Activation of carbon suboxide (C3O2) by U(III) to form a cyclobutane-1,3-dione Ring.

Article (Accepted Version)
This article can be cited before page numbers have been issued, to do this please use: N. Tsoureas and F. G. Cloke, Chem. Commun., 2018, DOI: 10.1039/C8CC04391D.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the author guidelines.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the ethical guidelines, outlined in our author and reviewer resource centre, still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.
Activation of Carbon Suboxide (C$_3$O$_2$) by U(III) to form a Cyclobutane-1,3-dione Ring.

Nikolaos Tsoureas2 and F. Geoffrey N. Cloke2

The activation of C$_3$O$_2$ by the U(III) complex [U(η^2-C$_5$)$_2$] (Cp' = C$_5$H$_4$SiMe$_3$) is described. The reaction results in the reductive coupling of three C$_3$O$_2$ units to form a tetranuclear complex with a central cyclobutane-1,3-dione ring, with concomitant loss of CO. Careful control of reaction conditions has allowed the trapping of an intermediate, dimeric bridging ketene complex, which undergoes insertion of C$_3$O$_2$ to form the final product.

The resurgence of non-aqueous uranium chemistry has led to a wide range of novel reactivity towards many important small molecules. Pertinent examples, encompassing both high and low valent uranium centres, include the reductive homolagation of CO,6 the reductive coupling of CO$_2$,7 SO$_2$,8 and NO/CO mixtures,9 conversion of CO to the isocyanate anion,10 the transformation of CO/H$_2$ to the methoxide anion,11 N$_2$ activation12 and more recently the electrocatalytic splitting of H$_2$O$_2$ as well as the reduction of N$_2$ to NH$_3$. However, the interaction of carbon suboxide (C$_3$O$_2$) with uranium complexes is as yet unexplored. C$_3$O$_2$ is the first in the series of odd carbon chain suboxides that are synthetically available,13 Its physical and spectroscopic properties have been extensively studied both theoretically14,15 and experimentally.16 Although its reactivity with many organic substrates is well established,12c,13 its coordination chemistry,14 and subsequent metal mediated activation15 are relatively limited, although the latter have recently been examined in silico.14a,16 Based on the lack of examples regarding the reactivity of C$_3$O$_2$ with uranium complexes (or indeed any other f-elements) and encouraged by our recent success in isolating the first structurally authenticated complex of C$_3$O$_2$ en route to its trimerisation mediated by the syn-bimetallic complex (1) (Scheme 1),17 we decided to undertake such a study.

Exposure of olive-green brown toluene solutions of mixed sandwich complexes of the general molecular formula [U(η^6-C$_3$H$_4$-1,4-(SiR$_3$)$_2$)](η^2-C$_5$H$_4$SiMe$_3$)2[THF]$_3$ (R = Me R’ =Me or Pr x =1; R = Pr, R’ = Me, Et x =1, 0 respectively) to C$_3$O$_2$ (a very detailed synthesis of C$_3$O$_2$ can be found in ref. 17) at -78 °C in a 1:1 stoichiometry, resulted in intense brown-red solutions. However, despite our best efforts, work-up under a range of different conditions afforded only intractable solids, that were completely insoluble in common organic solvents. We suspected that the [COT$_{1,4}$-SiMe$_3$]2 (COT = C$_5$H$_4$) ligand might not be inert to attack by C$_3$O$_2$, in contrast to the Prn supporting ligand (Prn = C$_4$H$_{10}$-1,4-(SiPr$_3$)$_2$) (Scheme 1).17 Therefore, we decided to turn our attention to another class of U(III) compounds, namely the tris-cyclopentadienyl complexes.

