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Abstract

What makes an industry a dominant filière and a particular technology a so–called Gen-

eral Purpose Technology (GPT)? The paper contributes to a microeconomics of vertically

related and networked industries by framing GPTs as a peculiar case of technological con-

nectivity between sectors and provides a simple model that accounts for the endogenous

success (failure) of GPT–based industries in a competing technologies setting. In a nutshell,

we explore the process potentially leading to technological pervasiveness and dissect it in

its structural elements. The model takes into consideration several conditions under which

an upstream technology increases its pervasiveness in the economy or remains constrained

as a component used by a small subset of downstream applications only. Hence, the model

shows how ‘purposes’ are acquired by a technology struggling to dominate the downstream

market. Policy implications of the analysis are highlighted, and dynamic implications of

the model are discussed. Two main features of the study are that i) we go beyond the a

priori assumption that a pervasive GPT–like technology already exists in the economy and

ii) we bring GPT theorizing under the umbrella of studies of structural change through the

dynamics of industries’ linkages.

Keywords: general purpose technology; industrial linkages; pervasiveness; star economy;

competing technologies.

JEL Classification: C63, D24, L14, O32.
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1 Introduction

The pervasiveness (or generality of purpose) of technologies is a feature that economic theory

usually disregards or assumes a priori. In this paper, we posit that the process through which

a technology gains pervasiveness matters: The evolution of a technology can result in a broad

diffusion or in a failure to spread. The main question to be answered is: how are purposes ‘ac-

quired’? Purposes are meant here in the sense of ‘applications’, or uses for a given technology

that can serve as a component, or input, to other technologies or economic activities. Relatedly,

we define purpose acquisition process the dynamics leading a technology — developed to deploy

specific functions or to solve specific problems — to identify further purposes and uses beyond

the ones the technology was originally planned or designed for. We focus on a particular setting

in which the protagonists are general purpose technologies (hereinafter GPTs), upstream tech-

nologies (input) characterized by a spectrum of application ranging beyond a single industry

or sector and by the capacity to induce economy–wide transformational effects (Bresnahan and

Trajtenberg, 1995; Bresnahan, 2010; Lipsey et al., 2005). The relation between GPTs and their

applications is a particular case of linked markets, that in which an upstream industry serves

multiple downstream industries. Relatedly, pervasiveness can be thought as some function of

the installed base of downstream user industries; thus, in a sense, this paper establishes a link

between GPT theory and network externalities literature (Shy, 2011). This conceptual ‘bridge’

is not the only one we perform in this study. In fact, by shifting GPT theory to a theory of linked

markets whose structure evolves in time, we bring GPT literature under the umbrella of studies

on structural change (Pasinetti, 1983). In a nutshell, we answer the question ‘how are purposes

acquired’ by filling a gap in the literature concerned with the nature of pervasive technological

change; we do that providing a microeconomic formulation of the purpose acquisition process

and the factors influencing it.

The study of the process of purposes acquisition is relevant because it captures the multilevel

nature of the determinants shaping technological trajectories (Dosi, 1982) and the configuration

of technological systems. A contemporary example useful to make clear the issue at stake is

that related to the energy–storage and battery sector. As Crabtree recalls,

In 1991, the year that the lithium–ion battery was commercially released, no one

foresaw the disruption that it would cause in personal electronics. After initially be-

ing used in portable music players and camcorders, lithium–ion batteries later found

their way into, and spurred the development of, laptops, tablets and mobile phones

— technologies that have permanently changed how much of society works. Yet

there is an even bigger revolution on the horizon. In the same way that telephones

had a rotary dial for most of their existence, the electricity grid and cars have mostly

existed in a single, unchanged format. But as we move beyond lithium–ion technol-

ogy, a new generation of cheaper and more powerful batteries will completely rejig

the power grid and usher in an age of electrically powered transportation. (Crabtree,

2015)

The example mentioned above is a case in point that allows to capture at least two deeper

pieces of evidence regarding technological pervasiveness. First, input technologies are usually
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introduced for specific purposes and gain pervasiveness later on; second, the pervasiveness of an

upstream incumbent input can be challenged by entrant technologies that try to increase their

downstream market share of applications. Furthermore, as argued in a more general argument

by Stephan et al. (2017), the pattern of change of a given technological system is affected by its

sectoral configuration (namely the number and types of sector linked in a technological system

value chain); this suggests that the structural relations in an economy — industries’ vertical

relations for what concerns this paper — influences the dynamics of purposes acquisition. This

paper takes these stylized facts as the point of departure to develop a general microeconomic

approach to describe the process of purposes acquisition.

We propose a model of technological competition in a setting featuring vertically–linked

markets. A set of downstream industries can adopt one of the possible alternative upstream

input technologies that struggle for pervasiveness. The competition among those technologies

can result either in the establishment of a new pervasive GPT or in the persistence of the

existing GPT as the dominant one. To understand this dynamics, we extend the Schumpeterian

concept of ‘competition for the market’ (Geroski, 2003) to the case of vertically related industries,

introducing a ‘competition for the downstream market’. As the competition for the downstream

market unfolds, the process of acquisition of purposes might take place if the new upstream

technology prevails on the established one.

We borrow a simple analytical framework used in the literature on international trade to

model acquired purposes and to offer a description of how, in a setting featuring linked markets

and upstream technological competition, a newly introduced specific purpose technology can

become pervasive and, hence, general purpose. The factors affecting the ‘specialization’ of

the downstream industries in one of the alternative upstream technologies are identified and

discussed. To summarize our argument, two main features of this study are that using our

framework i) we go beyond the a priori assumption that a pervasive GPT–like technology already

exists in the economy and ii) we bring GPT theorizing under the broad umbrella of studies of

structural change through the dynamics of industries’ linkages.

In a nutshell, the issue at stake for our study is the representation of the process leading

to technological pervasiveness. To uncover such process, we build on and extend the theory of

general purpose technologies filling a main gap of this body of literature: the microeconomic

modeling of general purpose technologies as a special case of technological competition displaying

vertically–linked payoffs. Furthermore, we combine different strands of literature to offer a

contribution encompassing a handful of issues in innovation economics.

The paper proceeds as follows: Section 2 defines the building blocks used to intersect theories

of linked markets, GPTs, technology evolution, and structural change. Section 3 set up a simple

Ricardian model in the spirit of Dornbusch et al. (1977) and Cantner and Hanusch (1993), and

outlines a static and dynamic analysis. Section 4 concludes discussing the results and suggesting

directions for further research.

2 Connectivity and General Purpose Technologies

We consider the study of the process of purposes acquisition part of a more general investigation

into the nature of economic connectivity and structural changes therein. To support this claim,
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we now show how different phenomena taken up in seemingly unrelated strands of literature

share similar conceptual features and, therefore, can be used to setup a broad framework linking

industrial organization, general purpose technologies, and appreciative theorizing in the spirit

of Neo–Schumpeterian economics.

First, input–output theorists and development scholars have always been interested in the

inner structure of connections and bottlenecks (Hirschman, 1958) shaping economies, in order

to fine–tune public intervention and to identify the best routes for industrialization processes

to escape a handful of ‘traps’; on the contrary, standard economic modeling mostly focused its

attention either on aggregate dynamics or on industry level structural features.

Second, the analysis of the linkages between industries is recently experiencing a silent resur-

gence. We outline three main (not mutually exclusive) reasons for that: i) New Growth Theory

and Schumpeterian Growth Theory fail to explain complex market dynamics; this induces schol-

ars to investigate beyond the surface of aggregation and to frame macroeconomic issues (e.g.

fluctuations) as phenomena emerging from localized and micro–level shocks (Acemoglu et al.,

2012); ii) network models developed in the context of complexity sciences made their way into

economic theorizing, revamping the input–output view of economic activities as a fruitful way

to understand and represent production relations, industrial transformations (Carvalho and

Voigtländer, 2014; Contreras and Fagiolo, 2014; McNerney et al., 2013), specialization and in-

ternational trade (Hausmann and Hidalgo, 2011) and the dispersion of manufacturing in global

value chains (Timmer et al., 2014); iii) the economic crisis and a timely rediscovery of the role of

the public sector in the economy boosted a novel discussion on the aims and tools of industrial

policy (Cimoli et al., 2009; Hausmann and Rodrik, 2006; Mazzucato, 2013; Stiglitz et al., 2013)

and on the intertwined channels transmitting policy impulses to firms and markets. The idea

that ties matter in influencing economic behaviors is certainly not new in innovation economics:

The literature on open innovation, collective invention, R&D collaborations and patent networks

(Cantner and Graf, 2006) is well developed. Also, the very idea at the basis of the Pavitt taxon-

omy (Pavitt, 1984) is to highlight industries’ external sources of technical change — hence the

role played by the connectivity with suppliers, an exercise further developed by a rich literature

on rent and knowledge spillovers (Verspagen and De Loo, 1999) and technology flows analysis

(Scherer, 1982).

