The effects of primary care–based parenting interventions on parenting and child behavioral outcomes: a systematic Review

Article (Accepted Version)

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/77722/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

http://sro.sussex.ac.uk
The effects of primary care-based parenting interventions on parenting and child behavioral outcomes: A systematic review

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Trauma, Violence, & Abuse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>TVA-18-025.R1</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Review Manuscripts</td>
</tr>
<tr>
<td>Keywords:</td>
<td>Child abusers < Child Abuse, Family issues and mediators < Child Abuse, Prevention of Child Abuse < Child Abuse, Attachment, Anything related to child abuse < Child Abuse</td>
</tr>
</tbody>
</table>

http://mc.manuscriptcentral.com/tva
THE EFFECTS OF PRIMARY CARE

The effects of primary care-based parenting interventions on parenting and child behavioral outcomes: A systematic review

It was estimated that 683,000 children in the U.S. were victims of maltreatment in 2015, including 1,670 fatal cases (U.S. Department of Health & Human Services, Administration for Children and Families, Administration on Children, Youth and Families, & Children’s Bureau, 2016). Maltreatment exposure is associated with myriad consequences, including academic underachievement, an increased likelihood of receiving special education services, and a higher risk of developing internalizing and externalizing behavioral problems as well as childhood obesity, eating disorders, and an array of other health problems (Leenarts, Diehle, Doreleijers, Jansma, & Lindauer, 2013; Norman, Byambaa, De, Butchart, Scott, & Vos, 2012).

In 2008 alone, the cost to address a non-fatal child maltreatment case was reported to be as large as $210,000, including medical costs, productivity losses, welfare costs, criminal justice costs, and special education costs (Fang, X., et al., 2012). The impact of maltreatment reaches far beyond the individual level, creating substantial burdens to the entire society. Given the serious impact of maltreatment at the micro and macro level, the Centers for Disease Control and Prevention (CDC) recognized child maltreatment as an important public health issue in late 1990s and has made consistent efforts to prevent maltreatment.

Two of the CDC’s major strategies for maltreatment prevention involve supporting parents and enhancing positive parenting. The focus on parents is a logical direction given that a majority of maltreatment cases are known to involve at least one parent as a perpetrator (Fortson et al., 2016). It is widely known that harsh or ineffective discipline, involving verbal, emotional and physical aggression is associated with maltreatment and poor developmental outcomes (Bender et al., 2007; Weiss, Dodge, Bates, & Pettit, 1992). On the other hand, parents’ ability to
create a nurturing environment through positive parent-child relationships early in a child’s life represents an important protective factor that can mitigate the effects of children’s exposure to various adversities (Shonkoff, 2012). A solid body of evidence suggests that positive parenting practice can be learned through participation in behavioral parenting interventions (Shaffer, Kotchick, Dorsey, & Forehand, 2001).

Despite accumulated evidence of the benefits of behavioral parenting interventions, most of them focus on parents and children with identified needs, thus creating stigma toward participants (Barth & Liggett-Creel, 2014; Leslie et al., 2016). Access to these interventions for parents without identified needs continues to be limited despite expressed needs (Zero to Three, 2016). Moreover, parenting interventions have been consistently related with low participation and high attrition rates due to parents’ competing priorities, scheduling, and transportation issues (Heinrichs, Bertram, Kuschel, & Hahlweg, 2005; Leslie et al., 2016; Marshall, Green, & Spiby, 2014; Nix, Bierman, & McMahon, 2009; Zero to Three, 2016).

Recognizing these concerns, alternative strategies have been explored for disseminating parenting interventions to a wider audience by targeting parents with and without identified needs. An array of approaches has been explored, including universal or early intervention parenting programs as well as multilevel, population-based parenting interventions (Altafim & Linhares, 2016; Barth, 2009). Amid this exploration, primary care has been increasingly identified as a “potential home” for parenting interventions (Leslie et al., 2016, p. s106).

Several factors contribute to the value of primary care as a potential home for parenting interventions. Most importantly, the target audience (i.e., parents) typically has ongoing access to primary care in the context of sick and well-child care, providing a natural access point to the interventions without stigma (Leslie et al., 2016). Additionally, child rearing guidance has long
been recognized as an important part of a pediatrician’s job. As early as the 1990s, the American Academy of Pediatrics (AAP) Committee on Psychosocial Aspects of Child and Family published a statement regarding effective discipline strategies, based upon which pediatricians’ anticipatory guidance have been developed (Regalado, Sareen, Inkelas, Wissow, & Halfon, 2004). Parents also perceive physicians as a trustworthy source of information related to parenting and want to receive support from healthcare professionals in broad developmental areas of parenting including sleeping, feeding, toileting as well as discipline strategies, behavior management, schooling, sibling rivalry, shyness, and sex education (Long, 1998; Marshall et al., 2014). Thus, parenting guidance in primary care is not entirely new to providers or parents, increasing the acceptability of these interventions.

However, analysis of data from the National Survey of Early Childhood Health indicated that less than a half of participants received discipline support from their pediatricians. The unmet need was much higher for Spanish speaking parents (43%) compared to English speaking mothers (20%) (Regalado et al., 2004). Recognizing this gap, increased efforts have been made to systematically and strategically integrate parenting interventions into primary care. Intervention strategies vary from parent education programs facilitated by physicians or other healthcare professionals to more intensive evidence-based parenting interventions led by licensed behavioral health professionals (Kanoy & Schroeder, 1985; Mendelsohn et al., 2007; Petrowski, 1981; Webster-Stratton, Reid, & Hammond, 2001). Previous studies have shown that these interventions hold promise for promoting positive parent-child relationships and reducing child’s behavioral problems (Perrin, Sheldrick, McMenamy, Henson, & Carter, 2014). To date, only one meta-analysis has been conducted on the topic of primary care-based parenting interventions (Shah, Kennedy, Clark, Bauer, & Schwartz, 2016). The results indicated significant intervention
effects on parent-child interaction (summary SMD: 0.29, 95% CI: 0.06–0.52, P < .0001) and child reading ability (summary SMD 0.34, 95% CI 0.03–0.54, P < .001). The analysis was limited to the primary care-based parenting interventions targeting parents of children from birth to 3 years of age and the primary outcome of interest was parenting behaviors that promote early child development.

Present Study

Promising results reported by previous studies of primary care-based parenting interventions and ever-increasing volume of recent works point to the need for a more comprehensive review, examining a wide array of parenting dimensions and outcomes for children in various age groups. As such, the current systematic review was set out to explore 1) what evidence exists regarding the effectiveness of behavioral parenting interventions delivered in primary care settings on enhancing positive parenting; and 2) what evidence exists regarding the effectiveness of behavioral parenting interventions delivered in primary care settings on reducing child’s behavioral problems.

