A randomized clinical trial on the anti-tumoral effects of low molecular weight heparin in the treatment of esophageal cancer

Article (Accepted Version)

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/77292/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

http://sro.sussex.ac.uk
A randomized clinical trial on the anti-tumoral effects of low molecular weight heparin in the treatment of esophageal cancer

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Journal of Cellular Physiology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>JCP-18-0426.R1</td>
</tr>
<tr>
<td>Wiley - Manuscript type:</td>
<td>Original Research Article</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>12-May-2018</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Taghizadeh Kermani, Ali ; Mashhad University of Medical Sciences, Surgical Oncology Research Center</td>
</tr>
<tr>
<td></td>
<td>Hosseini, Sare ; Mashhad University of Medical Sciences , Cancer Research Center</td>
</tr>
<tr>
<td></td>
<td>Fanipakdel , Azar ; Mashhad University of Medical Sciences, Cancer Research Center</td>
</tr>
<tr>
<td></td>
<td>Joudi Mashhad, Mona ; Mashhad University of Medical Sciences, Cancer Research Center</td>
</tr>
<tr>
<td></td>
<td>Akhavan Rezayat, Kambiz ; Mashhad University of Medical Sciences, Gastroenterology and Hepatology Research Center</td>
</tr>
<tr>
<td></td>
<td>Zardadi, Mahdi ; Mashhad University of Medical Sciences, Surgical Oncology Research Center</td>
</tr>
<tr>
<td></td>
<td>Gholami, Arezoo; Mashhad University of Medical Sciences , Student Research Committee</td>
</tr>
<tr>
<td></td>
<td>Ferns, Gordon A ; Brighton and Sussex University Hospitals NHS Trust, Department of Medical Education</td>
</tr>
<tr>
<td></td>
<td>Avan, Amir; Mashhad University of Medical Sciences, Metabolic syndrome Research center</td>
</tr>
<tr>
<td></td>
<td>Javadinia, Seyed Alireza; Mashhad University of Medical Sciences , Student Research Committee; Mashhad University of Medical Sciences, Cancer Research Center</td>
</tr>
<tr>
<td>Key Words:</td>
<td>anti-tumoral effects, low molecular weight heparin, esophageal cancer, Clinical trail</td>
</tr>
</tbody>
</table>
A randomized clinical trial on the anti-tumoral effects of low molecular weight heparin in the treatment of esophageal cancer

Running title: antineoplastic effects of LMWH

Ali Taghizadeh Kermani (1), Sare Hosseini (2), Azar Fanipakdel (3), Mona Joudi Mashhad (4), Kambiz Akhavan Rezayat (5), Mahdi Zardadi (6), Arezoo Gholami (7), Seyed Alireza Javadinia (8), Gordon A. Ferns (9), Amir Avan (10)

1) Surgical Oncology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. Email: TaghizadehA@mums.ac.ir

2) Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. Email: HosseiniS@mums.ac.ir

3) Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. Email: Fanipa@mums.ac.ir

4) Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran. Email: JoudiM@mums.ac.ir

5) Gastroenterology and Hepatology Research Center, Emam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran. Email: AkhavanrK@mums.ac.ir

6) Surgical Oncology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. Email: ZardadiM@mums.ac.ir

7) Student Research Committee, Department of Radiation Oncology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. Email: GholamiA931@mums.ac.ir

8) Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. Email: JavadiniaA941@mums.ac.ir

John Wiley & Sons, Inc.
9) Department of Medical Education, Brighton and Sussex Medical School Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex UK

G.Ferns@bsms.ac.uk

10) Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran. Email: AvanA@mums.ac.ir

Correspondence:
Arezoo Gholami and Seyed Alireza Javadinia
Cancer Research Center, Omid Hospital, Koohsanghi Avenue, Shariati Square, Mashhad, 917661377, Iran.
Tel/Fax: +98-513-842-6936
E-mails: GholamiA931@mums.ac.ir, JavadiniaA941@mums.ac.ir