Third, the diffusion of a network–inspired theorizing due to reasons described above allows

for an increased use of concepts that were confined until recently to niches of the economic

discipline as evolutionary, innovation and development economics. Concepts such as multi-

ple equilibria (Hoff, 2000; Stiglitz, 1987; Stiglitz and Greenwald, 2014), learning, ergodic and

out–of–equilibrium processes (Arthur, 2013), positive feedbacks, linkages (Hirschman, 1958), all

blossom again in the economic literature. These building blocks are helpful to reformulate eco-

nomic stylized facts as dependent on linked payoffs. More specifically, stating that economic

outcomes depend on connectivity — that is on the strength and distribution of linkages among

the units of analysis — has consequences for the study of industry dynamics, especially for

what concerns some unresolved puzzles. For example, the known technological and economic

drivers of market selection (Cantner et al., 2012, 2016), market turbulence (Cantner and Krüger,

2004) and industry life cycles (Klepper and Graddy, 1990; Klepper, 1996) may just be a part
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of a larger story: connectivity may affect the speed of selection and survival probabilities, the

rate and pace of technological change, and the duration of the phases of the industry life cycle.

External effects originating in linked markets may play a much broader role in innovation and

economic activities than it is usually accounted for.

In this paper, connectivity is accounted for by studying how the technological specialization

of downstream industries (their ‘upgrading’, in the language of development economics) and the

pervasiveness of upstream technologies (input) are related. The most stylized case of connectivity

one can study is that of an upstream–downstream relation between a single supplier and a single

customer industry. The literature focuses mainly on incentives and constraints for vertical

integration (transaction cost economics being prominent in such type of analysis; see also Arrow

(1975) and Bresnahan and Levin (2012)) and on the effects of different market structures on

the performance of vertically related markets, for example in the case of double marginalization

(Spengler, 1950; Bresnahan and Reiss, 1985). What is interesting the endogenous determination

of payoffs, when decisions on one side of the relation affect the returns of some activities (for

example, innovative activities) on the other side, and vice versa. This is the case, for example,

of two–sided markets and platforms (standards) formation (Rysman, 2009; Weyl, 2010) driven

by network effects and of organizational ecologies’ densities interdependencies (De Figueiredo

and Silverman, 2012).

In what follows, we focus on a very specific case of connectivity structure, that stands

in–between a singular upstream–downstream connection and a complex network structure with

multiple upstream–downstream ties. We consider a production structure featuring vertical (that

is, hierarchical) relations between one upstream technology and a set of downstream applications

and analyze the effects of the introduction of incoming upstream technologies. This structure

is similar to what Carvalho (2014) calls a star economy (that is, a hub–and–spoke network),

with the difference that here the upstream vertex features a handful of technologies competing

for prevalence in use in the downstream industries. A star economy–like structure is the most

straightforward representation of the linkages between a GPT (at the center) and its downstream

applications (in the surrounding periphery). On this rather general basis, GPT theory has been

developed in several economic fields, such as industrial organization (Bresnahan and Trajtenberg,

1995), new growth theory (Helpman, 1998), and evolutionary economics (Carlaw and Lipsey,

2011).

However, the ‘generality’ of the phenomenon it describes has not yet been exploited to sketch

a fully–fledged theory of economic connectivity and linked payoffs in the context of vertically

related industries. We fill this gap by extending the GPT setting to the case in which the

incoming technology striving for pervasiveness is not yet a GPT. When the establishment of a

GPT is not assumed a priori, the resulting prevailing and pervasive upstream technology has to

emerge from the competition between upstream technologies for the downstream industries. The

reason to look at GPTs from this perspective lies in the definitional underpinnings of the very

GPT concept (Field, 2008), which ‘has come under growing attack’ (Ristuccia and Solomou,

2014) recently. To the authors’ knowledge, only the paper by Thoma (2009) takes the same

viewpoint as the one suggested in this paper. The paper studies how potential GPTs ‘strive

for a large market’. Thoma’s analysis focuses on a specific case (Echelon’s LonWorks control
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technology) and highlights the different strategies experimented by the company Echelon to

foster a pervasive use of its product. These strategies were ranging from value chain integration

and collaborations to open sourcing of the product software in order to create a community

of loyal users. Eventually, it has been the role played by a big public demander to create the

conditions for an increasing pervasive use of the technology. This goes in line with the result of

classic GPT models, according to which public procurement can lead the GPT diffusion to higher

equilibria (Bresnahan and Trajtenberg, 1995). Our contribution goes in the same direction

but provides an abstract framework, rather than a case study, to understand how incoming

candidate GPTs succeed or fail while striving for a large market. It goes without saying that

our extended framework to address the dynamics leading the establishment of a GPT among

competing potential alternatives remains a simplification of the complex array of interwoven

factors influencing technological pervasiveness. While aware of the partial explanatory power of

our model, we nevertheless consider it a step forward in the research agenda dealing with the

understanding of radical and general purpose technologies from a microeconomic perspective.

In existing GPT models vertical connectivity is key for economic performances and most

importantly for innovation performances, given the existence of the so–called ‘dual inducement’

of innovational complementarities between the single upstream GPT technology and downstream

applications. The problem in that context is to determine and solve the coordination issue arising

between downstream applications and a pre–determined upstream technology. Market outcomes

can be lower than socially desirable, however, there, coordination is about the intensity, rather

than the direction of innovative activities. In our paper, also the direction matters, in the sense

that the incoming upstream technology is not aware of its potential GPT ‘status’; it learns

it through its (successful or not) dynamics toward prevalence, persistence, and pervasiveness

(Cantner and Vannuccini, 2012). User industries can choose the upstream technology to which

to be tied; the outcome of this dynamics in terms of which upstream technology prevails decides

the direction of innovative activities.

The modeling of a star economy in the making can be related to several strands of literature:

First, there are similarities with models dealing with infant industries and early stages of in-

dustrialization (Hausmann and Rodrik, 2003; Hoff, 1997). In fact, one may think of the process

leading to the establishment of a GPT as a case of ‘infant technology’ development. Second,

modeling the problem of ‘acquired purposes’ closely resembles the phenomena on which studies

on competing technologies (Arthur, 1989) focus on, namely dynamic increasing returns to adop-

tion. Third, modeling the switch between upstream technologies by downstream industries can

be framed as a standard topic in industry dynamics, that of entry/exit patterns. In this case

those entering are not firms; it is an entire application industry that, by adopting one of the

upstream competing technologies, enters in one of the potential GPT sectors. Fourth, our model

is conceptually and analytically close to models of network externalities — in particular those

employing Hotelling–style frameworks — as, next to technological features, the installed base of

user industries influences the dynamics of purposes acquisition. Fifth, a model of pervasiveness

in the making is intuitively a model of structural change in which the economy re–structures its

working logic around competing GPT–like core technologies.