For the purpose of this review, parenting interventions are loosely defined as interventions seeking to enhance positive parenting in multiple dimensions discussed in previous parenting literature. The historical paradigm in understanding the roles of parents and parenting practices, has changed substantially, and definition of parenting remains elusive (O’Conner, 2002). Therefore, the operationalization of parenting and related interventions is purposefully broad given the exploratory nature of this review. Accordingly, the review encompassed a wide range of parent outcomes including, parenting knowledge, parenting behaviors, parenting skills and techniques, parenting styles, attitudes and beliefs toward parenting, parent affect toward child, parental competence or self-efficacy, and parental stress.
Method

The current systematic review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. The review protocol was published in the International Prospective Register of Systematic Reviews (PROSPERO) on the 15th of February 2017 (registration number: CRD42017056129).

Eligibility Criteria

Randomized controlled trials (RCTs) or quasi-experimental studies with control or contrast groups were included in the review. Interventions had to target caregivers of children between 1 and 17 years of age. Studies had to take place in primary care facilities in the U.S. such as pediatrics, family practice, general practice, and obstetrics and gynecology, which are utilized as primary care for some women. Multiple comparison groups, including wait list groups, delayed participation, treatment as usual (TAU), or no participation in the intervention were included.

The primary outcomes of interest were; 1) parenting outcomes in multiple domains, including parenting knowledge, parenting behavior, parenting skills and techniques, parenting style, parenting attitudes and beliefs, parent affect toward child, parental competence or self-efficacy and other outcomes that have been shown to be closely associated with parenting ability such as parental stress or locus of control; 2) child behavioral outcomes. No restriction was established with regard to the timing of data collection, thus including studies that measured outcomes at post-intervention as well as follow-up points. Studies were considered eligible regardless of the publication type. Only studies written in English were included.

Information Sources

Literature searches were conducted using electronic databases covering a variety of topics related to health, behavioral health, and social sciences, including Medline, Pubmed, CINAHL,
THE EFFECTS OF PRIMARY CARE

Nursing & Allied Health Database, PsycINFO, Web of Science, and Proquest Dissertation and Thesis. Additionally, the Campbell Collaboration Library, Cochrane Library, and PROSPERO databases were searched to identify systematic reviews and meta-analyses to be used for forward and backward searching to enhance comprehensiveness. Grey literature was searched through the websites and the databases of the relevant government and private associations, including American Academy of Pediatricians, American Academy of Family Physicians, Zero to Three, and Blueprints for Healthy Youth Development. Finally, experts in relevant fields were consulted for additional sources of grey literature.

Study Records

data management. Data were downloaded into the citation manager software Endnote X7 for organization and deduplication. The citations were then imported for screening into the web-based systematic review software Covidence, which is one of the recommended tools for systematic reviews by Cochrane Community (2017).

selection process. The corresponding author screened the entire list of references while the second and third authors divided the references for screening, full-text review, extraction, and the risk of bias assessment. The reviewers independently engaged in the title and abstract screening against the eligibility criteria. The percent agreement was approximately 87% in the beginning of the screening. Any disagreement was resolved through team discussion. The third reviewer served as an arbitrator for unresolved disagreement among the first two reviewers. When the screening process was completed for about a half of all imported references, the percent agreement reached 95%, which was maintained until the end of the entire screening process.
data extraction. Data extraction was conducted using Microsoft Excel spread sheets developed based on the template provided by the Cochrane Collaboration. The data extraction process was an iterative process as new items were added during the extraction process.

risk of bias assessment. The Cochrane Risk of Bias (RoB) tool was used to assess the risk of bias of randomized controlled trial studies included in the review. The first author conducted the risk of bias assessment for the entire list of included studies while the second and the third authors equally divided the number of included studies for the assessment. The risk of bias was as ‘high’, ‘low’, and ‘unclear’ for all studies as suggested by Higgins (2011). For non-randomized studies included in the review, the “Risk of Bias In Non-randomized Studies - of Interventions” (ROBINS-I) was used. The assessment was conducted using the pre-populated template feature in Covidence for consistency among the reviewers and efficient management of the data. The first author made a final judgement based on the assessment and rationale provided by the second and third reviewer.

confidence in cumulative estimate. The quality of body of evidence was examined and critiqued based on the GRADE (Grades of Recommendation, Assessment, Development and Evaluation) approach, focusing on methodological quality, directness of evidence, heterogeneity, precision of effect estimates, and publication bias of the included studies as recommended by the Cochrane Collaboration (2011).

Results

Included Studies

The initial search produced 1,174 studies, which were reduced to 1,009 records after deduplication using the reference managing software, Endnote 7.4. After the title and abstract screening, 896 studies were excluded, resulting in 113 studies to be included in the full-text
review. After the full-text review, 97 additional studies were excluded, resulting in 17 studies to
be included as the final sample. Reason for the exclusion and the process of screening and
review process is summarized in Figure 1. [Insert Figure 1 Here]

Study Characteristics

All studies were published articles in peer reviewed journals between the year 1979 and
2016. All studies except two studies (Chamberlin, 1979; Chamberlin & Szumowski, 1980) were
randomized controlled trials with one or more comparison groups. Nine out of 17 studies
conducted power analysis to calculate adequate sample size for the expected effect size, with
power ranging from 80%-90% with a 2-tailed test of statistical significant with an alpha of 0.05.

Settings and Participants

Most studies took place in pediatric units within the public or university affiliated hospitals
located in urban areas. Participants were mostly mothers of children under 7 years of age except
the two studies that included parents of children up to the age of 12 (Aragon et al., 2013) and 15
(Borowsky, Mozayeny, Stuenkel, & Ireland, 2004). With a few exceptions, most studies focused
on participants of low income, low education, and ethnic minority immigrants.

Interventions

Ten interventions including two comparison group interventions were examined in 17
studies. Five interventions were adaptations of existing parenting interventions (e.g., Incredible
Years: IY, Primary Care Parent-Child Interaction Therapy: PC-PCIT, Child-Adult Relationship
Enhancement in Primary Care: PriCARE, ezParent program) while others were specifically
designed to be delivered in primary care settings.

With regard to the delivery format, five interventions required in-person contact, three of
which utilized the group delivery format while the other two was delivered to individual parents
THE EFFECTS OF PRIMARY CARE

(Berkovits, O'Brien, Carter, & Eyberg, 2010; Perrin et al., 2014; Schilling et al., 2016). Two interventions were delivered through multimedia such as a CD rom, tablet app, or website (Play Nicely and ezParent program). Two interventions were delivered through written materials such as monthly newsletters, pamphlets, and handouts (Parent Child Interaction Therapy—Anticipatory Guidance and Building Block), which were both comparison interventions. Table 1 presents the summary of the characteristics of the interventions. [Insert Table 1 Here]