Keywords:
• anti-tumoral effects
• low molecular weight heparin
• esophageal cancer
• Clinical trail

Total number of text figure: (3) and table: (2)
Abstract
Current treatment approaches for esophageal cancer are associated with a poor survival, and there are ongoing efforts to find new and more effective therapeutic strategies. There are several reports on the anti-tumoral effects of low molecular weight heparin (LMWH). We have assessed the possible survival benefit of LMWHs in esophageal malignancies. This was a randomized, single blind, multi-center, phase II clinical trial on non-metastatic esophageal cancer candidate for neoadjuvant chemoradiotherapy. Patients were randomly assigned to the chemoradiotherapy-only arm or chemoradiotherapy plus enoxaparin arm using 1:1 allocation. Radiotherapy was delivered in 1.8-Gy daily fractions to a dose of 50.4 Gy in both groups. Paclitaxel 50 mg/m2 and carboplatin (AUC 2) were administered weekly concurrent with radiotherapy. In the intervention group, patients received enoxaparin (40 mg) daily as well as chemoradiation. Four to six weeks after treatment, all patients underwent esophagectomy. After a median follow up of 7 months, estimated one year disease free survival (1y DFS) in the intervention group was 78.9% and in the control groups was 70% (p=0.5). Toxicity from the experimental treatment was minimal and there were no treatment-related deaths. A Pathologically complete response in intervention and control group was 64.8% and 62.5%, respectively (p=0.9). There was a non-significant trend toward improved survival by the addition of enoxaparin to the concurrent chemoradiotherapy regimen. However, 1y DFS of both groups were high as expected. A longer follow-up and larger sample size is required.
1. Background

Currently, a multimodal approach (neoadjuvant chemotherapy and/ or radiation therapy, followed by esophagectomy) is considered to be the standard of care for the treatment of thoracic esophageal cancers; however, 5-year survival rates remain poor at between 12–20% (De Angelis et al., 2014; Siegel et al., 2016). Neoadjuvant treatment leads to an increased likelihood of complete surgical resection (R0 resection), improved local control and modestly ameliorates disease-specific and overall survival; it also allows an evaluation of the effectiveness of the treatment regimen for each clinical scenario (Posner et al., 2015). The most contemporary published randomized controlled trials (RCT) that inform current clinical practice are the: ChemoRadiotherapy for Oesophageal cancer followed by Surgery Study (CROSS) (Shapiro et al., 2015), Medical Research Council (MRC) Adjuvant Gastric Infusional Chemotherapy (MAGIC) (Cunningham et al., 2006), the Fédérale Nationale des Centres de Lutte Contre Le Cancer (FNLCC) ACCORD (Ychou et al., 2011), and MRC OEO2 (Allum et al., 2009; Medical Research Council Oesophageal Cancer Working Group, 2002) studies. Currently, phase II and III trials focus on determination of the optimal components of the neoadjuvant therapies that lead to introduction of targeted therapies and immune based approaches in the treatment of esophageal cancer (Anvari et al., 2017; Bang et al., 2010). One agent that has attracted recent attentions, is low molecular weight heparins (LMWHs) that has been historically used for treatment of cancer induced deep venous thrombosis (DVT) (National Comprehensive Cancer Network, 2011). There are several reports on the anti-tumoral effects of LMWH. We have assessed the possible survival benefit of LMWHs in esophageal malignancies.
2. Methods

2.1. Trial Design

This was a multicenter, stratified (with balanced randomisation [1:1]), parallel-group phase II clinical trial conducted at three sites in northeastern Iran: The Emam Reza Hospital, Omid Hospital, and Reza Radiotherapy and Oncology Center in Mashhad from July 2016 to February 2018. The study was approved by the Ethics Committee of Mashhad University of Medical Sciences (reference number: MUMS.fm.REC.1395.53). The ethical rules of research according to Helsinki Declaration were observed and all patients signed a written consent form. The protocol of study was registered in the Iranian Registry of Clinical Trials (IRCT2016070628814N1) and ClinicalTrials.gov (NCT03254511).

