` + M `k ]

=
nX

k=1

c� (x) ijkk M kk + 2
X

1� k<` � n

~c� (x) ijk` M k`

=
nX

k=1

c� (x) ijkk M kk +
X

1� k<` � n

(c� (x) ijk` + c� (x) ij`k ) M k`

=
nX

k;` =1

c� (x) ijk` M k` = ( c� (x)(M )) ij :

For M 2 Sn � n we havec� (x)(M ) 2 Sn � n and hence

nX

k;` =1

c� (x) ijk` M k` = ( c� (x)(M )) ij = ( c� (x)(M )) ji =
nX

k;` =1

c� (x) jik` M k`

=
nX

k;` =1

c� (x) jik` M `k =
nX

k;` =1

c� (x) ji`k M k`

as M 2 Sn � n . ChoosingM = E s
�� to be a basis \vector" of Sn � n shows, using (4.3),

nX

k;` =1

c� (x) ijk` (E s
�� )k` =

1
p

2
[c� (x) ij�� + c� (x) ij�� ] =

p
2c� (x) ij�� ;

nX

k;` =1

c� (x) ji`k (E s
�� )k` =

1
p

2
[c� (x) ji�� + c� (x) ji�� ] =

p
2c� (x) ji�� ;
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i.e.

c� (x) ijk` = c� (x) ji`k : (4.4)

For (4.1) note that

D � �( �; x) i;j;�;� = D � � (�; x)� i� � j�

so that

F (�( �; x) � ;� ;�;� ) ij =
X

j � j� m

D � � (�; x)
nX

k;` =1

c� (�) ijk` � k� � `� =
X

j � j� m

D � � (�; x)c� (�) ij��

=
X

j � j� m

D � � (�; x)c� (�) ji�� =
X

j � j� m

D � � (�; x)
nX

k;` =1

c� (�) jik` � k� � `�

= F (�( �; x) � ;� ;�;� ) ji ;

where we have used (4.4).
Proposition 4.5. Let � > m + d=2 and F be a linear di�erential operator F :

H � (
; Rn � n ) ! H � (
; Rn � n ) (F : H � (
; Sn � n ) ! H � (
; Sn � n )) as in De�nition
4.3. Let X = f x1; : : : ; xN g be a set of pairwise distinct points which are not singular
points of F . Then the functionals

� ( i;j )
k (M ) := eT

i F (M )(xk )ej ; 1 � k � N; 1 � i; j � n (1 � i � j � n):

are bounded and linearly independent overH � (
; Rn � n ) (H � (
; Sn � n )).
Proof. The boundedness of the functionals is clear from the assumptions. We will

prove the linear independence of the functionals overH � (
; Sn � n ). In Theorem 4.2,
we have already seen that the functionals belong to the dual ofH � (
; Sn � n ). Now
assume that

NX

k=1

X

1� i � j � n

d( i;j )
k � ( i;j )

k = 0

on H � (
; Sn � n ) with certain coe�cients d( i;j )
k . We need to show that all d( i;j )

k = 0.
To this end, let g 2 C1

0 (Rd; R) be a 
at bump function, i.e. a nonnegative,
compactly supported function with support B (0; 1), satisfying g(x) = 1 on B (0; 1=2).

Fix 1 � ` � N , as well asi � ; j � 2 f 1; : : : ; ng with i � � j � . Sincex ` is no singular
point of F there exists a minimal j� j � m such that c� (x ` ) is invertible. The function

g` (x) =
1
� !