Theories of Change

Five interventions were developed based on theories or developed by applying previous theory based-scholarly works. Three major theories of change mentioned were attachment theory (Bowlby, 1969), social learning and self-efficacy theory (Bandura & Walters, 1977), and coercion theory (Patterson, 1982). Attachment theory posits that a primary caregiver’s sensitivity toward their child’s needs, and the reciprocal interchange of warmth and positive affect, are fundamental for the child in developing secure attachment with the caregiver (Bretherton, 1992). Thus, attachment theory-based parenting interventions contained specific components or techniques that are designed to enhance parents’ ability to build positive parent-child interaction such as responsive parenting. For example, PCIT teaches parents Child-Directed Interaction (CDI) skills in which parents are encouraged to praise, reflect, imitate and describe appropriate talk and behaviors with enthusiasm while ignoring inappropriate behaviors (Berkovits et al., 2010). Similarly, PriCARE encourages parents to attend to positive behaviors and IY seeks to promote proactive and nurturing parenting (Perrin et al., 2014; Schilling et al., 2016). Video Interaction Project (VIP) also contains the teaching component where parents are taught skills to positively interact with the child through the use of developmentally appropriate books and toys (Mendelsohn et al., 2007).
On the other hand, social learning principles provide a theoretical basis for content related to effective and consistent limit setting. Bandura (1971) postulated that behaviors are shaped through observing others’ behaviors and the consequences resulting from those behaviors. Thus, he believed that behaviors can be shaped by externally manipulating the consequences through rewards, punishments and other behavioral techniques. Parenting interventions based on social learning theory, therefore, view parents as the primary change agents in shaping children’s behaviors using behavioral techniques and seek to equip parents with evidence-based skills to manage child behavior. For example, the 3rd segment of the PC-PCIT focuses on teaching parents about Parent Directed Interaction (PDI) skills, including giving child effective and clear commands that are developmentally appropriate with consistent follow through to reduce noncompliance, aggression, and other behavioral problems (Berkovits et al., 2010). Similarly, IY addresses topics related to effective limit setting and handling misbehaviors (Perrin et al., 2014).

Play Nicely, IY, and PCIT also discuss the coercion theory developed by Patterson (1982) as the theoretical foundation of the interventions. The coercion theory describes the process of the development of a child’s conduct problems, antisocial behaviors and aggression, which may be established and maintained by poor parenting practices and negative parent-child interactions. The theory posits that parents’ negative reactions toward child for being non-compliant to the developmentally inappropriate, ineffective, and/or unclear commands given by parents may contribute to the initial activation of child’s problem behaviors. As a child’s behaviors escalate, parents give in or do not follow through, which signal child that the escalation of their problem behaviors having contributed to the elimination of parental negative reactions. This cycle of coercion is believed to be perpetuated through the mechanism of negative reinforcement within
the family, which with repetition, deprives the child of the opportunity to develop prosocial skills that are necessary to build healthy relationship with peers and other adults (Thomas, 2011).

Almost all of the parenting interventions examined in the studies, including the ones that did not explicitly state the theoretical framework, had some components dedicated to teaching the parent to build positive parent-child interactions as well as effective behavior management skills to reduce the child’s problematic behaviors. Additionally, many interventions drew on multiple theories at the same time rather than a single theory.

Parent and Child Behavior Outcomes

The studies reported various outcomes within the parenting and child behavioral domains. Whenever available, total scores instead of subscale scores were reported unless the authors specifically mentioned particular subscales. Parent outcomes included parental knowledge of child development, parental perceptions and attitudes such as locus of control, parenting self-efficacy, or parent perception of the difficulty raising children. Additionally, outcomes related to parental control and monitoring, positive and negative parenting and/or discipline skills, as well as parent-child interaction were reported. Parent affect measures such as parental depressive symptoms and parenting stress were also reported. Child behavior outcomes included the intensity and the frequency of problematic behaviors such as aggression, physical fighting, inattention, hyperactivity, anxiety, depression, separation distress, and social skills.

With regard to the informant, almost all studies exclusively used parent reports, except the study of Borowsky et al. (2004), which presented outcomes reported by both parents and youth (10 years or older) and the study of Perrin et al. (2014), in which the results from analysis of the videotaped parent-child interaction using the Coder Impression Inventory were reported for a portion of presented outcomes. Most studies used validated measures to assess the outcomes. A
complete list of parent and child behavior outcomes are summarized in Table 2 and Table 3 respectively. [Insert Table 2 Here] [Insert Table 3 Here]

mediators. Several studies examined mediating effects of a number of variables on the relationship between intervention exposure and parent/child outcome measures. For example, the study of Berkule et al. (2014) reported that responsive parenting (measured by StimQ-Infant) partially mediated the relationship between intervention and maternal depressive symptoms for VIP as evidenced by the reduced association between VIP and depressive symptoms after adjustment for parental responsiveness (indirect effect -0.17, 95% CI -0.36, -0.03).

On the other hand, Canfield et al. (2015) found that maternal depression and responsive parenting mediated the relationship between participation in VIP intervention and physical punishment. The direct effect of VIP on physical punishment at 24 months remained significant (direct effect -0.51, 95% CI -0.90, -0.11), but decreased when responsive parenting (indirect effect -0.09, 95% CI -0.22, -0.02) and maternal psychosocial risk (indirect effect -0.17, 95% CI -0.36, -0.03) were added to the model. Maternal psychosocial risk was a single factor yielded by a principal components analysis including maternal depressive symptoms and parenting stress. Responsive parenting showed a direct negative association with physical punishment while maternal psychosocial risk had a direct positive association. Additionally, Mendelsohn et al. (2011a) found that parent-child interaction measured mediated the relationship between intervention and media exposure for mothers educated 9th grade or higher (Sobel statistic, 2.49; $P=0.01$) but not for the entire sample (Sobel statistic, 1.62; $P=0.10$).

** moderators.** Multiple studies examined moderating effects of child age but did not find interaction effects of age with group assignment (Borowsky et al., 2004; Canfield et al., 2015; Cates et al., 2016). However, in the study of Weisleder et al. (2016), significant positive
interactions between group assignment (VIP, control) and age (14-24 month) was shown on child attention, indicating that VIP children made greater gains in attention than control. Positive interaction between the group assignment and age was also found for BB. Lastly, Chamberlin and Szumowski (1980) found that knowledge of child development of mothers who received services from physicians or nurse practitioners with a low dose of parent education decreased with time while the mothers who received services from providers with a high dose of parent education improved with time with regard to their developmental knowledge.

With respect to child gender, Borowsky et al. (2004) found that Positive Parenting intervention had a significant effect on parent-reported aggressive behavior for boys (adjusted difference: -2.75; 95% confidence interval [CI]: -1.21 to -4.29; P < .001) but not for girls (adjusted difference: -0.23; 95% CI: -2.08 to 1.62; P = .80).

Conflicting results were reported with regards to parents’ level of education or literacy. While Cates et al. (2016) found no moderating effects of parent literacy level (9th grader or higher literacy, p=.11), Mendelsohn et al. (2011b) found that mothers with a literacy level of 9th or higher in VIP group showed an increase in total StimQ score (ES, 0.68) as well as in all other subscales (ES, 0.36 to 0.72). On the other hand, Mothers with a less than 9th grade literacy level showed a statistically significant increase only related to provision of toys in BB group. In an earlier study of the same author (Mendelsohn et al., 2007), maternal education had no moderating effects on primary outcomes (parent or child behavior).