2.2. Participants

Eligible participants were adults aged ≥18 years with squamous cell carcinoma (SCC) of esophagus who met the eligibility criteria for neoadjuvant chemoradiation and definitive esophagectomy (non-metastatic SCC of thoracic esophagus). Patients also had to have adequate hematologic, renal, hepatic, and pulmonary function. Primary exclusion criteria were pregnancy and lactation, previous history of chemotherapy or chest-wall irradiation, history of major comorbidities (including liver or renal failure), adenocarcinoma or small cell carcinoma of esophagus, or the presence of synchronous cancer. Enoxaparin is contraindicated if the patient has a condition with a high risk of haemorrhage. Secondary exclusion criteria were patient's refusal to agree to an esophagectomy and Eastern Cooperative Oncology Group (ECOG) performance status score ≥3 during neoadjuvant treatment.
2.3. Staging

Before treatment, all patients underwent diagnostic and staging work-up. This included taking a history; physical examination; routine hematologic and biochemical tests; upper gastrointestinal endoscopy with histologic biopsy; and computed tomography of the neck, chest, and upper abdomen. In case of presence of suspected cervical lymph nodes, ultrasonography of the neck, with fine-needle aspiration was performed. Patients did not undergo esophageal endoscopic ultrasound with fine-needle aspiration because of the prohibitive costs of a US-guided endoscopic approach which limits their widespread availability in Iran.

2.4. Interventions

Patients were randomly assigned to receive neoadjuvant chemoradiation alone or neoadjuvant chemoradiation plus enoxaparin. Radiotherapy was prescribed with a total dose of 50.4 Gy that was given in 28 fractions of 1.8 Gy each, with 5 fractions administered per week. Chemotherapy was administered weekly concurrent with radiotherapy that was consisted of carboplatin targeted at an area under the curve of 2 mg per milliliter per minute and paclitaxel at a dose of 50 mg per square meter of body-surface area intravenously. Before injection of paclitaxel, all patients were premedicated with intravenous dexamethasone, chlorpheniramine, and ranitidine as well as standard antiemetic agents. In the chemoradiation plus enoxaparin group, patients received enoxaparin sodium 40 mg/0.2 ml subcutaneous injection once daily during chemoradiation. This dose was chosen based on a review of the literature (Javadinia et al., 2018). Patients were monitored closely for possible side effects of chemotherapy or enoxaparin. Within 4 to 6 weeks after completion of neoadjuvant treatment, patients underwent esophagectomy. During the waiting period for esophagectomy, patients underwent upper gastrointestinal endoscopy for the assessment of the clinical response of the tumor to the neoadjuvant treatment.
2.5. Outcomes

The primary endpoints were clinical response, pathological response and R staging. Clinical response was defined as complete clinical response (no tumoral lesion), significant clinical response (a substantial reduction in the size of tumor, more than 50%), and poor clinical response (persistent lesion or reduction size of lesion less than 50%), based on preoperative upper gastrointestinal endoscopy. Pathologic response was defined as pathologic complete response (no evidence of vital residual tumor cells) and persistent disease (presence of any degree of vital residual tumor cells) based on pathologic evaluation of esophagectomy specimen. Residual staging (R staging) was classified according to the report of surgery and pathology. Any gross residual disease was considered to be R2 resection while microscopically positive margins were considered to be R1 resection. If there was neither a gross residual disease nor a microscopically positive margin, the surgery was considered to be R0 resection. The secondary endpoint was disease free survival which was considered over the length of time after esophagectomy, that the patient survived without any signs or symptoms of esophageal cancer (local or distal recurrence). Common Terminology Criteria for Adverse Events (CTCAE) v5.0 was used for reporting the adverse events.

2.6. Sample size and randomisation

Sample size was determined as at least 40 patients in each group based on confidence interval (CI): 95%, power: 80%, and effect size 45%. For allocation of the participants, a computer-generated list of random numbers was used with blocked randomisation [1:1].