Our model builds upon the classic (Bresnahan and Trajtenberg, 1995, hereinafter BT)
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model.1 There, the authors explore the simple ‘star economy’ case. The basic structure of

the model is a ‘hierarchical pattern’ of technological interdependence between a single GPT

industry and many downstream application industries/sectors (hereinafter AS). BT define an

AS an industry/sector ‘that (i) is an actual or potential user of the GPT as an input; (ii)

can earn positive returns by engaging in R&D of its own; and (iii) the rents it earns increase

monotonically with the “quality” of the GPT’ (Bresnahan and Trajtenberg, 1992, p. 11). In

short, the BT model features a coordination game in innovative activities with one–to–many

upstream–downstream linked payoffs. These generate on the one hand a potential positive feed-

back process in innovation (a so–called dual inducement mechanism) and, on the other hand,

suboptimal equilibria due to a vertical and a horizontal externality. The vertical externality

emerges from the linked payoffs between GPT and AS — it is a bilateral moral hazard problem;

the horizontal externality results from the linked payoffs between the many ASs given their indi-

rect connection through the GPT. The main variables affecting the two types of sectors’ optimal

decision making with regards to innovative activities (the objective functions to be maximized

being the expected gross returns on innovative activities for the AS and the expected profits

for the GPT) are a scalar for the GPT technical ‘quality’ (z), the price of the GPT input (w)

and the constant marginal cost of production of the GPT–embodying commodity for the GPT

sector (c). This set of variables proxy both economic and technological explanations affecting

the GPT–AS coordination game. We explicit here the BT model specification as our model

maintains the same notation while extending its reach to more than one upstream GPT.

Besides the rationales derived from the relevance of studies on economic connectivity and

from the received IO–based GPT theory, the paper’s main question is also justified by a further

theoretical argument that has to do with the representation of the process of technological

takeover. This process is usually related to the phenomenon of ‘disruption’ (Gans, 2016).2

Adner and Zemsky (2005) offer a formal discussion of the conditions for technological disruption

to occur. The authors explore the economic conditions and the timing under which a novel

technology either invades a mainstream market or remains confined in a niche, for the case

featuring two competing technologies and heterogeneously distributed firms’ willingness to pay.

Even if the argument is not made explicit there, the model can be framed as one of firms’

choice among alternative upstream competing technologies and goes in the same direction taken

by this paper — namely, to show that multiple equilibria and, therefore, alternative economic

structures, are viable outcomes in a vertically related market with linked payoffs and more than

one potential pervasive technology available. Adner and Levinthal (2002) bring the analysis of

purposes acquisition on the terrain of evolutionary theory by comparing the pervasiveness in

the making of a technology with the phenomenon of speciation. Speciation in the economy is

the application of existing technologies to a new domain of application (Adner and Levinthal,

2002, p. 51), and it resembles the mechanisms through which a candidate GPT gains shares in

the downstream application domain. A close — though distinct — similitude is that with the

1In what follows we refer to the journal version of the study, dated 1995. In case the contents of interest are
available only in the extended working paper version we refer to the source dated 1992.

2Despite the similarity of the concepts of generic technological change and disruption, the two have only a
partial overlap. The progressive establishment of a GPT may or may not produce disruption. Its establishment
as an emerging pervasive input can be characterized by re–domaining (Arthur, 2009) of existing activities around
new physical principles and by the generation of complementarities, rather than substitution.
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concept of exaptation (Andriani and Cohen, 2013; Dew et al., 2004). Exaptation occurs when

traits get co–opted for use in unintended ways (Andriani and Cohen, 2013). Speciation and

exaptation processes are conceptually proximate with what is labeled technological upgrading in

development economics, re–domaining in complexity economics (Arthur, 2009) and technological

convergence in the economics of technical change (Rosenberg, 1963). In a broad sense, the core

idea is that in the struggle for pervasiveness, the more downstream applications switch to one

of the upstream inputs so that it starts to be used in new domains, the more the economy

experiences a technological structural change.3

Finally, as already mentioned, the study of pervasive technologies in the making is strongly

embedded into structural change theorizing (Pasinetti, 1983; Silva and Teixeira, 2008). In fact,

our model captures in the most stylized way the change in the underlying structure of an econ-

omy between alternative technological infrastructures. By adopting new upstream technologies

the structure of industries’ interdependencies changes. However, our Ricardian model displays

only one type of linkage — that between upstream potential GPTs and downstream GPT–user

industries — in order to study the dynamics leading to technological pervasiveness. In this

sense, we focus only incidentally on the composition of the economy, and in doing that we dis-

tance ourselves from classic studies of structural change. Nonetheless, ours is a study of the

shift in structure of a given economy from a prevailing core technology to a new, competing

one, in the style of the literature on Long Waves and Techno–economic paradigms (Freeman

and Louçã, 2001; Perez, 2010; Silverberg, 2003), where the process of pervasiveness in the mak-

ing through purposes acquisition captures the formation of a new paradigmatic technological

‘envelop’ driving the re–domaining of the whole set of downstream industries.

Taking stock of the discussion so far, we can highlight some propositions to be used in the

remainder of the analysis: i) technology adoption and technological competition depend both on

economic and non–economic (technological) determinants, that can be considered independently

from each other; ii) the adoption/diffusion of an incoming upstream technology is function of

the change in the economic and technological determinants across all the relevant alternatives;

iii) an incoming upstream technology striving for pervasiveness can encounter resistance from

the established GPT; iv) purposes are acquired in an evolutionary manner, either co–opting

functions for use in unintended ways or applying existing functions to new domains. In what

follows, these premises are used to set up a toy model capturing how an upstream potential

GPT can succeed or fail to acquire purposes in the downstream market.

3 A Model of Purposes Acquisition and Structural Change

We propose a simple model representing the dynamics of purposes acquisition when more than

one upstream technology is available in the market and, hence, a ‘competition’ to gain per-

vasiveness in linkages with the downstream economy takes place. The outcome in terms of

upstream–downstream connectivity structure varies according to the state and change of the

economic and technological variables at work. We distinguish three broad outcomes of the

model: i) in the competition between an established and a new upstream technology, the new

3With technological structural change we mean here a transformation of the technological base of industries
rather than — as usually meant for structural change — a shift in employment allocation through macro–sectors.
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upstream technology gains pervasiveness in the market and in the limit takes over and serves the

whole downstream economy; ii) in the competition between an established and a new upstream

technology, the established upstream technology maintains its pervasiveness in the economy and

a novel one occupies only a niche (it is adopted by none or a limited amount of downstream

sectors); iii) in the competition between an established, a new and a third, newer, upstream

technology, the newer upstream technology displaces the new one, making the former a sort of

‘failed GPT’.

The model is a simplified version of the Dornbusch et al. (1977) assignment model of inter-

national specialization in line with Cantner and Hanusch (1993), Acemoglu and Autor (2011);

Cimoli (1988); Dosi and Soete (1983) and, more recently, Costinot (2009) and Costinot and Vo-

gel (2015).4 In our version the matching occurs between upstream technologies (industries) and

downstream industries, rather than countries and products as in Cantner and Hanusch (1993)

and skills/labor and tasks as in Acemoglu and Autor (2011). The units of analysis of the model

are generic individual industries; firms’ behavior is not explicitly taken into account. We assume

homogeneity between firms and heterogeneity between industries; while barely realistic (stylized

facts regarding the persistent ‘fractal’ nature of economic characteristics the more disaggregation

is deepened are well–known, see Dosi and Nelson (2010)) the introduction of firms heterogeneity

would only magnify a phenomenon already emerging under more simplifying restrictions. For

the sake of generality, hereinafter instead of the term ‘downstream industries’ we use the term

‘downstream applications’, in order to take into account a more disaggregated and richer set of

economic activities.

The next sub–section describes a baseline case featuring two–upstream industries — one

established and a new upstream technology. We illustrate this case in detail as it provides

the main gist of our contribution: shifting from a setting featuring a one–to–many relationship

between a GPT and downstream industries to a two–to–many relationship between alternative

upstream (GPT–like) technologies and downstream industries is enough to shed light on the

process leading to technological pervasiveness (or failure in achieving it). Later on, we extend

the analysis to a three–upstream industries scenario in order to highlight the robustness of our

argument when the setting complexity increases.