Two studies examined the moderating effects of families’ psychosocial risk (Cates et al., 2016; Weisleder et al., 2016). In both studies, psychosocial risk was determined by mother’s endorsement of at least one of the following: being a victim of violence, homelessness, CPS involvement, significant financial hardship, food insecurity, smoking or alcohol use during
pregnancy, or history of previous mental illness. Cates et al. (2016) found no moderating effects of social risk on parental stress \((p=.51)\). On the other hand, in the study of Weisleder et al. (2016), VIP effects on the entire sample did not reach significance while VIP children from the families with increased psychosocial risk did show a significantly lower aggression \((ES: 0.48; P < .05)\) than the control group.

Risk of Bias Assessment Within Studies

Most of the included studies utilized adequate methods of generating random sequence such as the use of software or tossing a coin. Several studies did not provide details regarding how the random sequences were generated, and therefore, were rated as unclear. Regarding the blinding, although the majority of studies blinded study personnel to the group assignment, in most studies participants were known to their allocation. Although this is commonly found in behavioral intervention studies, unblinding of study participants creates the issue of performance bias; therefore, the risk of bias for these studies were rated as high. In most of the studies, outcome assessors were blinded to participants’ group assignment, reducing the issue of detection bias.

Although the majority of the included studies used an intent-to-treat analysis, some studies with a small sample size and substantial loss of participants at follow-up were downgraded due to incomplete reporting. All studies but one clearly specified outcomes of interest in the methods section and reported all outcomes including non-significant results as intended. The results of risk of bias assessment within and across the included studies are summarized in Figures 2 and 3, respectively. [Insert Figure 2 Here][Insert Figure 3 Here]

Confidence in Cumulative Estimates

All studies but two utilized relatively rigorous Randomized Control Trial (RCT) designs. The risk of bias assessment indicated that 60%-93% of the studies were rated as having a low risk in
all domains except the blinding of participants and personnel, in which over 73% of the included studies were rated as having a high risk of performance bias. Considering that unblinding of participants is a common practice in the studies of psychosocial interventions due to the ethical responsibilities of researchers, one can conclude that the quality of body of evidence reported in this review is not seriously influenced by systematic biases.

Heterogeneity of the intervention types, dosage, outcome measures, and methods of adjustment for various demographic variables create challenges in interpreting results. Subgroup analysis was conducted in a limited number of studies, and generalization is limited since most studies enrolled low income, ethnic and racial minority populations.

Disproportionate representation of low-income, minority participants negatively affects the directness of evidence as well. Directness refers to “the extent to which the people, interventions, and outcome measures are similar to those of interest” (Grade Working Group, 2004, p. 1491). Given the expected nature of primary care-based parenting interventions as universal interventions, findings from the studies included in this review may not be directly applicable to the original population of interests. However, the reviewers used very specific exclusion criteria in selecting studies of parenting interventions to ensure the interventions examined were directly applicable to the research question. For example, interventions where the parenting intervention makes up only a minor programmatic component, such as interventions provided through home visits or interventions that contain other components that could influence the outcomes of interest (such as parent support groups and marital counseling) were not included in the review. In several studies, outcomes were compared between intervention and contrast groups instead of a true control group, which should also be considered in interpreting the results.
Despite the effort to collect unpublished manuscripts, all studies that met the inclusion criteria were studies published in peer reviewed journals, which may raise the issue of publication bias. However, all studies but one reported outcomes specified in the purpose statement and method section, and therefore, were rated low risk in selective reporting bias.

Discussion

The purpose of this systematic review was to examine the types of parenting interventions that have been developed and implemented in primary care and to generate overall knowledge of the effectiveness of primary care-based parenting interventions in light of implementation factors.

Theories of Change

Of particular interest to this review were the theories of change underlying each parenting intervention delivered in primary care. The majority of interventions were based on attachment and social learning theories, and each provided a conceptual foundation for intervention components seeking to enhance positive parent-child intervention and effective behavior management, respectively. Attachment and social learning based parenting interventions have been implemented in a wide range of human services fields over the past 60 years, and have accumulated a solid body of evidence that supports their benefits (Barth & Liggett-Creel, 2014; Shaffer et al., 2001). It is encouraging that many practice settings are choosing to adopt evidence-based interventions based on theories of change, although no systematic differences were found based on the existence of a theoretical basis or lack thereof.

The findings may support the idea of the common component approach in parenting interventions suggested by Barth and Liggett-Creel (2014). The common component approach advocates the development and implementation of parenting interventions that incorporate
components that are common across existing evidence-based parenting interventions, which are essential to produce desired outcomes. Certainly, the effort to secure resources required to adopt high quality parenting interventions with strong evidence into primary care should be continued. At the same time, the common component approach could provide alternative routes to introduce behavioral parenting interventions into local primary care practices with limited resources. Future studies should examine essential components that are specific to the universal or early intervention parenting programs in primary care. A good place to start is to examine the components that enhance the mediating variables shown to influence the intervention effects such as responsive parenting (Berkule et al., 2014; Canfield et al., 2015) or positive parent-child interaction (Mendelsohn et al., 2011a) as summarized in the current paper.

Another important insight is generated by examining theories of change underlying primary care-based parenting interventions. Many evidence-based parenting interventions were originally developed to address a child’s behavioral issues of clinical intensity, which inevitably places the emphasis on child well-being with limited attention paid to parent well-being. Theories of parenting endorse the idea of parenting as a multidimensional concept, recognizing multiple determinants of parenting behaviors rooted in the contextual environment (Belsky, 1984). The mediator analysis conducted in the studies reviewed showed that parent well-being measures such as parental depression and parenting stress not only mediated the relationship between intervention and physical punishment but also had a direct positive association with physical punishment (Canfield et al., 2015).

Given the focus of universal, primary care-based parenting interventions on prevention, it is worth exploring the possibility of incorporating intervention components targeting various dimensions of parental well-being. These effects could be assessed through measures of

http://mc.manuscriptcentral.com/tva
proximal or intermediate outcomes, which have a demonstrated link with distal outcomes such as maltreatment or problem behaviors of children. Additionally, parenting interventions seeking to improve parental well-being may increase our ability to detect intervention effects that are small in magnitude but meaningful in the context of universal parenting interventions.

The Effectiveness of Primary Care-Based Parenting Interventions

Drawing conclusive knowledge of overall effectiveness of primary care-based parenting interventions was challenging due to the heterogeneity of the intervention types, delivery format, dosage, and the fidelity measures used. Despite the decreased dosage of interventions, several interventions demonstrated significant or non-significant but positive effects on various parent and child behavior outcomes both at posttest and follow-up, which suggest that low-dosage adapted forms of evidence-based parenting interventions delivered in primary care may have lasting positive effects in parent as well as child outcome domains.