2.7. Statistical methods
Data were analysed using Statistical Package for the Social Sciences (SPSS) version 20.0 by the Mann–Whitney U, the Chi-Square, and Fisher's exacts. The Kaplan–Meier method was used to estimate survival, with the log-rank test to determine significance. P value≤0.05 was considered significant.

3. Results

3.1. Characteristics of patient

Between June July 2016 to February 2018, 69 patients from three participating centers (two academic centers and one large non-academic teaching hospital) were randomly assigned to neoadjuvant chemoradiation plus enoxaparin arm (n=37) or chemoradiation alone arm (n=32). The Consolidated Standards of Reporting Trials (CONSORT) diagram summarizes patient status (Figure 1). Both groups were similar in term of age, gender, ECOG performance score, tumor grade, and location tumor. Table 1 summarizes the data on demographic and baseline disease characteristics.

3.2. Outcomes and estimation

For the assessment of clinical response, preoperative endoscopy was requested. One patient in each group refused to consent. Complete clinical response was reported in 14 out of 36 patients of the chemoradiation plus enoxaparin arm and 11 out of 31 patients of chemoradiation alone arm (p=0.5). All patients in both arms had an R0 resection. After esophagectomy pathologic evaluation revealed higher portion of complete pathologic response in the chemoradiation plus enoxaparin arm (64.8% vs. 62.5%, p=0.9). Table 2 shows the difference of responses between the two groups. One years DFS was higher among patients who received chemoradiation plus...
enoxaparin (78.9% vs. 70%, p=0.5). Figure 2 shows Kaplan–Meier plots of estimated 3-year
disease free survival.

3.3. Adverse effects

One patient in the chemoradiation plus enoxaparin arm was excluded from the study due to
severe thrombocytopenia. Similarly, in the chemoradiation alone arm, one patients was excluded
due to severe pancytopenia during the study. The proportion of patients experiencing any adverse
event was relatively higher in the chemoradiation plus enoxaparin arm (9/37 vs. 2/37, p=0.02);
however, all adverse effects in both groups were related to the chemotherapy (all of them were
neutropenia, the grade 1-2 in case and control group was 15.6% and 3.1% and grade 3-4 was
10.8% and 3.1%, p=0.03). Except patients who were excluded, no other serious adverse events
were reported.

4. Discussion

This study was undertaken to investigate the effects of adding enoxaparin to neoadjuvant
chemoradiotherapy in esophageal cancer. In the intervention group, daily prescription of 40mg
enoxaparin was added to chemoradiotherapy [EBRT: 50Gy/2Gy, once daily, five days in week
concurrent with paclitaxel (50 mg/m2) +carboplatin (AUC=2) weekly)]. Altogether, results of
present study showed that there was a non-significant trend to improvement in the clinical and
pathologic response in patients who were treated with enoxaparin. In addition concurrent
neoadjuvant chemoradiotherapy with enoxaparin led to an improvement of1 y DFS and a 7 month
increase in the median survival. Although the difference was nonsignificant.

Despite the several studies reporting antitumoral effects and survival advantages of anticoagulant
treatment, and specifically LMWH, in patients with cancer such as breast (Mellor et al., 2007)
lung (Altinbas et al., 2004; Bobek et al., 2005) and high grade brain gliomas (Perry et al., 2010), these effects have not be investigated in esophageal cancer and the present study appears to be a novel one.

Early studies by Bell et al (Bell, 1978), DiPalma et al (DiPalma and McMichael, 1979), and Hilgard et al (Hilgard and Thornes, 1976) have shown the potential effects of heparin against angiogenesis, and thereby, against transplanted tumor tissue growth at cellular level, which caused early clinical trials about antitumoral effects of anticoagulant drugs, and resulted in three large trials Malignancy and Low Molecular Weight-Heparin Therapy (MALT) (Klerk et al., 2005), Fragmin Advanced Malignancy Outcome Study (FAMOUS) (Kakkar et al., 2004), and CLOT (Lee et al., 2005) between 2004 and 2005. These studies show that LMWHs causes an improvement in survival in patients with cancer, independent of their antithrombotic effect (Kakkar et al., 2004; Klerk et al., 2005; Lee et al., 2005).