The U(III) complex [U(η^2-C$_5$)$_2$] (2) (Cp’ = C$_5$H$_4$SiMe$_3$), first synthesised by Andersen et al.,18 was envisaged as a viable candidate,19 especially in light of the ability of the Cp’ ligand to stabilise low valent U(II)20 and Ln(II)21 (Ln = lanthanide) complexes. When a green toluene solution of (2) is exposed to C$_3$O$_2$ at -78 °C in a 1:1 ratio an instantaneous colour change to deep-red wine occurs. Work-up under optimised conditions (see ESI), followed by analysis by 1H-NMR spectroscopy of the crude reaction mixture, showed the existence of a new major species (3) (ca. ≥ 70%) that displayed two signals in a 1:1 ratio corresponding to two SiMe$_3$ resonances. The 29Si(1H)-NMR spectrum also showed only two signals located at -65.60 and -69.57 ppm (δ C$_3$O$_2$) shifted downfield from -165 ppm for (2), further signifying a change in the oxidation state of the metal centre.22

Mass spectrometry was uninformative as only fragments related to (2) were identifiable. However, crystals suitable for
COMMUNICATION

an XRD study were eventually obtained from n-heptane (Figure 1), albeit in low yield. Nevertheless, this crystalline material indeed corresponds to the major component of the reaction mixture, as confirmed by its 1H and 29Si(1H)-NMR spectra, while its overall symmetry (C$_s$) is retained in solution and accounts for the observed spectra. (3) displays a tetranuclear structure in which four [U($^\eta^5$-Cp')$_3$] centres are linked by a complex organic structure containing a central cyclobutane-1,3-dione ring; indeed the IR spectrum (thin film) of (3) exhibits bands at 1832 and 1733 cm$^{-1}$ characteristic of carbonyl stretches. Inspection of the metric parameters in (3) reveals the following salient features. Firstly, the U1-O2 bond is shorter (2.144(3) Å) than the U2-O1 bond (2.264(3) Å); the former is reminiscent of the U-O bonds found in the series of ynediolate complexes of the type [U]-O-C≡C-O-[U] (2.101-2.159 Å), while the latter is more akin to the average U-O bond distance observed for the complexes in the series [(U($^\eta^5$-C$_8$H$_8$(1,4-(SiMe$_3$)$_2$))(η5-Cp')$_3$)]$_2$ [μ-η5-C$_2$-μ-η5-CO$_2$] (R'' = Et, Pr, t-Bu) (ca. 2.334 Å). Similarly the C1-O1 (1.260(5) Å) is reminiscent of the O-C bond length found in the aforementioned ynediolate complexes, while the C3-O2 bond is elongated in comparison (1.323(5) Å), but still at the longer end of the range of C-O bond distances found in ynediolate complexes.

![Figure 1: ORTEP diagram of the molecular structure of (3), showing 50% probability ellipsoids. H atoms and methyl groups of the SiMe$_3$ substituents have been omitted for clarity. The molecule in the unit cell is generated by symmetry (inversion centre) and therefore only bond lengths and angles relating to the labelled atoms are discussed.](image)

As can be seen from Figure 2, the formation of (3) can be rationalised by considering two possible pathways shown in Scheme 2.

![Figure 2: Bonding in (3) ([U] = UCP'_3)](image)

Scheme 2. Pathways for the formation of (3) ([U] = UCP'_3)