On the other hand, no positive effects on child behavioral outcomes were found in PriCARE although the intervention dosage was actually increased from a 6-hour two-day training to six weekly 90-min group sessions (Schilling et al., 2016). The original intervention, CARE, was developed to prevent childhood trauma and maltreatment by enhancing adults’ ability to positively interact with children in an agency setting rather than to address intensive behavioral problems in children (Gurwitch et al., 2016). Thus, limited PriCARE effects shown in child behavioral outcomes could be attributed to the original goal of intervention, which is to educate ordinary adults who interact with children with or without clinical issues while, PCIT and IY, which showed positive effects in a wider range of child behavioral outcomes, were developed with a specific focus on treating intensive behavioral issues.
THE EFFECTS OF PRIMARY CARE

When an adaptation process involves a shift of focus or goals, careful consideration needs to be given with regard to (a) the theories of change built into the original interventions; (b) essential components intended to produce desired outcomes based on the theories of change; and (c) the types of outcomes that can accurately reflect intervention effects. However, limited details were provided in the studies reviewed with regard to the processes that may have been involved in shifting the intervention focus from a targeted to a universal population. Consideration of these topics will better guide the process of developing knowledge of the effectiveness of primary care-based parenting interventions.

In addition to the dosage and intervention goals, other implementation factors such as delivery format, providers, and fidelity measures may also affect the effectiveness of an intervention. For example, unlike other adapted parenting interventions, ezParent program showed no intervention effects on parent self-efficacy, parental follow-through, corporal punishment, and parenting stress, and child behaviors at post-test as well as at 6-month follow-up except on parental warmth at 6-month follow-up. As the authors noted, the results could be attributed to a small sample size, floor effects, and the limited time for parents to absorb intervention effects. However, it is also important to note that ezParent program was a parent self-guided program without extensive fidelity measures while the other three interventions that showed positive effects required weekly in-person contact with licensed therapists and live skills training components. Although no intervention effects were shown on outcome domains, ezParent showed high completion and satisfaction rates among parent participants, perhaps due to brevity and the use of media. Thus, an important next step to advance the field is to determine the appropriate level of dosage and resource input that is acceptable to participants and providers while producing meaningful effects.
THE EFFECTS OF PRIMARY CARE

The fidelity measures utilized by the adapted programs (e.g., PC-PCIT, PriCARE, IY) required intensive resources such as documentation and videotaping of each session, review of the cases with experienced therapists who have expertise in each intervention during weekly supervisions, and reliability checks by research assistants. While fidelity measures are important, the resource intensive nature of such efforts might create challenges in sustaining interventions in primary care settings with limited resources. Additionally, these interventions were provided by licensed clinicians or other mental health professionals with required training. Although benefits could be substantial, co-location of behavioral health services requires substantial restructuring at the organizational level as well as the payment system to ensure sustainability. As demonstrated in the study of Perrin et al. (2014), which described The Incredible Years program being co-led by research clinicians and a pediatric staff member (e.g., a nurse, a nurse practitioner, social worker or a pediatrician), alternative strategies may present an opportunity to utilize existing human resources in primary care along with external expert support. Such efforts should be pursued at the same time while seeking changes at the organizational and policy level to build infrastructure and funding mechanisms necessary to sustain behavioral parenting interventions in primary care.

Other alternatives to adapting existing parenting interventions that are evidence-based were seen in interventions such as VIP, BB, and Play Nicely, which were originally developed to be delivered in primary care. These interventions were either provided by an interventionist with a bachelor’s degree and experience in working with children (VIP) or were parent self-guided interventions using written materials or interactive media instead of using licensed therapists (BB and Play Nicely, respectively). Though these interventions utilized fewer resources compared to primary care-adapted evidence-based parenting interventions, still demonstrated positive effects
across multiple parent domains, including maternal depression, physical punishment, parenting stress, and parent-child interaction. The results may support that a primary care developed brief parenting intervention could represent an alternative to more intensive and costly evidence-based parenting interventions for organizations with limited resources. However, a consideration needs to be made with regard to the types of interventions that can best achieve the goals that specific to the organizational context.

Additionally, the results from this review suggest that low dosage-interventions with handouts could also produce small but positive effects, though interventions that require in-person participation seem to be superior to written interventions. Therefore, a written intervention could be considered a supplementary option to augment in-person interventions or as an independent intervention in the clinic settings where the implementation of an in-person intervention is not a feasible option. Though the magnitude of the effects could be small, repeated intervention exposure, possibly through integrated delivery into well-child care, may augment the intervention effects, which warrant further studies.

Directions for Future Research

The success of the effort to integrate behavioral parenting interventions into primary care will depend on multiple factors including core leadership involvement and the availability of resources to attain adequate training and ongoing consultation from trusted sources. Thus, implementation science can provide important pieces of information for future efforts to integrate psychosocial interventions with the least disruption in routine primary care by identifying facilitators and barriers to efficient delivery and maintenance of parenting interventions in primary care.
Another area of future research is to generate insights into the task of reconciling the two conflicting goals of high intervention fidelity and sustainability. This can be achieved through an increased number of pilot studies examining various types of interventions delivered through a variety of formats. Such efforts may foster innovations among organizational leaders, community members, and researchers to develop interventions with the universal and preventive goals that are suitable in the context of primary care. Increased number of studies will also contribute to the accumulation of a body of evidence that can be synthesized through quantitative analyses and subgroup analyses to generate more conclusive knowledge of the overall effectiveness of primary care-based parenting interventions to guide the decision-making processes of practice settings. Future studies should also seek to increase the generalizability of their findings by engaging geographically and socioeconomically diverse populations.

Limitations

This review was limited to the studies published in the U.S. Although the decision was made intentionally with the awareness that outcomes are likely to be influenced by the organizational and policy context specific to healthcare practices in the U.S., a high volume of relevant studies might have been excluded, given that many evidence-based parenting interventions have been originally developed in international locations. Additionally, studies examined in this review were mostly conducted in urban primary care practices serving a large number of low income, ethnic minority parents, and therefore, may not accurately capture intervention effects on prevention, targeting all parents at the population level as intended.

Another important limitation of this study is that although the study was inspired by maltreatment prevention efforts, many of the outcomes examined in the systematic review are not direct indicators of maltreatment. Some of the parenting outcomes included in this study such
as corporal punishment and maltreatment risk are more closely associated with maltreatment outcomes. On the other hand, other outcomes such as parental stress and maternal depression are known to be associated with an increased risk for maltreatment as indirect indicators. Further studies are needed to better understand the effects of preventive behavioral parenting interventions delivered in primary care on maltreatment prevention efforts. Other types of primary care-based interventions such as the Safe Environment for Every Kid (SEEK) model (Dubowitz, H., 2014) have demonstrated direct effects on decreasing maltreatment through randomized controlled trials as indicated by fewer number of abuse and neglect cases reported on medical records and child protective services (CPS) reports (Dubowitz, Feigelman, Lane & Kim, 2009). Considering that the SEEK model targets more comprehensive family psychosocial risks such as parental depression, substance abuse, food insecurity, and more, a longitudinal analysis may be necessary to detect similar impact on maltreatment for interventions focused on parenting practice only.

