Structural diversity and catalytic properties in a family of Ag(I)-benzotriazole based coordination compounds

Loukopoulos, Edward, Abdul-Sada, Alaa, Viseux, Eddy, Lykakis, Ioannis N and Kostakis, George E (2018) Structural diversity and catalytic properties in a family of Ag(I)-benzotriazole based coordination compounds. Crystal Growth & Design, 18 (9). pp. 5638-5651. ISSN 1528-7483

[img] PDF - Accepted Version
Download (1MB)


In this work we study the coordination chemistry of a series of semi-rigid benzotriazole based ligands (L1-L3) along with the low coordination number but versatile AgI ions. This has led to nine new coordination compounds formulated [Ag(L1)(CF3CO2)] (1), [Ag2(L1T)2(CF3SO3)2]·2Me2CO (2), [Ag(L2T)(ClO4)(Me2CO)] (3), [Ag(L2T)(BF4)(Et2O)] (4), [Ag2(L3T)2(ClO4)2]2 (5), [Ag(L3)(NO3)] (6), [Ag2(L3T)2(CF3CO2)2] (7), [Ag2(L3T)(CF3SO3)2] (8) and [Ag2(L3T)2(CF3CF2CO2)2]·2Me2CO (9). These compounds show structural diversity including dimers (5, 7, 9), one dimensional (1D) (3, 4, 6) and two dimensional (2D) (1, 2, 8) coordination polymers. The presence of the two -CH2- units between the three rigid backbones, benzotriazole/-C6H4-/benzotriazole, provides a limited, but significant, flexibility in L1-L3, influencing their variety coordination abilities. Interestingly, certain structures exhibit an isomerism effect (L1T-L3T) in the benzotriazole unit when in solid state; a series of studies are indicative of the 1,1- form is generally dominant in solution even in cases where the crystal structure does not contain this tautomer. The homogeneous catalytic efficacy of all compounds against the well-known multi component A3 coupling reaction and the hydration of alkynes were investigated. Compound 4 was identified as the optimal catalyst for both reactions, promoting the multicomponent coupling as well as the alkyne hydration reaction under low loadings (0.5 and 3 mol%, respectively) and in high yields (up to 99 and 93% in each case).

Item Type: Article
Additional Information: This document is the Accepted Manuscript version of a Published Work that appeared in final form in Crystal Growth & Design, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see:
Schools and Departments: School of Life Sciences > Chemistry
Subjects: Q Science > QD Chemistry > QD0146 Inorganic chemistry
Depositing User: Georgios Kostakis
Date Deposited: 24 Jul 2018 10:17
Last Modified: 16 Mar 2021 12:24

View download statistics for this item

📧 Request an update