(x � x ` ) � g
�

x � x `

qX

�
;

where qX denotes the separation distance ofX , then satis�es D � g` (xk ) = 0 for all
j� j � m and xk 6= x ` . Moreover, D � g` (x ` ) = 0 for � 6= � and D � g` (x ` ) = 1. Hence,
de�ning the matrix valued function G 2 H � (
; Sn � n ) by G(x) = g` (x)c� (x ` ) � 1E s

i � j � ,
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we have

0 =
NX

k=1

X

1� i � j � n

d( i;j )
k � ( i;j )

k (G)

=
NX

k=1

X

1� i � j � n

d( i;j )
k eT

i F (G)(xk )ej

=
NX

k=1

X

j � j� m

X

1� i � j � n

d( i;j )
k eT

i c� (xk )c� (x ` ) � 1E s
i � j � ej D � g` (xk )

=
X

1� i � j � n

d( i;j )
` eT

i c� (x ` )c� (x ` ) � 1E s
i � j � ej

= ci � ;j � d( i � ;j � )
` ;

where ci � ;j � = 1p
2

for i � 6= j � and ci � ;i � = 1. Since `; i � ; j � were chosen arbitrarily,
this shows the linear independence.

Now we consider a special type ofF , which will later arise in the application
within Dynamical Systems.

Theorem 4.6. Let 
 � Rd be a bounded domain with Lipschitz continous bound-
ary. Let � > d= 2 + 1 and let V 2 H � � 1(
; Rn � n ) and f 2 H � � 1(
; Rn ). De�ne
F : H � (
; Sn � n ) ! H � � 1(
; Sn � n ) by

F (M )(x) := V (x)T M (x) + M (x)V (x) + M 0(x);

where (M 0(x)) ij = r M ij (x) � f (x).
For each x0 2 
 with f (x0) = 0 (equilibrium point), we assume that all eigenval-

ues ofV (x0) have negative real part (positive real part).
Finally, let X = f x1; : : : ; xN g � 
 be a set of pairwise distinct points and let

� ( i;j )
k (M ) := eT

i F (M )(xk )ej ; 1 � k � N; 1 � i � j � n:

Then, each� ( i;j )
k belongs to the dual ofH � (
; Sn � n ) and they are linearly independent.

If S denotes the optimal recovery ofM 2 H � (
; Sn � n ) in the sense of De�nition 2.4
using these functionals, then

kF (M ) � F (S)kL 1 (
; Sn � n ) � Ch� � 1� d=2
X; 
 kM kH � (
; Sn � n ) :

Proof. The operator F is a di�erential operator of degree 1 as in De�nition 4.3
with

c0(x)(M ) = V(x)T M + MV (x);

cei (x)(M ) = f i (x)M:

We have x 7! c� (x)[D � M (x)] 2 H � � 1(
; Sn � n ) for every M 2 H � (
; Sn � n ). To
apply Proposition 4.5, we have to show that there are no singular points in 
.

Case 1: If f (x) 6= 0, then there is an i � 2 f 1; : : : ; ng with f i � (x) 6= 0 and hence
cei � (x) is invertible with cei � (x) � 1 = 1

f i (x ) id.
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Case 2: Iff (x) = 0, then by assumption V (x) ( � V (x)) has eigenvalues with only
negative real part. Then the so-called Lyapunov equation

V (x)T M + MV (x) = C (� C)

has a unique solution for everyC 2 Sn � n , see e.g. [29, Theorem 4.6], i.e. the operator
c0(x) is injective and, because it maps the �nite-dimensional spaceSn � n into itself,
also bijective.

The rest follows from the previous results, in particular Theorem 4.2 by setting
� = � � 1.

5. Contraction metric. In this section we will apply the previous general re-
sults to the ODE problem of constructing a contraction metric mentioned in the
introduction. We seek to show existence, uniqueness and exponential stability of an
equilibrium and to study its basin of attraction through a contraction metric.

Contraction analysis can be used to study the distance between trajectories, with-
out reference to an attractor, establishing (exponential) attraction of adjacent trajec-
tories, see [30, 26, 32], see also [22, Section 2.10]; it can be generalised to the study
of a Finsler-Lyapunov function [16].