Conclusions

The topic of primary care-based parenting interventions is gaining new momentum due to changes in the sociopolitical context in the U.S. (Leslie et al., 2016). The increased awareness of the impact of adverse childhood experiences on long-term health outcomes, the advancement of prevention science, increased emphasis on integrative health care, and an accumulated body of evidence that supports the benefits of behavioral parenting interventions have all opened a new window of opportunity to advance the old idea of integrating parenting interventions into primary care in a new fashion. Further studies will contribute to the effort to take full advantage of this new window of opportunity to produce sustainable changes in primary healthcare systems.

References

THE EFFECTS OF PRIMARY CARE

THE EFFECTS OF PRIMARY CARE

children with a history of trauma and other behavioral challenges. Child Abuse &

in a universal prevention program for child behavior and emotional problems: Barriers to
research and program participation. Prevention Science, 6(4), 275-286.

problems in a pediatric primary care office: Five years of follow-up. Journal of Pediatric
Psychology, 10(1), 15-30.

based treatments for children with trauma-related psychopathology as a result of
childhood maltreatment: A systematic review. European Child & Adolescent psychiatry,
22(5), 269-283.

(2016). Primary health care: Potential home for family-focused preventive interventions:
Potential home for family-focused preventive interventions. American Journal of
Preventive Medicine, 51(4), S106-S118. doi: 10.1016/j.amepre.2016.05.014

Journal of Investigative Medicine, 46(1), 4A-4A.

should work with them now to get the best for their child in the future. Health
Expectations, 17(4), 477-487.

Mendelsohn, A.L., Dreyer, B.P., Brockmeyer, C.A., Berkule-Silberman, S.B., Huberman, H.S.,
& Tomopoulos, S. (2011a). Randomized controlled trial of primary care pediatric

THE EFFECTS OF PRIMARY CARE

<table>
<thead>
<tr>
<th>Intervention</th>
<th>Studies</th>
<th>Program goals</th>
<th>Core contents</th>
<th>Components</th>
<th>Theories of change</th>
<th>Age</th>
<th>Format</th>
<th>Delivery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Play Nicely: The Healthy Discipline Program</td>
<td>Sholer 2011, Aragon 2013, Chavis 2013</td>
<td>To reduce child’s exposure to violence in media</td>
<td>The adverse effects of exposure to violence in the media, recommendation to limit media to 1 to 2 hours per day and not placing a TV in children’s bedroom.</td>
<td>Online interactive multimedia accompanying handbook that can be downloaded for free</td>
<td>Developmental framework, intergenerational cycle that links parenting skills, childhood aggression, child maltreatment, academic failure, and violence</td>
<td>2-12</td>
<td>Individual</td>
<td>CD rom or Web</td>
</tr>
<tr>
<td>Primary Care Parent-Child Interaction Therapy (PC-PCTT)</td>
<td>Berkovits 2010</td>
<td>To establish an authoritative parenting style</td>
<td>Child-directed interaction (CDI): enhancing parent-child attachment, positive parenting, and child social skills / parent-directed interaction (PDI): the use of clear directives, consistent follow through to reduce child noncompliance, aggression, and other behavior problems Same as above</td>
<td>Weekly sessions, Handouts, Parenting tip sheet, call-in time to ask questions or address challenges</td>
<td>Baumrind’s (1967, 1991) developmental research associating</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DVs</td>
<td>Study Info</td>
<td>Intervention</td>
<td>Measures</td>
<td>Informant</td>
<td>Post Tx Results</td>
<td>Follow-Up Results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
<td>--------------</td>
<td>----------</td>
<td>-----------</td>
<td>----------------</td>
<td>------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Knowledge</td>
<td>Chamberlin 1979</td>
<td>Parent Education</td>
<td>Author</td>
<td>Parent</td>
<td>12-month: NS</td>
<td>18-month: S more [LD: -0.52, MD: 0.32, HD: 0.46, (p=.026)]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parenting locus control</td>
<td>Berkovits 2010</td>
<td>PC-PCIT</td>
<td>Parent</td>
<td>N/A</td>
<td>24-month: S more [LD: 35.1, MD: 35.4, HD: 36.5, r^2=0.02, p = .00]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parent Self Efficacy</td>
<td>Breitenstein 2016</td>
<td>PLOC-SF</td>
<td>Parent</td>
<td>S decrease pre/post, NS btw group</td>
<td>6-month: NS compared to post S lower than pre</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Difficulty in child rearing</td>
<td>Chamberlin 1979</td>
<td>Parent Education</td>
<td>Author</td>
<td>Parent</td>
<td>12-month: Not reported</td>
<td>19-month: NS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive Parenting skills</td>
<td>Chamberlin 1980</td>
<td>Parent Education</td>
<td>Author</td>
<td>Parent</td>
<td>N/A</td>
<td>24-month: NS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attitudes</td>
<td>Aragon 2013</td>
<td>Play Nicely</td>
<td>Author</td>
<td>Parent</td>
<td>S higher change, [PN: 46.2%, OR 3.29, P < .001; AAP: 53.2%, OR 4.35, P < .001; control: 38.2%, OR 2.37, P = .018]</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exposure to media violence</td>
<td>Mendelsohn 2011A</td>
<td>VIP</td>
<td>Author</td>
<td>Parent</td>
<td>NS but lower (p=.006)</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infant media exposure</td>
<td>Borowsky 2004</td>
<td>Violence Prevention</td>
<td>Parent</td>
<td>NS</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parental Monitoring</td>
<td>Borowsky 2004</td>
<td>Parenting Questionnaire</td>
<td>Youth</td>
<td>N/A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monitoring</td>
<td>Aragon 2013</td>
<td>Play Nicely</td>
<td>Author</td>
<td>Parent</td>
<td>S higher change (PN: 38.5%, OR 4.26, P < .001; AAP: 32.9%, OR 3.35, P = .003).</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parenting practice</td>
<td>Mendelsohn 2007</td>
<td>VIP</td>
<td>Author</td>
<td>Youth</td>
<td>NS</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parental follow up practice</td>
<td>Breitenstein 2016</td>
<td>Parenting Questionnaire</td>
<td>Parent</td>
<td>Parent</td>
<td>3-month: NS</td>
<td>6 Month: NS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parental Warmth</td>
<td>Schiller 2016</td>
<td>Parenting Questionnaire</td>
<td>Author</td>
<td>Parent</td>
<td>G1: 4% / G2:13% / G4: 89% {G2[OR 4.93 / CI, 1.08-22.46]}, G3[259.29; 56.56-1188.61], G4 [507.05; 86.81-2961.45]}</td>
<td>N/A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mother reported number of conflicts</td>
<td>Chamberlin 1979</td>
<td>Parent Education</td>
<td>Author</td>
<td>Parent</td>
<td>12-month: Not reported</td>
<td>18-month: NS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive parent-child contact</td>
<td>Chamberlin 1980</td>
<td>Parent Education</td>
<td>Author</td>
<td>Parent</td>
<td>12-month: HD S more likely to participate in interactive activities with child (p = .028)</td>
<td>18-month: NS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