In an earlier trial, the MALT, patients with advanced malignancy were randomly divided into two groups: placebo (n=154) and nadroparin (n=148) and treated for 6 weeks. Enrolled patients in this study were mostly patients with adenocarcinoma, and most had breast, lung and/or colorectal cancers. In the 12 months follow-up, the HR for death was 0.75 (95% CI:0.59-0.96) and median survival in nadroparin and placebo were 8 and 6.6 month, respectively, significantly improved in treated patients with nadroparin (Lee et al., 2005). The efficacy of one year treatment with dalteparin was evaluated in the FAMOUS trial (Kakkar et al., 2004). As in MALT, most of participants of the FAMOUS suffered from advanced malignancy (stage III or IV), mostly breast, colorectal, and ovarian cancer. Results of Kaplan-Meier survival analysis did not show any survival improvement, after one, two and three years, although patients who survived at least 17 month, appeared to benefit from treatment with dalteparin (two and three
year survival 78% vs 55% and 60% vs 36% respectively, p=0.03)(9). This study, importantly, showed that survival benefit of dalteparin persisted even after discontinuation of the drugs that translate into possible antitumoral effects of LMWHs, independent from their antithrombotic effects. In the CLOT trial, over 600 patients with simultaneous cancer and DVT were treated with warfarin or dalteparin for about six month. In non-metastatic patients, use of LMWHs was associated with improved survival and decreased mortality rate [mortality rate in LMWH and warfarin groups was 20% and 36%, respectively (HR 0.50; 95% CI: 0.27-0.95; p=0.03)]. In patients with metastatic disease, there were no survival benefits (HR 1.1; 95% CI: 0.87-1.4; p=0.46) (Lee et al., 2005).

Nonetheless previous studies reported survival benefits of warfarin (Schulman and Lindmarker, 2000; Zacharski et al., 1981) and decreased in incidence of new cancers in patients with cancer (Tagalakis et al., 2007) but one meta-analysis that compared mortality following treatment with warfarin or LMWHs in 11 clinical trials, only LMWHs were associated with improved survival (RR 0.877;95% CI:0.789-0.975;p=0.015); however, this effect was not observed with warfarin (RR 0.942;95% CI: 0.854-1.040; p=0.239) (Kuderer et al., 2007). A recent systematic review show that using heparin in cancer patients was associated with improved survival (HR 0.77, 95% CI 0.65-0.91) (specifically in patients with early stage disease) without increasing the risk of hemorrhagic events (RR 1.78,95% CI0.73-4.38) (Akl et al., 2007). It seems that LMWHs have potential role in improvement of survival in a subgroup of patients with cancer, although more investigations are needed to detect the rate and mechanisms of their efficacy according to the type, site and stage of disease.

There are controversies regarding possible effects of LMWHs in the management of cancerous patients (with goal of improvement of survival). For example, two relatively/quite large clinical
clinical trials investigation the antitumoral effects of the ultra-low molecular weight heparins, Semuloparin (Agnelli et al., 2012) and nadroparin (Agnelli et al., 2009), did not show any survival benefit compared to LMWH. It is noteworthy that the major problem of most of previous research was heterogeneity in patients (Akl et al., 2007). Some studies in homogeneous patients with solid tumors like breast (Haas et al., 2012), malignant glioma (Perry et al., 2010) and lung cancer (Macbeth et al., 2015), were also, unable to show clinical benefits from adding LMWH to the standard treatment of cancerous patients.

Despite these controversies about the survival advantages of LMWH in solid tumors, in two recent review studies by Akl et al (2014) (Akl et al., 2014) and Zhang et al (2016) (Zhang et al., 2016), the authors concluded that LMWHs have clinical benefits in survival improvement of patients with cancer and considering the low risk of hemorrhagic events associated with combination of LMWHs and other chemotherapeutic agents, future investigation in evaluating different LMWH efficacies on different pathologies is warrant. However, it should be noted that according to current evidence, no guidelines recommend the use of LMWHs in order to improve survival of cancer patients and this indication is off-label (Geerts et al., 2008; Lyman et al., 2007; Mousa, 2006; National Comprehensive Cancer Network, 2011).