If contraction to a trajectory through x occurs with respect to all adjacent trajec-
tories, then solutions converge to an equilibrium. If the attractor is, e.g., a periodic
orbit, then contraction cannot occur in the direction tangential to the trajectories.
Hence, contraction analysis for periodic orbits assumes contraction only to occur in a
suitable (n � 1)-dimensional subspace of the tangent space. Contraction metrics for
periodic orbits have been studied by Borg [6] with the Euclidean metric and Sten-
str•om [42] with a general Riemannian metric. Further results using a contraction
metric to establish existence, uniqueness, stability and information about the basin
of attraction of a periodic orbit have been obtained in [27, 31].

Only few converse theorems for contraction metrics have been obtained, establish-
ing the existence of a contraction metric, see [20] for some references. Constructive
converse theorems, providing algorithms for the explicit construction of a contrac-
tion metric, are given in [3] for the global stability of an equilibrium in polynomial
systems, using Linear Matrix Inequalities (LMI) and sums of squares (SOS). This
method is applicable to polynomial systems which are globally stable, i.e. the basin
of attraction is the whole phase space; the maximal degree of the polynomial for the
contraction metric has to be �xed beforehand and the method is slow if the degree
is large, however, it veri�es the de�niteness of the contraction metric. In contrast,
our method is applicable to general systems and can determine compact subsets of
the basin of attraction. The de�niteness of the constructed metric is guaranteed by
error estimates for su�ciently dense collocation points, but as these estimates involve
unknown quantities, we need to verify the de�niteness directly in applications.

An algorithm to construct a continuous piecewise a�ne (CPA) contraction metric
for periodic orbits in time-periodic systems using semi-de�nite optimization has been
proposed in [21]; this is a dynamically di�erent problem, but in comparable problems
meshfree collocation is more e�cient than semi-de�nite optimisation.

In [20], the existence of a contraction metric for an equilibrium was shown which
satis�es F (M ) = � C, where C is a given constant, symmetric and positive de�nite
matrix. In [25], summarised in the following theorem, we establish existence and
uniqueness of solutions of the more general matrix-valued PDE (5.1).

Theorem 5.1. Let f 2 Cs(Rn ; Rn ), s � 2. Let x0 be an exponentially stable
equilibrium of _x = f (x) with basin of attraction A(x0). Let Ci 2 Cs� 1(A(x0); Sn � n ),
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i = 1 ; 2, such that Ci (x) is a positive de�nite matrix for all x 2 A(x0). Then, for
i = 1 ; 2 the matrix equation

Df (x)T M i (x) + M i (x)Df (x) + M 0
i (x) = � Ci (x) (5.1)

has a unique solutionM i 2 Cs� 1(A(x0); Sn � n ).
Let K � A(x0) be a compact set. Then there is a constantc, independent ofM i

and Ci such that

kM 1 � M 2kL 1 (K ;Sn � n ) � ckC1 � C2kL 1 ( 
 + (K ); Sn � n )

where 
 + (K ) =
S

t � 0 St K .
Applied to M 1 = M and M 2 = S, the optimal recovery of M , the theorem shows

that if kF (M )(x) � F (S)(x)k � � for all x 2 
 + (K ), then kM (x) � S(x)k � c� for
all x 2 K . In particular, as M is positive de�nite in K , so isS, if � is small enough.
Note that for a positively invariant and compact set K we have
 + (K ) = K .

Let f 2 Cs(Rn ; Rn ), s � 2. In what follows, we will always have d = n. Let x0

be an exponentially stable equilibrium of _x = f (x) with basin of attraction A(x0).
Then, our strategy for constructing a Riemannian contraction metric is to choose a
symmetric and positive de�nite matrix C 2 Sn � n and to approximate the partial
di�erential equation