http://mc.manuscriptcentral.com/tva
<table>
<thead>
<tr>
<th>DVs</th>
<th>Study Info</th>
<th>Intervention</th>
<th>Measures</th>
<th>Informant</th>
<th>Analysis</th>
<th>Post Tx Results</th>
<th>Follow-Up Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Child behavior</td>
<td>Berkovits 2010</td>
<td>PC-PCIT</td>
<td>ECBI-Intensity</td>
<td>Parent</td>
<td>ANOVA 2 (Group) ×3 (Time)</td>
<td>Large main effect for Time, F(2,19)=12.54, p < .001, f=1.17, NS Time × Condition, NS between- subjects effect</td>
<td></td>
</tr>
<tr>
<td>Breitenstein 2016</td>
<td>ezParent</td>
<td>Incredible Years</td>
<td>ECBI-Intensity</td>
<td>Parent</td>
<td>ANOVA</td>
<td>NS.</td>
<td>NS.</td>
</tr>
<tr>
<td>Perrin 2014</td>
<td>Incredible Years</td>
<td>Parent</td>
<td>ECBI-Intensity</td>
<td>Parent</td>
<td>AMD & CI</td>
<td>S low behavioral intensity. [AMD: -0.36, CI: -0.72 to -0.001, p < .05, 12-month: AMD: -0.43, CI: -0.79 to -0.07, p < .05]</td>
<td></td>
</tr>
<tr>
<td>Perrin 2014</td>
<td>Incredible Years</td>
<td>Parent</td>
<td>ECBI-Intensity</td>
<td>Parent</td>
<td>AMD & CI</td>
<td>S low behavioral intensity. [AMD: -0.59, CI: -0.95 to -0.23, p < .05]</td>
<td></td>
</tr>
<tr>
<td>Schilling 2016</td>
<td>PriCARE</td>
<td>ECBI-Intensity</td>
<td>Parent</td>
<td>Linear regression</td>
<td>NS.</td>
<td>larger decrease from week 0 to week: -22 (-29, -16) vs -7(-17, 2), P = .012;</td>
<td></td>
</tr>
<tr>
<td>Breitenstein 2016</td>
<td>ezParent</td>
<td>ECBI-Problem</td>
<td>Parent</td>
<td>Adjusted mean differences and CI</td>
<td>NS.</td>
<td>S low scores in behavioral frequency [AMD: -0.46, CI: -0.82 to -0.10, p < .05]</td>
<td></td>
</tr>
<tr>
<td>Perrin 2014</td>
<td>Incredible Years</td>
<td>Parent</td>
<td>ECBI-Problem</td>
<td>Parent</td>
<td>Adjusted mean differences and CI</td>
<td>S low behavioral frequency [AMD: -0.53, CI: -0.89 to -0.16, p < .05]</td>
<td></td>
</tr>
<tr>
<td>Perrin 2014</td>
<td>Incredible Years</td>
<td>Parent</td>
<td>ECBI-Problem</td>
<td>Parent</td>
<td>Linear regression</td>
<td>NS, but greater decrease from week 0 to week 16: -5(-7, -4) vs -2(-4, 0), P = .014. NS between 6 and 16 weeks, NS in clinical significant ECBI scores.</td>
<td></td>
</tr>
<tr>
<td>Weisleder 2016</td>
<td>VIP</td>
<td>ITSEA-Externalizing behavior</td>
<td>Parent</td>
<td>T test</td>
<td>N/A</td>
<td>36-month: significantly low (p = .02)</td>
<td></td>
</tr>
<tr>
<td>Disruptive behavior</td>
<td>Perrin 2014 (Randomize)</td>
<td>Incredible Years</td>
<td>CII</td>
<td>Analysis of videotaped session</td>
<td>AMD & CI</td>
<td>No significance test. IY group lower [AMD: -0.43, CI: -0.79 to -0.06]</td>
<td>12-month: No significance test. IY group lower [AMD: -0.15, CI: -0.51 to -0.21]</td>
</tr>
<tr>
<td>Perrin 2014 (Non-randomized)</td>
<td>Chamberlin 1979</td>
<td>Parent education</td>
<td>CII</td>
<td>Analysis of videotaped session</td>
<td>Parent</td>
<td>ANCOVA</td>
<td>12-month: Not reported</td>
</tr>
<tr>
<td>Chamberlin 1980</td>
<td>Parent education</td>
<td>Author</td>
<td>CII</td>
<td>Analysis of videotaped session</td>
<td>Parent</td>
<td>ANCOVA</td>
<td>N/A</td>
</tr>
<tr>
<td>Clinical behavior</td>
<td>Schilling 2016</td>
<td>PriCARE</td>
<td>ECBI</td>
<td>Parent</td>
<td>Chi-square</td>
<td>NS</td>
<td></td>
</tr>
</tbody>
</table>