3.1 The Case of Two Competing Upstream Industries

We assume that each upstream industry produces a single, recognizable, technology.5 The

upstream technology is in turn used as a single component in downstream applications. The

economy broad structure is that of a linear value chain with two layers: upstream, that of the

supplier industries; downstream, that of the user industries. Upstream industries are labeled

with the index E (for the established technology) and N (for the new technology). Technology

N is a potential ‘entrant’ in the upstream market; furthermore, it is reasonable to assume

that N is, from its ‘birth’, associated to a limited set of specific downstream industries initiated

thanks to the very discovery or invention of N . Given that downstream applications’ production

technologies depend only on the upstream product, they can be characterized by their valuation

4The model itself can be conceived as a case of exaptation, given that a framework developed for a specific
purpose is imported into another field of economic theorizing.

5By doing so the use of the terms upstream industry and upstream technology in the paper is indifferent.
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of the specific upstream technologies and ordered in a continuous and closed interval [0; In],

where I indicates a generic downstream application and n is an ordered index.6

In Dornbusch et al. (1977) and Cantner and Hanusch (1993) goods are characterized by a

scalar, the labor requirement (the inverse of labor productivity) needed to produce them. A

decrease in labor requirement capturing in this context an increase in production efficiency. In

our model we look at industries or downstream applications (instead of goods) and we assume

that — due to strong complementarities — the upstream components quantity requirement is

constant (and normalize it to one unit) and what changes are just the benefit of using one or the

other upstream technology. In BT, this is captured by the ‘quality’ characteristic of the GPT.

The ranking over the continuum of downstream applications, which is assumed to be invariant

over time, distributes the downstream application according to the relative benefit of using the

new upstream technology. Relative benefit measures the advantage or the disadvantage for a

downstream application to ‘attach’ to the new upstream industry compared with the choice

of staying with the established one. This is a measure that proxies in a scalar a number of

innovation determinants that are well known in the literature, such as technological intensity or

performance gap (Cantner and Hanusch, 1993, p. 220), technological opportunities (Klevorick

et al., 1995), price/performance sensitivity (Almudi et al., 2013; Dosi and Nelson, 2010; Pavitt,

1984) or relative willingness to pay for the upstream technologies. In turn, all these concepts are

potential proxies for the easiness of technology switch from an established to a new upstream

technology, and capture the core of the technological side of our model.

In order to keep a degree of consistency with the previous literature, the model uses the

same set of explanatory variables and a similar notation to that outlined in Section 2. The

measures of benefit just described can be interpreted as functions of the perceived usefulness

of (one of) the (potential) GPTs. We call zj(I) such application–dependent usefulness, where

j = {E,N}, E is the established and N the novel upstream technology and z varies in I. The

novel feature of our model is that we are discussing relative rather than absolute usefulness —

that is a measure for ‘comparative advantage’ of technology N with respect to technology E.

Therefore, our variable of interest is ζ(I) = zN (I)
zE(I) , the relative technological usefulness (attrac-

tiveness) of upstream technologies. It is important to highlight here that while in Bresnahan

and Trajtenberg (1995) model z is a single scaler value (the GPT ‘quality’) known to all the AS,

in our case z is a downstream application’s valuation of the upstream technology quality. The

model is deterministic, that is we do not interpret z as an ‘expected’ usefulness but as a source

of heterogeneity between applications. In this way, heterogeneity is introduced in the model via

a continuous distribution of downstream propensities to choose the performance of N relatively

to E and the model can be considered belonging to the class of probit or threshold models of

diffusion (Geroski, 2000).

Given that it is defined over the interval of downstream applications, ζ(I) is a function

6As for the microfoundations of the model: following Balan and Deltas (2013), downstream industries can be
considered as customers. Analytically, they can be thought as being represented by a value function of the type
v(0) + u(I) where v is a degenerate function and equals zero. However, in this paper we are not interested in a
optimal decision given the maximization of the value function but in the structural effects at the economy level
due to the shifts in the threshold of ‘specialization’ of downstream industries between competing upstream core
technologies. Hence, we can leave the microfoundations on the background; by doing that, our model becomes a
simplified version of an Hotelling setting based on relative valuations.
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— the relative (upstream) technology usefulness (performance) curve. Following Dornbusch

et al. (1977) we make the following assumptions on the shape of ζ(I): i) it is continuous and

differentiable in [0; In]; ii) it is monotonically increasing in I due to the downstream applications’

ordering, with ζ
′
> 0; iii) it is reversible (ζ−1(I) does exist). In short, ζ(I) represents the

comparative increasing rewards obtained from purchasing the new upstream component rather

than using the established one. At this point, it has to be remarked that downstream sector

size does not play a role in the model; each downstream application, defined over an infinite

continuum, has an infinitesimal size with respect to the whole economy. Theoretically speaking,

sub–intervals of technologically proximate (in the comparative advantage space) applications can

be identified and aggregated in order to model different industries sizes and to provide a more

realistic representation of the unequal weight of downstream economic sectors in the economy.

Such a refinement is left aside in this version of the model, even if downstream sector size may

play a role when mutual feedbacks and linked payoffs are explicitly formalized and taken into

account.

In order to have an upstream–downstream markets assignment, technological relationships

have to be confronted with economic ones. More precisely, the technology relative usefulness

(performance) curve has to be coupled with a relative cost curve. In Dornbusch et al. (1977)

and in Cantner and Hanusch (1993) the corresponding curve is a demand curve that integrates

consumption shares over the continuum of goods given Cobb–Douglas preferences of consumers.

Here we simplify the object of analysis by displaying only the relative cost for downstream

sectors to acquire upstream technologies. If each downstream application purchases a constant

amount of upstream component (we assumed only one unit), then no demand curve exists

to determine the pricing of the potential GPTs. What matters is the relation between the

two costs. Again consistently with Bresnahan and Trajtenberg (1995) we define wj(I) as the

cost of the upstream technology, where j = {E,N}, E is the established and N the novel

upstream technology. We do not deal with price–cost margins (profits) in the upstream market,

because the change in the downstream shares using one or the other upstream technology is

completely driven by downstream applications’ adoption decisions.7 The ratio ω(I) = wN (I)
wE(I)

represents the relative cost (downstream expenditure) curve. Regarding the shape of ω(I) the

assumptions we made on ζ(I) on continuity and differentiability hold. Concerning the slope of

ω(I), there are three possibilities: i) ceteris paribus the downstream applications’ ranking, the

novel upstream technology will be relatively more (less) costly for downstream applications with

a comparative disadvantage (advantage) in switching: ω(I) is monotonically decreasing in I; ii)

ω(I) is constant over the whole distribution of downstream application because either wN (I)

and wE(I) are constant for all I or are monotonically decreasing at the same rate over I; iii)

ω(I) is non–monotone. Formulation i) and ii) are more straightforward for comparative statics

purposes, while iii) may produce multiple equilibria. In the remainder of this Section, we assume

that cases i) or ii) apply.8

7However, price–cost margins may be quite relevant in affecting the magnitude of vertical externalities (Bres-
nahan and Trajtenberg, 1995).

8One may discuss if to identify a single ‘net benefit’ curve by defining a function ν(I) = ζ(I) − ω(I) could be
an equivalent modeling strategy. Working with ν(I) would bring our analysis into a standard Hotelling setting;
instead, we prefer to distinguish the two functions to highlight the role played by both technological and economic
determinants.
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Given the shapes of ζ(I) and ω(I), the model determines a downstream industry Ie that

separates the market between applications using upstream technology E and applications using

upstream technology N . To determine Ie, over the interval [0; In] we can set into relation

the relative usefulness and the relative cost of the upstream technologies for each downstream

application I

zN (I)

zE(I)

<
>
wN (I)

wE(I)
→ zE(I)

wE(I)

<
>
zN (I)

wN (I)

which transforms in a usefulness/cost ratio
zj(I)
wj(I)

. By the properties of the ζ– and the ω–

functions there is a downstream application Ie for which the following holds:

zN (I)

zE(I)
=
wN (I)

wE(I)
→ zE(I)

wE(I)
=
zN (I)

wN (I)

A downstream application adopts N if zE(I)
wE(I) <

zN (I)
wN (I) . In Ie equality holds and the model

yields the unique threshold or borderline downstream application that is indifferent in the choice

of upstream technology. In addition to the identification of Ie the model simultaneously provides

the size of intervals ]0, Ie] and ]Ie, In], which are the shares of the downstream market special-

ized either in E or N . A measure or a metric can be derived for the length of the ]0, Ie] and

]Ie, In] intervals, and used to assess the pervasiveness and thus the ‘GPT nature’ of the upstream

technologies and to track the dynamics of the purposes acquisition process. The latter point sug-

gests an insight contributing to the debate on the definitional drawbacks of GPTs (Field, 2008).

