Micro-combs: a novel generation of optical sources

Pasquazi, Alessia, Peccianti, Marco, Razzari, Luca, Moss, David J, Coen, Stéphane, Erkintalo, Miro, Chembo, Yanne K, Hansson, Tobias, Wabnitz, Stefan, Del’Haye, Pascal, Xue, Xiaoxiao, Weiner, Andrew M and Morandotti, Roberto (2018) Micro-combs: a novel generation of optical sources. Physics Reports, 729 (2018). pp. 1-81. ISSN 03701573

[img] PDF - Published Version
Available under License Creative Commons Attribution-NonCommercial No Derivatives.

Download (12MB)

Abstract

The quest towards the integration of ultra-fast, high-precision optical clocks is reflected in the large number of high-impact papers on the topic published in the last few years. This interest has been catalysed by the impact that high-precision optical frequency combs (OFCs) have had on metrology and spectroscopy in the last decade [1–5]. OFCs are often referred to as optical rulers: their spectra consist of a precise sequence of discrete and equally-spaced spectral lines that represent precise marks in frequency. Their importance was recognised worldwide with the 2005 Nobel Prize being awarded to T.W. Hänsch and J. Hall for their breakthrough in OFC science [5]. They demonstrated that a coherent OFC source with a large spectrum – covering at least one octave – can be stabilised with a self-referenced approach, where the frequency and the phase do not vary and are completely determined by the source physical parameters. These fully stabilised OFCs solved the challenge of directly measuring optical frequencies and are now exploited as the most accurate time references available, ready to replace the current standard for time. Very recent advancements in the fabrication technology of optical micro-cavities [6] are contributing to the development of OFC sources. These efforts may open up the way to realise ultra-fast and stable optical clocks and pulsed sources with extremely high repetition-rates, in the form of compact and integrated devices. Indeed, the fabrication of high-quality factor (high-Q) micro-resonators, capable of dramatically amplifying the optical field, can be considered a photonics breakthrough that has boosted not only the scientific investigation of OFC sources [7–13] but also of optical sensors and compact light modulators [6,14].

Item Type: Article
Schools and Departments: School of Mathematical and Physical Sciences > Physics and Astronomy
Subjects: Q Science > QC Physics
Depositing User: Billy Wichaidit
Date Deposited: 21 Aug 2018 17:44
Last Modified: 21 Aug 2018 17:44
URI: http://sro.sussex.ac.uk/id/eprint/78041

View download statistics for this item

📧 Request an update
Project NameSussex Project NumberFunderFunder Ref
UK Quantum Technology Hub for Sensors and MetrologyG1511EPSRC-ENGINEERING & PHYSICAL SCIENCES RESEARCH COUNCILEP/M013294/1