http://mc.manuscriptcentral.com/tva
<table>
<thead>
<tr>
<th>DVs</th>
<th>Study Info</th>
<th>Intervention</th>
<th>Measures</th>
<th>Informant</th>
<th>Analysis</th>
<th>Post Tx Results</th>
<th>Follow-Up Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Socioemotional behavior</td>
<td>Mendelsohn</td>
<td>VIP</td>
<td>CBCL</td>
<td>Parent</td>
<td>T test</td>
<td>33-month: NS</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>2007 Chamberlin</td>
<td>Parent</td>
<td></td>
<td>Parent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1979 Chamberlin</td>
<td>Parent</td>
<td></td>
<td>Parent</td>
<td>ANCOVA</td>
<td>12-month: Not reported</td>
<td>18-month: NS</td>
</tr>
<tr>
<td></td>
<td>Borowsky</td>
<td>Parent</td>
<td></td>
<td>Parent</td>
<td>ANCOVA</td>
<td>N/A</td>
<td>24-month: NS</td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>Parent</td>
<td></td>
<td>Parent</td>
<td>ANCOVA</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Aggression</td>
<td>Borowsky</td>
<td>Violence</td>
<td>CBCL-Problem</td>
<td>Parent</td>
<td>GLM</td>
<td>S lower [AMD: -1.71, CI: -2.89 to -0.53, p = .005]</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>Prevention</td>
<td>Achenbach</td>
<td>Youth</td>
<td>GLM</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Bullying</td>
<td>Weisleder</td>
<td>Violence</td>
<td>CBCL-Problem</td>
<td>Parent</td>
<td>Logistic</td>
<td>S [AOR: 4.43, CI: 1.87 to 10.52, p < .001]</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>Borowsky</td>
<td>Prevention</td>
<td>Achenbach</td>
<td>Youth</td>
<td>Logistic</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Physical fight</td>
<td>Borowsky</td>
<td>Violence</td>
<td>Achenbach</td>
<td>Parent</td>
<td>Logistic</td>
<td>S [AOR: 1.79, CI: 1.11 to 2.87, p = .02]</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>Prevention</td>
<td>Achenbach</td>
<td>Youth</td>
<td>Logistic</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Delinquency</td>
<td>Borowsky</td>
<td>Violence</td>
<td>CBCL-Problem</td>
<td>Parent</td>
<td>GLM</td>
<td>S [AMD: -0.71, CI: -1.28 to -0.13, p = .02]</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>Prevention</td>
<td>Achenbach</td>
<td>Youth</td>
<td>Logistic</td>
<td>NS</td>
<td></td>
</tr>
<tr>
<td>Attention</td>
<td>Borowsky</td>
<td>Violence</td>
<td>Achenbach</td>
<td>Parent</td>
<td>GLM</td>
<td>S [AMD: -1.02, CI: -1.77 to -0.26, p = .009]</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>Prevention</td>
<td>Achenbach</td>
<td>Youth</td>
<td>GLM</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Hyperactivity</td>
<td>Weisleder</td>
<td>VIP</td>
<td>ITSEA-attention</td>
<td>Parent</td>
<td>ANOVA</td>
<td>14-month: NS</td>
<td>24-month: S higher (ES: 0.30; P < .05)</td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td>interview</td>
<td>ITSEA-hyperactivity</td>
<td>Parent</td>
<td>T-test</td>
<td>36-month: NS</td>
<td>36-month: S lower (p=.02)</td>
</tr>
<tr>
<td>Anxiety/Depression</td>
<td>Borowsky</td>
<td>Violence</td>
<td>CBCL-Problem</td>
<td>Parent</td>
<td>GLM</td>
<td>NS but favored the intervention group</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td>2004</td>
<td>Prevention</td>
<td>Achenbach</td>
<td>Youth</td>
<td>GLM</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Separation distress</td>
<td>Weisleder</td>
<td>VIP</td>
<td>ITSEA-separation</td>
<td>Parent</td>
<td>ANOVA</td>
<td>14-month: NS</td>
<td>24-month: NS, 36-month: Not collected</td>
</tr>
<tr>
<td>Social skills</td>
<td>2016</td>
<td>interview</td>
<td>ITSEA-imitation</td>
<td>Parent</td>
<td>T test</td>
<td>24-month: NS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2016</td>
<td>interview</td>
<td>ITSEA-imitation</td>
<td>Parent</td>
<td>T test</td>
<td>36-month: NS</td>
<td></td>
</tr>
</tbody>
</table>
Table 4 Critical Findings

- Most studies of primary care-based parenting interventions have been conducted in urban primary care facilities mainly enrolling low-income ethnic and racial minority participants.
- Primary care-based parenting interventions vary with regard to the types, dosages, and delivery formats. Some require weekly in-person attendance while others are parent self-guided interventions that can be completed online or using electronic devices.
- Many primary care-based parenting interventions have been adapted from interventions originally targeting parents of children with behavioral and emotional disorders. No consistent outcome differences were found between these interventions and interventions developed specifically to be delivered in primary care settings.
- Primary care-based parenting interventions have been developed mainly based on attachment theory, social learning theory, and coercion theory. Interventions that are not based on explicit theories of change also contain components commonly found across various evidence-based parenting interventions.
- Primary care-based parenting interventions can be effective in enhancing parenting knowledge, locus of control, monitoring, positive parent-child interactions, and in reducing negative discipline strategies.
- The effects of primary care-based parenting interventions on child behavior outcomes are inconsistent across studies.
- The effects of primary care-based parenting interventions can be moderated by child gender, age, maternal literacy and depression as well as by family psychosocial risk although the inconsistent results across studies create challenges in drawing conclusive knowledge.
- A limited number of studies paid attention to the process of adapting, installing, implementing behavioral parenting interventions into the specific organizational context of primary care.

Table 5 Implications for Policy, Practice, and Research

- Primary care-based parenting interventions have the potential to make positive contributions to the effort to prevent maltreatment and promote family well-being at the population level. Healthcare leaders and policymakers should be informed of latest developments in the field to maximize the utility of primary care in preventing family violence.
- Primary care practices seeking to adopt innovation through the integration of behavioral parenting interventions into routine care should consider various options available and select interventions that best fit their specific organizational context.
- Implementation science can provide important insights into the process of developing and delivering primary care-based parenting interventions. More studies are needed to further advance the knowledge of facilitators and barriers in integrating behavioral parenting interventions into primary care.
- Future studies should explore the goals and underlying theories of change that are the most suitable and attainable in the context of primary care considering the universal nature of such interventions delivered in primary care.
- Future studies should seek to increase the generalizability of their findings by engaging geographically and socioeconomically diverse populations to maximize the value of primary care as a platform to deliver universal parenting interventions.
Figure 1
PRISMA 2009 FLOW DIAGRAM

1,174 records identified through database search, forward/backward search, and grey literature search

1,009 records screened

113 studies assessed for full-text eligibility

17 studies included

165 duplicates removed

896 records excluded (n = 341)

1 study identified manually

97 studies excluded

11 child age,
1 prenatal intervention,
2 child with identified needs,
3 parent with identified needs, 16 no intervention,
2 no parenting intervention,
4 multicomponent intervention,
7 no control group,
12 partially or entirely delivered outside primary care, 16 outside USA,
8 no parenting outcomes,
9 no full text available,
6 against multiple criteria,
Figure 2

Risk of Bias Assessment of Randomized Control Trial Studies

<table>
<thead>
<tr>
<th>Study Info</th>
<th>Random sequence generation</th>
<th>Allocation concealment</th>
<th>Blinding of personnel and participant</th>
<th>Blinding of outcome assessment</th>
<th>Incomplete measurement</th>
<th>Selective reporting</th>
<th>Other Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aragon 2013</td>
<td>?</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Berkule 2014</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>Borowsky 2004</td>
<td>?</td>
<td>?</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>Breitenstein 2016</td>
<td>L</td>
<td>H</td>
<td>H</td>
<td>?</td>
<td>L</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>Canfield 2015</td>
<td>?</td>
<td>?</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Cates 2016</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Chavis 2013</td>
<td>?</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Mendelsohn 2011-P</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Mendelsohn 2011-R</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Mendelsohn 2007</td>
<td>L</td>
<td>?</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Perrin 2014</td>
<td>L</td>
<td>?</td>
<td>?</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Schilling 2016</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>?</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Scholer 2011</td>
<td>?</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>Weisleder 2016</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>?</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
</tbody>
</table>

Figure 3

Risk of Bias Assessment of Randomized Control Trials (Across studies)

The figure shows a risk of bias assessment for randomized control trials across various studies. The assessment criteria include random sequence generation, allocation concealment, blinding of personnel and participant, blinding of outcome assessment, incomplete measurement, selective reporting, and other bias. Each criterion is rated on a scale from low (L) to high (H), with uncertain (?) indicating uncertainty about the risk of bias. The risk of bias is visualized across different studies, with each study's data represented by bars showing the percentage of low, uncertain, and high risk of bias.