F (M )(x) := Df (x)T M (x) + M (x)Df (x) + M 0(x) = � C: (5.2)

using generalised collocation as described in the previous sections. This can be sum-
marised as follows. We setW = Sn � n to be the space of all symmetricn � n matrices
with inner product as in (3.1) and we de�ne H = H � (
; W ) to be the matrix-valued
Sobolev space of De�nition 3.1 with reproducing kernel � : 
 � 
 ! L (W ) as in
(3.6), where 
 � Rn will be chosen appropriately later on. Since the solution of the
matrix equation satis�es M 2 Cs� 1(A(x0); Sn � n ), we set � = s � 1. We then de�ne
the linear functionals � ( i;j )

k : H � (
; W ) ! R by

� ( i;j )
k (M ) = eT

i

�
Df (xk )T M (xk ) + M (xk )Df (xk ) + M 0(xk )

�
ej (5.3)

=: eT
i Fk (M )ej

= eT
i F (M )(xk )ej

for xk 2 
, 1 � k � N and 1 � i � j � n. Here, ei denotes once again thei th unit
vector in Rn .

Then, we can compute the solution S of the optimal recovery problem as in
De�nition 2.4. This gives the following result.

Theorem 5.2. Let � > n= 2 + 1, s = � + 1 and let � : 
 � 
 ! L (Sn � n ) be a
reproducing kernel of H � (
; Sn � n ). Let X = f x1; : : : ; xN g � 
 be pairwise distinct
points and let � ( i;j )

k 2 H � (
; Sn � n ) � , 1 � k � N and 1 � i � j � n be de�ned by
(5.3) with V := Df satisfying the conditions of Theorem 4.6. Then there is a unique
function S 2 H � (
; Sn � n ) solving

min
n

kM kH � (
; Sn � n ) : � ( i;j )
k (M ) = � Cij ; 1 � i � j � n; 1 � k � N

o
;

where C = ( Cij ) i;j =1 ;:::;n is a symmetric, positive de�nite matrix.
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It has the form

S(x) =
NX

k=1

X

1� i � j � n


 ( i;j )
k

X

1� � � � � n

� ( i;j )
k (�( �; x)E s

�� )E s
��

=
NX

k=1

X

1� i � j � n


 ( i;j )
k

� nX

� =1

Fk (�( �; x) � ;� ;�;� ) ij E ��

+
1
2

nX

�;� =1
� 6= �

[Fk (�( �; x) � ;� ;�;� ) ij + Fk (�( �; x) � ;� ;�;� ) ij ]E ��

�
; (5.4)

where the coe�cients 
 k = ( 
 ( i;j )
k )1� i � j � n are determined by � ( i;j )

` (S) = � Cij for
1 � i � j � n, 1 � ` � N .

If the kernel � is given by (3.6) then we also have the alternative expression

S(x) =
NX

k=1

nX

i;j =1

� ( i;j )
k

nX

�;� =1

Fk (�( �; x) � ;� ;�;� ) ij E �� (5.5)

where the symmetric matrices� k 2 Sn � n are de�ned by � ( j;i )
k = � ( i;j )

k = 1
2 
 ( i;j )

k if

i 6= j and � ( i;i )
k = 
 ( i;i )

k .
Proof. The �rst formula follows from Corollary 2.7 as by (3.5), the Riesz repre-

senters are given by

v� ( i;j )
k

(x) =
X

1� � � � � n

� ( i;j )
k (�( �; x)E s

�� )E s
�� :

By (3.2) we have

�
�( �; x)E s

��

�
ij

=
nX

k;` =1

�( �; x) ijk` (E s
�� )k` :

For � = � we have

� ( i;j )
k (�( �; x)E s

�� )E s
�� = Fk (�( �; x) � ;� ;�;� ) ij E �� :

For � < � we have

� ( i;j )
k (�( �; x)E s

�� )E s
�� =

1
p

2
(Fk (�( �; x) � ;� ;�;� ) ij + Fk (�( �; x) � ;� ;�;� ) ij )

1
p

2
(E �� + E �� )