In fact, while GPT theory tends to adopt a discrete distinction between GPT and non–GPT

technologies, the empirical identification of GPTs has come to terms with the more continuous

nature of pervasiveness indicators (see for example the distribution of patents’ generality index

in Hall and Trajtenberg (2004)). What our model does is to import the non–discrete approach

to GPTs identification into modeling. We suggest that the share of downstream market served

by a given upstream technology embodies information on its GPT–nature and on its trajectory

of purposes acquisition.

The endogeneity of ζ(I) and ω(I) curves’ determination is — for the moment — purposefully

avoided in the model, in order to distinguish the effect of purely technological and pure economic

determinants of the downstream establishing a linkage to one or the other upstream industry.

The feedback effects both on the demand and supply side can be already detected by fractioning

the dynamic adjustment process of specialization in one or the other upstream technology in

a sequence of ‘snapshots’. In line with Gans (2011), static analysis can already be a sufficient

proxy for dynamics considerations in some cases. For example, the presence of dual inducements

— downstream adoption improves the quality of the upstream and vice versa — can be modeled

as shifts towards the left of the ζ(I) curve, while the presence of learning effects (Arrow, 1962;

Thompson, 2010), meaning that the gains in efficiency of one technology production (in general

or respect to the competing alternative) are captured by a movement on the left of the ω(I)

curve (with wN (I) decreasing faster than wE(I)). The presence of dual inducements or faster

learning effects in the established technology may also give rise to non–linearities (and therefore

potentially to multiple equilibria) in the both demand and supply relative curves, a possibility

here ruled out by our assumption on the shape of ζ(I) and ω(I).
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Consider again for a moment the classic BT GPT model; there is no alternative to an already

established GPT. The possibility that a pseudo–diffusion (GPT adoption by the ASs) process

takes place within the game is captured by assuming an invariant ranking of ASs with respect

to V (w, z) (the ASs’ value function of innovation gross rents) and letting z and w to vary in

order to determine the unique ‘marginal’ or threshold AS that finds profitable to adopt the GPT

(Bresnahan and Trajtenberg, 1992). Formally, ‘for n(w, z) indicating the largest number of AS

that finds profitable to use the GPT as input given w and z, then nw(w, z) < 0, nz(w, z) > 0’

(the subscript indicating the partial derivative of n with respect to w and z), meaning that,

‘the set of using sectors expands as the quality of the GPT improves and its price goes down’

(Bresnahan and Trajtenberg, 1992, p. 13). The adoption process captured by the changes in

n(w, z) is already a broad proxy for a dynamics of purposes acquisition, if one assumes that

ASs are heterogeneous and that therefore an increase in the number of downstream adopters

widens the set of functions and uses the GPT provides. This is correct, however, only because

it is given in the model the presence of a single already established GPT. The change in the

number of ASs adopting an upstream input does not depend on the upstream competition among

alternative technologies struggling for success and pervasiveness. In a stylized sense, our model

extends this process going in the direction of a general case with several potential GPTs j and

with nj(w1, w2, . . . , wj , z1, z2, . . . , zj), that is, the number of ASs ‘choosing’ a potential GPT j

is function of the quality and the cost of all the relevant alternatives.

A graphical representation of the outcomes of the model is provided in Figures 1 and 2. The

two different cases provided are discussed next.

3.2 Discussion of the Two–upstream Technologies Case

As anticipated at the beginning of the paragraph, two main constellations in the two–upstream

technologies case can be distinguished. We label them as the competition (and potential takeover)

case and the niche case.9 In the competition case (see Figure 1), the intersection of ζ(I) and ω(I)

determines the downstream economy’s specialization, which at the very beginning may feature

the established upstream technology to maintain its ‘control’ over a wide share of downstream

applications. Varying the comparative (relative) advantages in upstream usefulness and cost, the

new upstream industry starts to acquire purposes (that is, the borderline downstream industry

moves to the left), leading in the limit to a full takeover. In this sub–case, the new upstream

technology may well be labeled as a GPT, but only after a process that put it in the position

to serve the largest share of the downstream market. The new upstream technology enters

the market as a specific purpose technology, gains pervasiveness and acquires purposes until it

dominates the downstream market and becomes a GPT.

In the second scenario (see Figure 2), that we label niche case, ζ(I) and ω(I) do not in-

tersect, so that despite the increasing attractiveness and comparative advantage of the new

upstream along the distribution of downstream applications the technological argument does

not compensate for the economic one, with ω(I) lying completely above ζ(I), so that Ie = In.

In this case a novel upstream technology and potential candidate to become a pervasive GPT

fails to emerge as such (van Zon et al., 2003) and remains a niche component used by a very

9They respectively mirror the ‘Ricardo case’ and the ‘innovation case’ in Cantner and Hanusch (1993).
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Ie

ζ'(I)

E N

In

ω(I)

Ix

N‘E‘

I'e

ζ(I)

Figure 1: Competition case

Note: the continuum of downstream industries is represented on the horizontal axis. The upward shift in the ζ(I) curve
indicates an increase in comparative advantage for the new upstream technology. Continuum sub–intervals labeled E, E′,
N and N ′ indicate the result of the competition for the downstream market, respectively for technology E and N before
and after the change in relative usefulness. The rightmost interval [In, Ix] indicates the set of novel downstream industries
that come together with the new upstream technology — there the ζ(I) curve is not defined. The rightmost arrows show
the emergence of new downstream industries — the extension of the continuum — from In to Ix .

limited set of applications, at the limit only those new downstream applications emerged due

to the introduction of the new upstream technology in the economy. A niche case can always

turn into a competition/takeover case, when a shift to the left of ζ(I) or a shift to the left of

ω(I) re–establishes an intersection between the two curves and sets Ie < In, meaning that the

borderline downstream application is an internal point of the interval.

The model can also account for the consequences generated by the emergence of new down-

stream applications (for example novel downstream products and infant economic activities)

that, as mentioned earlier, may follow the introduction of N .10 This is formalized by extending

on the right side the interval [0; Ie; In] to [0; Ie; In; Ix]. Here [0; Ie[ indicates the interval of appli-

cations attached to the established upstream technology and ]Ie; In; Ix] indicates the extended

interval. This includes the existing applications adopting the upstream technology N , from the

borderline Ie to In and those just entered in the market, labeled with x and identified in the

additional interval ]In; Ix]. In the niche case Ie and In will coincide. We assume that newborn

downstream applications can produce for the final market only if connected to the new upstream

10The appearance of new downstream sectors can be also understood in the terms of Bresnahan and Yin (2010),
as the emergence of latent sectors whose demand was beforehand unserved under the dominance of the established
upstream technology.
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Ie=In

ω(I)

Ix

ζ(I)

Figure 2: Niche case

Note: the relative usefulness of the new upstream technology does not compensate for the relative cost along all the
downstream continuum of industries. Only the novel downstream industries that emerge together with technology N adopt
it. N never succeeds in acquiring purposes as long as ζ(I) and ω(I) are not defined and do not intersect in the [In, Ix]
interval.

technology, meaning that they do not evaluate comparative advantage (formally, they have an

infinitely high comparative advantage in ζ(I) and an infinitely low ω(I)). New downstream

applications add in an ordered succession to the ranked distribution of the downstream mar-

ket. The presence of newborn downstream applications provides upstream technology N with

a ‘buffer’ stock of users. In a dynamic setting featuring positive feedbacks from the number of

adopters to the increasing comparative advantage in adoption (meaning that absolute changes

in zj and wj , indicated respectively with żj and ẇj , are function of the sizes of the applications

intervals served), such a stock may trigger a purposes acquisition dynamics leading N to become

a GPT. In this sense, the new upstream technology enters the upstream market as a specific

purpose technology and its applications are only those downstream links existing at its ‘birth’.