(i) coordination of a C$_2$O$_2$ molecule via its O atoms followed by nucleophilic attack at one of its terminal carbons by a ketene fragment generated from the breakdown of C$_2$O$_2$ in the presence of a reducing U(III) centre, with concomitant release of CO, or alternatively via (ii) insertion of a C$_2$O$_2$ molecule in the U-C bond of a [U]-CCO-[U] species ([U] = U($^\eta^5$-Cp')$_3$). The latter can be seen as a doubly reduced form of ketene and as in the case of pathway (i) means that CO should be produced during the course of the reaction between (2) and C$_2$O$_2$. Indeed, the formation of CO was confirmed by GC-MS analysis of the headspace above the reaction mixture. The propensity of C$_2$O$_2$ to act as a source of CCO, especially in the presence of phosphine ligands, was observed by Hillhouse et al. and is probably one of the main reasons which hindered many of the early investigations into its coordination chemistry. In order to investigate the formation of (3) more closely, we decided to repeat the reaction between (2) and C$_2$O$_2$ but this time to remove the volatiles at low temperature (we had previously employed this approach to isolate the first structurally authenticated complex of C$_2$O$_2$ supported by (1), Scheme 1). Indeed, removal of volatiles at -60 °C followed by 1H and
29Si[1H]-NMR analysis of the resulting deep red wine residue, showed the existence of a new, previously unobserved, major species (4) (ca. 70%) which featured the same general spectroscopic characteristics as (3) (i.e. two signals in a 1:1 ratio for the SiMe$_3$ resonances in the 1H-NMR spectrum and two resonances at its 29Si[1H]-NMR spectrum centered at -70.70 and -76.03 δ ppm). Recrystallisation of (4) from SiMe$_3$ afforded crystals suitable for an XRD study (Figure 3) in moderate yield. Compound (4) contains a ketene (CCO) ligand bridging two [U(n8-Cp)$_3$] centres and is C$_2$ symmetric, thus accounting for the observed 1H-NMR and 29Si[1H]-NMR spectra. The formulation of (4) was confirmed by mass spectrometry (EI) which shows the molecular ion (1340 Da) with the expected isotopic envelope. The formation of (4) at low temperatures would suggest that the formation (3) proceeds via pathway (ii) (Scheme 2), in which C$_2$O$_2$ inserts into the U-C bond in (4). Indeed, NMR studies showed that treatment of isolated (4) in C$_2$D$_8$ with C$_2$O$_2$ resulted in quantitative formation of (3).

Unfortunately, due to the crystallographic restraints used to refine the model of (4) (the molecule is generated by a centre of inversion at C1 leading to mixed occupancy of the O1 and terminal carbon C2 positions), we cannot discuss the bond lengths with the expected level of confidence. Nevertheless, the U2-O1 (and symmetrically related U1-C2) bond distance of ca. 2.237 Å and C1-C2 distance of ca. 1.27 Å are in good agreement with the ones found in reported ynediolate and alkynyl complexes of uranium.22$^{+}$,23,24 The CCO angle is essentially linear, while the U-O-C (and therefore its symmetry related U-C-C) angle of 165.5$^{+}$ is in the same range as the ones found in sterically encumbered ynediolate and alkynyl complexes of uranium. Despite this disorder we are confident as to the nature of the CCO linker based on the spectroscopic evidence discussed above, and that (4) contains a two U(IV) centres bridged by a doubly reduced ketene unit (i.e. [U]-O-C≡C-[U]). The IR spectrum (thin film) of (4) displays a strong band at 2010 cm$^{-1}$ which we assign to the C≡C stretch in the latter.51

In conclusion, we report the first example of the activation of C$_2$O$_2$ by a U(III) complex, which affords a cyclobutane-1,3-dione derivative (3). In the presence of the reducing U(III) centre, C$_2$O$_2$ decomposes to CO and ketene, and under carefully controlled conditions, the ketene can be trapped to afford the di-uranium bridging ketene complex (4). The latter then undergoes insertion of further C$_2$O$_2$ into its U-C bond to ultimately yield (3).

We would like to thank the EPSRC (grant EP/M023885/1) for financial support.

Conflicts of interest
There are no conflicts to declare.

Notes and references

20Before crystallisation from SiMe2, we had to remove UCP4 via fractional recrystallisation from n-pentane (see ESI). It was identified by its 1H-NMR spectrum: C. J. Windorff, M. R. MacDonald, J. W. Ziller, W. J. Evans, Organometallics, 2017, 43, 5140. Although UCP4 was not observed in the 1H-NMR spectrum of the crude reaction mixture, its formation suggests that redox redistribution reactions are taking place during work-up, which may be responsible for the modest isolated yields of both (3) and (4).

[U(η⁵- C₅H₄SiMe₃)₃] reductively couples three C₃O₂ molecules to form a tetranuclear complex with a central cyclobutane-1,3-dione ring, via an intermediate bridging ketene complex.