=
1
2

(Fk (�( �; x) � ;� ;�;� ) ij + Fk (�( �; x) � ;� ;�;� ) ij ) (E �� + E �� ):

Hence, this yields

v� ( i;j )
k

(x) =
nX

� =1

Fk (�( �; x) � ;� ;�;� ) ij E ��

+
1
2

nX

�;� =1
� 6= �

[Fk (�( �; x) � ;� ;�;� ) ij + Fk (�( �; x) � ;� ;�;� ) ij ]E �� ;
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which shows (5.4). To show (5.5), note that by (4.1) we have

Fk (�( �; x) � ;� ;�;� ) ij = Fk (�( �; x) � ;� ;�;� ) ji : (5.6)

To show (5.5) it su�ces to establish

nX

i;j =1

� ( i;j )
k

nX

�;� =1

Fk (�( �; x) � ;� ;�;� ) ij E �� =
nX

� =1

X

1� i � j � n


 ( i;j )
k Fk (�( �; x) � ;� ;�;� ) ij E ��

+
nX

�;� =1
� 6= �

X

1� i � j � n


 ( i;j )
k

1
2

[Fk (�( �; x) � ;� ;�;� ) ij + Fk (�( �; x) � ;� ;�;� ) ij ] E ��

for 1 � k � N . We compare the expressions on both sides above for eachE �� . For
� = � we have to show

nX

i;j =1

� ( i;j )
k Fk (�( �; x) � ;� ;�;� ) ij =

X

1� i � j � n


 ( i;j )
k Fk (�( �; x) � ;� ;�;� ) ij :

This is true, since for i = j we have 
 ( i;i )
k = � ( i;i )

k and for i 6= j we have

Fk (�( �; x) � ;� ;�;� ) ij = Fk (�( �; x) � ;� ;�;� ) ji by (5.6) and 1
2 
 ( i;j )

k = � ( i;j )
k = � ( j;i )

k .
For � 6= � we have to show

nX

i;j =1

� ( i;j )
k Fk (�( �; x) � ;� ;�;� ) ij

=
1
2

X

1� i � j � n


 ( i;j )
k [Fk (�( �; x) � ;� ;�;� ) ij + Fk (�( �; x) � ;� ;�;� ) ij ] :

Again, this is shown using (5.6) since for i = j we have Fk (�( �; x) � ;� ;�;� ) ii =
Fk (�( �; x) � ;� ;�;� ) ii and 
 ( i;i )

k = � ( i;i )
k , and for i 6= j we have Fk (�( �; x) � ;� ;�;� ) ji =

Fk (�( �; x) � ;� ;�;� ) ij and 1
2 
 ( i;j )

k = � ( i;j )
k = � ( j;i )

k .
The error estimate from Theorem 4.2, or more precisely from Theorem 4.6, gives

together with Theorem 5.1 our �nal result.
Theorem 5.3. Let f 2 Cs(Rn ; Rn ), N 3 s > n=2 + 2 and set � = s � 1. Let x0

be an exponentially stable equilibrium of_x = f (x) with basin of attraction A(x0). Let
C 2 Sn � n be a positive de�nite (constant) matrix and let M 2 C � (A(x0); Sn � n ) be the
solution of (5.2) from Theorem 5.1. Let K � 
 � A(x0) be a positively invariant and
compact set, where
 is open with Lipschitz boundary. Finally, let S be the optimal
recovery from Theorem 5.2. Then, we have the error estimate

kM � SkL 1 (K ;Sn � n ) � c1kF (M ) � F (S)kL 1 (
; Sn � n ) � c2h� � 1� n= 2
X; 
 kM kH � (
; Sn � n ) :

for all X � 
 with su�ciently small hX; 
 . The constants c1; c2 do not depend on the
collocation points X .

In particular, S itself is a contraction metric in K in the sense of Theorem 1.1,
provided hX; 
 is su�ciently small.