If the user base in these downstream industries is large enough, the relative usefulness of N

is affected positively, leading to an upward shift of the ζ(I) curve or to a downward shift of

ω(I), depending on how network effects are modeled. This, ceteris paribus, increases the size of

the downstream interval served by N . In practical terms, this means that N diffuses through

the heterogeneous downstream industries, increasing its applicability and, therefore, acquiring

purposes.
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3.3 Three Competing Upstream Industries

The static model outlined above can be extended to the case of three (or more) upstream tech-

nology. Following Acemoglu and Autor (2011), we introduce in the set of upstream technologies

a newer one, labeled M , so that the set of upstream technologies becomes j = {E,N,M}. Given

that downstream applications already face the decision to stay or switch between E and N de-

pending on the value and shape of the relative usefulness and relative cost curves, to find the

new upstream–downstream market assignment with three upstream alternatives it is sufficient

to derive two new curves, describing the comparative performance and cost between upstream

technologies N and M . Assuming that the ranking of downstream applications remains un-

changed, we rename ζ(I) and ω(I) as ζEN (I) and ωEN (I) and introduce ζNM (I) and ωNM (I)

as the two new comparative relations. The same assumptions on continuity, monotonicity and

reversibility hold. Figure 3 presents the scenario just discussed.

Shifts of in ζEN (I), ωEN (I), ζNM (I), and ωNM (I) may lead to a broader set of technological

specializations in the economy. Once again, the established upstream technology may maintain

its prevalent role in the economy, the new upstream may take over downstream market shares

becoming prevalent (that is, acquiring the status of GPT) or the newer upstream may substitute

for the new one, making the latter a failed potential GPT and the former a pervasive technology.

Finally, the downstream market may well be split among the three competing upstream, avoiding

the tendency for any GPT to appear. The three upstream technologies case can be further

extended to a many–to–many relations assignment model, with a continuum of downstream

applications matching with a continuum of upstream technologies (see Costinot and Vogel (2015)

for such a generalization in the case of Ricardian trade models). However, the three upstream

industries case is already general enough to highlight the main outcome of this paper: the

standard GPT model is just a special case of a model of competition for the downstream market

by upstream technologies that can display a richer set of outcomes and structural configurations.

In fact, such generalization has the virtue to show how technological competition for the

downstream market may be resolved in a broad constellation of outcomes, with only some of

them leading to the replacement of a GPT with a new one and to a successful process of purposes

acquisition and increase in generality, applicability and pervasiveness for one of the upstream

technologies. Furthermore, the three upstream technologies case provides another insight on

the process of technological competition in vertically related markets: the higher the number of

upstream technologies, the bigger the number of variables affecting the final outcome. Relative

usefulness and relative costs can all be subject to change, and, therefore, the determinants of

purpose acquisition may be non–trivial to identify. This, on the other hand, means that also

the number of ‘levers’ to affect the results of upstream technological competition increases —

opening room for a wide set of possibilities for policy intervention.

3.4 Policy Interventions

The static version of the model also allows for basic policy ‘thought experiments’. From BT we

know that, in a GPT framework, policy intervention in the form of well–designed contracts and

public procurement is a condition to solve the coordination problem and to select better (higher)

equilibria by exploiting the dual inducement mechanism and internalizing vertical and horizontal
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Figure 3: Three–upstream technologies case

Note: the arrival of a newer upstream technology M increases the competition for the downstream market based on
comparative advantages and costs. In this case, the newer technology ‘steals’ downstream market shares to N , and the
whole market is shared on rather equal basis by the three alternative upstream technologies.

externalities. In fact, ‘learning is just part of the story: independent scientific advances as well

as massive investments in purposive R&D have contributed as much to the staggering pace of

technical advance (. . . )’ (Bresnahan and Trajtenberg, 1992, p. 8). Such ‘massive investments

in purposive R&D’, realized either supporting private actors or by directly intervening in the

economy can be represented in the model. Policy interventions affect either the usefulness or

the cost of the upstream technologies, and can be therefore by expressed as discrete changes in

z’s and w’s. Accordingly, ∆zj(I) and ∆wj(I) are the magnitudes of policy interventions, where

j = {E,N} indicates that policy can affect one, the other, or all the upstream technologies.

Policy can intervene either on the economic or technological side, or even in policy–mix fashion.

For example, a policy easing the establishment of contacts and linkages among firms belong-

ing to different industries (e.g. a cluster policy or the support to multidisciplinary science parks)

affects the usefulness dimensions. Better information on the features of the upstream technolo-

gies, resulting from policies designed to favor exploration and experimentation can change the

downstream distribution of thresholds for adoption. On the economic side, subsidy and tar-

iff schemes influence the relative cost of the established technology compared to the new one.

Interventions of this kind are evident in the case of upstream competition among alternative

energy supply technologies, where governments support the entrant upstream technologies —

namely renewable technologies — intervening on the relative prices discriminating by the source

of energy.
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A purposive ‘push’ in one of the upstream technologies shifts the borderline application

(applications, in the three upstream technologies case), helping one or the other upstream com-

ponent to defend its share of downstream user from the competing technologies or to ease the

process of purposes acquisition. In short, public intervention can act on different upstream

levers, leading the system to one out of many possible specialization patterns. Public policy can

also decide to allocate its efforts to sustain different upstream technologies at the same moment

with the objective to explore different trajectories in parallel (Cohen and Klepper, 1992).

Policy interventions, therefore, affect not just the intensity of innovative activities, but their

direction as well. An interesting point to be mentioned in this context is that the possibility of

parallel explorations of different trajectories (upstream technologies) allows the economic system

as a whole to screen a wider set of states of the world. However, the allocation of resources to

alternative and competitive ends reduces the ‘demand effect’ that has been identified as key to

kick–in dual inducement dynamics; this, in turn, raises the chances that a potential GPT gets

locked–in to an inferior equilibrium in terms of performance and size of the user base.

The policy discussion just provided has important real–world implications. In fact, the

recent revival of interest about industrial policy (Pianta, 2015) and the role of state in fostering

the rate and direction of innovative activities (Nelson, 1962; Mazzucato, 2016) calls for a more

sophisticated rationale for the support of research and innovative activities — a support to

be provided in a complex environment and through well–designed non–trivial mechanisms. Our

insights on how the road to technological pervasiveness and economies’ structural transformation

may be not so linear and smooth can be of help here: policy–makers have many levers for action

at their disposal, but must be aware that the success of any ‘strategy of economic development’

(Hirschman, 1958) relies on the fine–tuning of the structure of industrial linkages and their

dynamic adjustment driven by technological change.

The policy–related thought experiments allowed by the comparative statics of the model

are certainly a simplification with respect to the contextual and history–dependent factors in-

fluencing the outcome of competition between alternatives. In fact, the convergence towards

technological monopolies (the lock–in problem) is a well–known feature of history–dependent

processes of choice and diffusion (Arthur, 1989; David, 1985) that can be tackled from several

perspectives — path dependency being only one process among others like, for example, path

renewal and path creation (Cantner and Vannuccini, 2016). However, recent contributions (Bas-

sanini and Dosi, 2006) offer a ‘milder’ view on technological monopolies and suggest that room

is open of intervention — including policy intervention — allowing an escape from lock–in. In

sum, the process of purpose acquisition occurring when technologies compete for pervasiveness

in a linked–payoffs setting is constrained by history and the attraction exerted by established

dominant options, and induced by purposeful interventions and changes in the relative usefulness

and cost relationships. However, as history–dependent processes are by definition unfolding in

time, an assessment of their relevance for our argument has to build on a dynamic version of

the model. Considered that, we provide this extension in the next paragraph.
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3.5 A Simple Dynamic Setting

The static version of the model illustrates the main claim of the paper: when more than one

candidate GPT compete as an upstream technology for a downstream market of applications,

a potential GPT can either succeed or fail to gain pervasiveness. A GPT is not anymore as-

sumed to exist a priori in the economy — the case is instead that of a specific–purpose upstream

technology that acquires purposes and becomes a GPT. A dynamic extension of the model can,

however, shed some light on how different outcomes in the competition for the downstream

market are obtained, meaning how different equilibria in the structure of specialization of the

downstream economy can be reached. Dynamic models of technology competition and diffusion

such as the one of Loch and Huberman (1999) describe how adoption of alternatives evolves

over time, usually modeling it as function of performance, in turn affected by network effects.