Proof. The error estimates and the linear independence of the� ( i;j )
k follow imme-

diately from Theorem 4.6 with V (x) = Df (x) 2 H s� 1(
; Rn � n ) as well as Theorem
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5.1 with � = s � 1. To see thatS itself de�nes a contraction metric, we have to verify
that S is positive de�nite and F (S) is negative de�nite. We will do this only for S
as the proof for F (S) is almost identical. The main idea here is that the eigenvalues
of symmetric matrix depend continuously on the matrix values. To be more precise,
sinceM (x) is positive de�nite for every x 2 K all its eigenvalues� j (x), 1 � j � n are
positive. If we order them by size, i.e. 0< � 1(x) � � 2(x) � : : : � n (x), then we have
for x; y 2 K ,

j� j (x) � � j (y)j � k M (x) � M (y)k

for any natural matrix norm. Since M is continuous, so is each function� j . SinceK
is compact, there is a� min such that � j (x) � � min > 0 for all 1 � j � n and all x 2 K .
If we now sort the eigenvalues� j (x) of S(x) in the same way, similar arguments as
above show

j� 1(x) � � 1(x)j � k M (x) � S(x)k � c2h� � 1� n= 2
X; 
 kM kH � (
; Sn � n )

Hence, if we choosehX; 
 so small that the term on the right-hand side becomes less
than � min =2, we see that � 1(x) � � min =2 for all x 2 K , i.e. S(x) is also positive
de�nite for all x 2 K .

While this result guarantees that S(x) is eventually positive de�nite for all x 2 K ,
it does not provide us with an a priori estimate on how smallhX; 
 actually has to be
since we neither know the constantc2 > 0 nor the norm of the unknown function M .
Hence, in applications, we have to verify the positive de�niteness directly.

6. Examples.

6.1. Linear example. As a �rst example we consider the linear system

_x = � x + y; _y = x � 2y;

which was considered in [21] as a time-periodic example. Note that the solution of
the matrix equation (5.2) with C = I is constant and can easily be calculated as

M (x) =

 
1 1

2

1
2

1
2

!

; (6.1)

which allows us to analyse the error to the exact solution. Also note that any set of the
form K c = [ � c; c]2 with c > 0 is positively invariant. We have used grids of the form
X � = f (x; y) 2 R2 : x; y = � 1; : : : ; � 2�; � �; 0; �; 2�; : : : ; 1g with � = 1 ; 1

2 ; 1
22 ; : : : ; 1

25 .
As kernel we have used Wendland'sC8(R2) function

� (r ) = (1 � cr)10
+ (2145(cr)4 + 2250(cr)3 + 1050(cr)2 + 250cr + 25) ;

where x+ = x if x � 0 and x+ = 0 if x < 0. � is a reproducing kernel in H � (R2)
with � = 5 :5, see [47]. We have usedc = 0 :9 to balance the trade-o� between good
approximation and condition number of the collocation matrix; similar results are
achieved for other values ofc of the same size.

In each case we have calculated the errors

e� = max
x 2 X check

kS� (x) � M (x)kmax = max
x 2 X check

max
i;j =1 ;2

jS�
ij (x) � M ij (x)j

es
� = max

x 2 X check

kF (S� )(x) � F (M )(x)kmax ;
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with X check = f (x; y) 2 R2 : x; y = � 1+ 1
2 � 0; : : : ; � 3

2 � 0; � 1
2 � 0; 1

2 � 0; 3
2 � 0; : : : ; 1� 1

2 � 0g
with � 0 = 1

26 . By Theorem 5.3 we expect the errors to behave like

e2�

e�
� 2� � 1� n= 2 = 2 3:5:

Table 6.1 shows the above described errors for di�erent� , the expected ratios
and the condition numbers of the collocation matrices. The expected approximation
order is well-matched by the observed errorF (S) � F (M ). In the case ofS � M , the
observed error is sign�cantly better than predicted.