The case described in our model is, however, different, as the population of adopters (the down-

stream applications) is heterogeneous. This means that performance does not depend only on

technology characteristics (for example, expected returns or profits) and market characteristics

(the magnitude of network externalities) but also on application–specific preferences (thresholds)

that are captured by the shape of the ζ(I) curve.

Let’s consider again the two–upstream technologies case. A dynamic version of the model

has to determine the law of motion of three variables: ζ(I), ω(I) and Ie. Following Cimoli

(1988), it is useful to derive first a scalar measure for the responsiveness of the downstream

specialization to changes in the fundamental technological and economic conditions. To ease the

reading, the functions ζ(I) and ω(I) are indicated as ζ and ω. We define

εIe,ω =
∂Ie
Ie

ω

∂ω

as the comparative costs elasticity of the borderline downstream application. εIe,ω indicates, for

a given ζ(I) function, the percentage change in borderline application given a percentage change

in the relative cost of the two upstream technologies. As the new upstream technology gets more

expensive (cheaper) relatively to the established one, the threshold downstream sector moves

rightwards (leftwards) at a higher rate the higher is εIe,ω. A similar expression can be derived

for the comparative usefulness elasticity of the borderline downstream application, εIe,ζ , where

εIe,ζ =
∂Ie
Ie

ζ

∂ζ

indicates the percentage change in the borderline application given a percentage change in the

relative usefulness of the new upstream technology with respect to the established one. The

higher εIe,ζ , the bigger the share of downstream market the new upstream gains (lose) if its

quality improves (worsen) relatively to the established one.

The dynamics of Ie can be modeled as follows:

∂Ie
∂t
≡ İe = IeEIe,ω,ζ

[
ζ̇(I)− ω̇(I)

]
(1)

where EIe,ω,ζ =
εIe,ω ·εIe,ζ
εIe,ω+εIe,ζ

is the elasticity of Ie with respect to any changes of the ω and

ζ functions. A dot indicates the absolute change of a variable and t is the time index. The
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dynamics of the borderline downstream application is a function of the current state Ie, of the

elasticity E and of the net absolute changes of the relative usefulness and cost curves. These

can be expressed as

∂ζ(I)

∂t
≡ ζ̇(I) = ẑN − ẑE (2)

∂ω(I)

∂t
≡ ω̇(I) = ŵN − ŵE (3)

where a hat over a variable indicates a growth rate. Each comparative curve evolution results

from the net change between the numerator and the denominator. Inserting equations 2 and 3

into 1 we have

∂Ie
∂t
≡ İe = IeEIe,ω,ζ [(ẑN − ẑE) + (ŵE − ŵN )] (4)

Functional forms are kept implicit until now. In order to identify an equilibrium Ie, we need

to specify them. It is reasonable to assume that either the relative usefulness or the relative

cost is affected by network effects (Arthur, 1989; Farrell and Klemperer, 2007), that is, by the

number of downstream application attached either to N or E. Another way to measure the

network effect is by the size of the intervals ]0, Ie] and ]Ie, In]. Setting In = 1 (meaning that we

fit the continuum of downstream applications to the unit support),11 the number of downstream

users of E is Ie, while the number of downstream users of N is (1− Ie).
On the performance side, introducing network effects equals to say that as the gap in useful-

ness widens, the more downstream applications switch to use upstream technology N . On the

cost side, the network effects play a role on the steepness of learning curves: the more down-

stream applications switch to N , the faster the new upstream technology can reduce its price.

As the focus of the paper is to model acquired purposes, we assume for consistency that network

effects play a role only on the performance side: as diffusion of the new upstream technology

takes place, the relative usefulness perceived increases. This is a proxy for the process of discov-

ery of new purposes that over time makes a specific purpose technology to gain pervasiveness

downstream and to become a GPT. Of course, in real–world contexts network effects do play a

role on both the technological and the economic side.

As a caveat, it is important to stress here that the network externalities as modeled here are

not an exact proxy for the dual inducement mechanism that in BT takes place between the single

GPT existing in the market and its applications. In fact, while the dual inducement is confined

to incentives to innovative activities, here we take a broader perspective that incorporates tech-

nological and economic determinants. Moreover, downstream industries do not optimize over

any choice variable, but just react to upstream relative performance and cost. In our model,

however, an increase in relative usefulness triggers an increase in downstream adoption, and

vice versa. A mutual feedback similar to the dual inducement mechanism is therefore indirectly

captured.

We assume for the moment that upstream technology purchasing costs for E and N are the

same for each I (since all downstream applications purchase one unit of upstream component

11Or Ix = 1, in case new downstream industries emerge together with N .
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at the same price from the same supplier), so that wj,I = wj for j = {E,N} is constant over

the downstream continuum. The dynamics of wj follows a simplified learning curve over time

of the type

ẇj = −γjwj (5)

with γj = −ŵj as the (negative) upstream technology constant (and technology specific)

percentage rate of cost reduction. As concerns performance, we model improvements in useful-

ness — and thus acquisition of purposes — as a function of downstream adoption. The process

of performance improvement is usually represented as following an S–shaped pattern (Loch and

Huberman, 1999); here we opt for a simpler linear version:

żN = θNzN (I)(1− Ie) (6)

żE = θEzE(I)(Ie). (7)

We assume also that the z function takes the shape zj(I) = eαjI for j = {E,N}, to represent

the monotonically increasing property of upstream technology usefulness along the downstream

continuum. α is a technology specific scaling parameter, while θ captures an exogenous rate

of technological improvement that is also dependent on the upstream technology chosen. From

this, equations 6 and 7 become

żN = θNe
αN I(1− Ie) (8)

żE = θEe
αEI(Ie) (9)

and the respective growth rates

ẑN = θN (1− Ie) (10)

ẑE = θE(Ie) (11)

The percentage change in the usefulness of E and N depends therefore only on the exogenous

parameter and — endogenously — on the respective downstream market shares.

Inserting 5, 10 and 11 in 4 we obtain

∂Ie
∂t
≡ İe = IeEIe,ω,ζ [(θN (1− Ie)− θE(Ie)) + (γN − γE)] (12)

The structural equilibrium is identified when İe = 0, where the changes in relative usefulness

and relative cost perfectly compensate each other. One trivial equilibrium is obtained in the

corner solution in which N fully dominates the market. This occurs when Ie = 0. This means

that, using the categories introduced in the static setting, only in the niche case,12 when relative

12And only assuming that the interval ]In, Ix] = 0 or that the downstream industries that emerge together with
upstream technology N do not generate any network effect.
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usefulness and cost do not intersect, the new upstream fails to gain pervasiveness and to become

a GPT. As soon as N is adopted by a minimum share of downstream application, the system

moves to the stable equilibrium in which Ie = 0, as shown in Figure 4. For N to fail to gain

pervasiveness equation either one or both the elasticity terms are zero (meaning that one or

both the curves are rigid), or 12 has to show multiple equilibria. However, this is possible

only when non–linearity in the shape of the curves is introduced. We do that by relaxing the

assumption that costs change uniformly along the downstream continuum. One justification for

this is related to the possibility for the established upstream technology to ‘fight back’, meaning

to actively respond to the challenge to dominance started by the new upstream technology.13

An illustration of this ‘incumbent reaction’, that somehow captures what is usually called the

‘sailing–ship effect’ (De Liso and Filatrella, 2008), is represented through the following law of

motion for the cost curves:

ẇN = (−γN − Ie−βI)wN (13)

ẇE = −γEwE (14)

where the term Ie−βI indicates that besides the exogenous component γN the percentage

decrease in upstream technology cost of N is also function of the specific downstream applica-

tion, and β > 1 is a parameter. The higher in the ranking a downstream sector is, the higher its

potential cost reduction, but also the stronger the reaction of the established technology. Even-

tually, the potential effect and the reaction effect interact, generating a bell–shaped function.

Dividing by wj we obtain the percentage changes and thus the equation for ω̇(I), from 3 yields

ω̇(I) = γE − γN − Ie−βI .
Plugging the expression for ω̇(I) just derived into 12 we find the new law of motion for Ie:

∂Ie
∂t
≡ İe = IeEIe,ω,ζ

[
(θN (1− Ie)− θE(Ie)) + (γN + Ie−βI − γE)

]
(15)

In this case, the more N gains purposes, so Ie shifts to the right, the more ω increases its

convexity. Depending on the elasticity of ω, the response of the established technology can lead

to two structural equilibria (as shown in Figure 5), the leftmost being locally stable and the

rightmost being unstable.

In sum, by turning to a dynamic setting, we are able to outline the processes influencing the

pervasiveness in the making of a potential GPT. First, the competitive context matters. This

is captured by the relative usefulness and cost curves and their elasticities; in other words, but

the gap in performance and cost between alternatives and how this gap ‘weights’ with respect

to the specialization of the downstream economy. Second, the presence of network externalities

drives the dynamics of purposes acquisition. Third, the resistance of incumbent established

upstream technologies creates the conditions for drifting the process from certain technological

monopolization towards co–existence of technologies.

13An alternative way to is to assume that network effects have decreasing returns, so that increasing adoption
rates lead to further adoption, however at a slower pace.
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ω(I)
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I'e

ζ(I)

ζ‘’(I)

ζ‘’’(I)

I'''e I''e

N‘‘‘

Figure 4: Dynamics of the Ricardian model — acquired pervasiveness of technology N

Note: the chart shows the dynamics of the model when İe is affected by network effects operating on the ζ(I) function.
The equilibrium is identified when Ie = 0 — meaning that the whole downstream market is served by the new upstream
technology.

4 Discussion and Conclusion

In this paper, we studied the factors and mechanism shaping technological pervasiveness within

industrial linkages. In order to do that, we chose a novel conceptual path: that of generalizing

the theory of GPTs to a theory of upstream technological competition for a downstream market

of heterogeneous potential applications. To describe our phenomenon of interest, we combined

contributions belonging to different strands of literature: economic linkages, GPTs, network

effects, technology evolution, and structural change. We defined a ‘purposes acquisition’ process

as the dynamics leading a technology, developed to deploy specific functions or to solve specific

problems, to identify further purposes and uses than the ones the technology was originally

planned or designed for. In short, we created a bridge between neoclassical and evolutionary

thinking by developing a specific literature (that on GPTs) as a special case of a broader trajec-

tory delving into the process of economic transformation around core ‘infrastructural’ upstream

technologies.

To illustrate that, we applied a simplified version of the Ricardian model of international

specialization (Dornbusch et al., 1977) to a context of industries connected in a hierarchical

(vertical) relation. In order to highlight the role different factors play in the competition for

the downstream market, we kept a distinction between technological and economic explanatory

variables. The model, notwithstanding its basic setting and the fact that it does not explic-
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IeI‘e-1I‘e-2

N‘-1

N‘-2

Figure 5: Dynamics of the Ricardian model — multiple equilibria

Note: the chart shows the dynamics when the established technology ‘strikes back’ acting on ω(I), but in a heterogeneous
way, function of the downstream continuum. Two equilibria are identified.

itly formalize the endogenous determination of payoffs, is useful to shift the focus of analysis

towards relative (gap), rather than absolute dimensions. Learning mechanisms and feedbacks,

as well as policy interventions, can be taken into account in a stylized way as comparative

statics in the basic setting of the model. Also, it is showed that in the case featuring three

upstream technologies the many possible specialization patterns that can occur in an economy

with upstream–downstream linkages may lead to technological pervasiveness, to technological

co–existence, and to non–pervasiveness (localized change), with potential GPTs that remain

confined in downstream market niches.

From a critical viewpoint, it is possible to argue that while the paper claims that no GPT is

foreseeable in advance, the model implicitly assigns the status of latent GPTs to the upstream

technologies, therefore falling again into the ‘a priori assumption’ fallacy of GPT theories. On

the one hand, such critique rightly points at a limitation of the paper; on the other hand, the

main purpose of this study is to show how potential GPTs can fail to become a GPT given

that to acquire purposes is not a trivial process but the result of technological competition in

upstream markets. The model describes such process by offering a view based on comparative

advantage and avoiding assuming which GPT dominates the market in equilibrium; this is a

novel contribution that complements the existing literature.

Another critique has to do with the possibility to define a relative usefulness curve. Given

the deep uncertainty characterizing new technologies, one can reasonably posit that some down-

24



Page 25 of 32

Acc
ep

te
d 

M
an

us
cr

ip
t

stream industries have not just an imprecise valuation of the possible uses of upstream tech-

nologies, but that they do not have valuation at all, because the uses of the new upstream

technology are not even considered among the possible states of the world. This remark, being

certainly well taken, does not change the fact that downstream industries can always be ranked

according to the relative benefit they expect from the new upstream technology. In case of

deep uncertainty, the value of wN will be 0 and the function ζ(I) in correspondence to those

industries will lay on the horizontal axis. As our model produces evolutionary outcomes relying

on a neoclassical framework, the possibility to derive a usefulness curve over the downstream

continuum is granted by assumption. Our main argument is robust to different functional spec-

ifications, in the sense that a discontinuous or piece–wise non–continuous function, even though

making impractical to identify equilibria, will not reverse our claims. In fact, a continuous ζ(I)

function represents the less stringent context for our dynamics of interest to occur. If potential

GPTs can fail to acquire purposes in a deterministic context, stochastic settings only increases

the chance of this outcome.

From an evolutionary point of view, the model represents the competition for downstream

market shares (where shares are the fraction of applications served by an upstream technology

out of the total downstream market existing application). In this sense, it shares some features

with the replicator dynamics model of Schumpeterian competition for the market (Metcalfe,

1994) and with models of reinforcement such as those building on the Polya urn setting (Marengo

and Zeppini, 2016).

For what concerns the extensions of the model, a thorough derivation of endogenous dynamics

should go in the direction to explain specialization patterns as a ‘self–discovery’ process in

presence of uncertainty and learning (Hausmann and Rodrik, 2003). Another possible extension

relates technological competition in vertically related markets to Industry Life Cycles theories

(Klepper, 1996). Maybe even more relevant for a potential extension of the model, our study

can be considered as the lower bound of simplification in modeling the shift of industrial linkages

and the composition of an economy. A many–upstream to many–downstream assignment model

— representing a fully-fledged dynamic input–output structure — is without doubts another

direction worth exploring; this would contribute to an advancement of our understanding of

micro– and meso–inducements driven by core technologies — a dynamics captured by now only

by models on Long Waves such as Silverberg and Lehnert (1993). Finally, the empirical side of

this research could be developed starting from decomposition exercises (Cantner and Krüger,

2008) to be extended to vertically related industries.

In sum, the main contributions of the paper are i) the framing of GPT theory into a general

analysis of vertically related industries and pervasiveness formation through linkages; ii) the

modeling of a downstream market choice when alternative upstream technologies are available

and the dynamics of GPT establishment, from a ‘specific’ (niche) upstream industry to a per-

vasive one capturing broad structural change; iii) the resulting possibility for potential GPTs to

fail to diffuse into the economy.

To conclude, the process leading to acquired purposes is not supposed to automatically

lead to the establishment of a pervasive technology. Rather, the establishment of GPTs is a

process that shares similarities with a complex phenomenon, with multiple possible (even if not
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equally possible) outcomes. Besides the technical features of technologies, it is the task and

the responsibility of economic agents (including policy–makers) to determine which alternative

specialization path is to be taken.
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• We model the ‘purpose acquisition process’ resulting in different degrees of technological 
pervasiveness 

• We use our framework to provide a microeconomic explanation of the establishment of 
general purpose technologies 

• We read contributions on general purpose technologies and structural change as special cases 
of linked markets 

• We explore static and dynamics formulation of the model and discuss the determinant of 
pervasiveness also from a policy perspective 
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