� es
� es

2� =es
� e� e2� =e� condition number

1/2 2.5724 1.2334 779.3362
1/4 1.2833 2.0045 0.9169 1.3452 2.6230e+3
1/8 0.3516 3.6499 0.0124 73.9435 2.9894e+5
1/16 0.0329 10.6838 5.6040e-4 22.1271 5.1283e+8
1/32 0.0025 13.1918 1.6311e-5 34.3572 9.8693e+11
23:5 11.3137 11.3137

Table 6.1
Errors for various computation grids together with the error behaviour and the condition number

of the collocation matrix.

Next, we have �xed the grid to consist of the N = 1681 points X = f (x; y) 2
R2 : x; y = � 4; � 3:8; � 3:6; : : : ; 0; 0:2; : : : ; 4g. As each grid point requires 3 vari-
ables of a symmetric 2� 2 matrix, we solve a linear system with a 5043� 5043
matrix; its condition number is 1.6419e+5. We need to check that the constructed
matrix-valued function S(x) is positive de�nite and F (S)(x) is negative de�nite, where
F (S) = Df (x)T S(x) + S(x)Df (x) + S0(x). To check that a 2 � 2 matrix A is pos-
itive/negative de�nite it su�ces to check that tr( A) is positive/negative and det(A)
is positive/ � det(A) is negative. For this example, trS(x), det S(x) are positive in
the whole area [� 4; 4]2, while Figure 6.1, left, shows small areas near the boundary
where F (S)(x) is not negative de�nite, together with the collocation points. Fig-
ure 6.1, right, illustrates the metric S(x) by plotting ellipses x + v around x with
(v � x)T S(x)(v � x) =const, showing that S(x) approximates the constant solution
(6.1) well.

6.2. Van der Pol. We consider the van der Pol system with reversed time,
which has an exponentially stable equilibrium at the origin. Its basin of attraction is
bounded by an unstable periodic orbit. The system is given by

_x = � y; _y = x � 3(1 � x2)y;

which was, for example, considered in [19] to compute a Lyapunov function. In
our computations, we have usedC = I and the grid X = f (x; y) 2 R2 j x; y =
: : : ; � 0:25; � 0:125; 0; 0:125; : : :g \ f x � 1:5 < y < 1:5 + x; � 3x � 5:5 < y < � 3x + 5 :5g
with N = 501 points, and as each grid point requires 3 variables of a symmetric
2� 2 matrix, we have solved a linear system with a 1503� 1503 matrix; the condition
number is 3.0024e+6. We have used the same kernel as in the previous example.

Figure 6.3, left, shows the collocation points and the basin of attraction of the
origin, bounded by an unstable periodic orbit as well as the boundaries of the areas
where F (S)(x) is negative de�nite (red) and S(x) is positive de�nite (blue).

18



-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

x

y

-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5

x
y

Fig. 6.1 . Left: The collocation points used for the RBF approximation together with the areas
where F (S)( x; y ) is not negative de�nite (red). Right: To illustrate the approximation S, around
some points x, we have plotted the curve of equal distance with respect to metric S(x), in particular
the set f x + v j (v � x)T S(x)( v � x) = const g.
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Fig. 6.2 . Left: sign(tr F (S)( x; y )) � sign(det F (S)( x; y )) . If this function is � 2, then F (S)( x; y )
is negative de�nite. Right: sign(tr S(x; y )) + sign(det S(x; y )) . If this function is +2 , then S(x; y ) is
positive de�nite.

In more detail, Figure 6.2 shows sign(trF (S)(x)) � sign(detF (S)(x)), which is
� 2 in the area where we placed the collocation points (left), as well as sign(trS(x)) +
sign(detS(x)) which is +2 in the area where we placed the collocation points (right).
Figure 6.3, right, shows the point-dependent metricS(x) by plotting ellipses x + v
around x with ( v � x)T S(x)(v � x) =const.
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