Clinical trials investigation the benefits of different types of LMWHs in the treatment of solid tumors, several studies have looked at the underling molecular mechanisms of these drugs. Each LMWH has special structural profile which causes unique pharmacokinetics and pharmacodynamics related to the drug structural differences between LMWHs including molecular weight, size, end component, carboxyl to sulfate ratio, and adhesive part of anti-Xa ratio, that have an effect on their biological activity (Fareed et al., 2004; Jeske et al., 2008).
Currently, there are ongoing studies in order to detecting/distinguishing antitumoral and antimeетastatic features of these drugs (Casu et al., 2007).

It appears that the improvement in survival of patients with cancer, when using LMWHs, is not merely due to a reduction in the risk of DVT and pulmonary embolism, but due to the antitumoral effects of these drugs. LMWHs influence cancer cell growth directly by interfering in the coagulation cascade or hypothetical mechanisms (including anti-proliferative functions) (Balzarotti et al., 2006), and indirectly by modulatory effects of mucopolysaccharides chains on cell signaling and the cell/environment interactions, and on enzymes and cell-signaling molecules (Mousa, 2006). Anti-tumoral effects of low molecular weight heparin is mainly through inhibition of the interactions between P selectin of platelet and P selectin ligands on the surface of tumor cell that causing formation of the tumor cell-platelet complex. Via their P-selectin, platelets interact with both the endothelium and tumor cells helping their extravasations to the vascular compartment (figure 3) (Javadinia et al., 2018).

Furthermore, glycosaminoglycans or mucopolysaccharides chains cause the anti-metastatic effects of these drugs by interfering in the P-selectin mediated tumor metastasis pathway, and this is confirmed by lack of anti-metastatic effects in fundaparinox (a LMWH without mucopolysaccharides chain) (Stevenson et al., 2005). Beside the anti-tumoral effects of LMWHs, these drugs also possess anti-angiogenic effects as well (Folkman et al., 1983), and cause dose dependent anti-angiogenesis effects by simulating the endothelial tissue inhibitory pathways, and leading to inhibitory effects on tissue factors (Coughlin, 2005; Mitroulis et al., 2011; Norrby, 2006). As well as the anti-tumoral effects of heparins through inhibition of growth and angiogenesis, they can also directly affect the immune system by inhibitory effects on extravasation of leucocytes and the complement system, or increasing the sensitivity of tumoral...
cells to immunological attack (Coughlin, 2005; Handa et al., 1991; Itoh et al., 1995; Mitroulis et al., 2011; Mousa and Mohamed, 2004; Norrby, 2006; Stevenson et al., 2005), therefore influence the anti-tumoral immunologic processes (Zhang et al., 2016).

Overall, the results of present study indicate that integration of enoxaparin into chemoradiation protocol is safe and tolerable. However, higher probability of neutropenia was reported in the patients treated with enoxaparin (no febrile neutropenia was reported in both groups). There are reports showing that neutropenia was greater in patients treated with chemotherapy + LMWH compared with those treated with chemotherapy alone (Altinbas et al., 2004). Also, the data are conflicting and Kucukoner et al. (2012) observed that neutropenia occurred more in patients treated with chemoradiation alone compare to patients received LMWH as well (Kucukoner et al., 2012).

The treatment of patients with esophageal SCC remains controversial since most previous investigations that determine our current practice, are fully adopted from the treatment approaches of developed countries that current effort try to overcome these uncertainties. A further positive aspect of our study was the evaluation of LMWHs anti-tumoral properties in a relatively homogenous population (with respect to disease type and histology). Limitations of our study were the lack of chemotherapy in a number of intervention group, which is associated with a reduction in the chemosensitizer effects of the indicated drugs and failure in monitoring of anti-Xa levels during the study. Considering the various effects of LMWHs in the inhibition of several pathways of tumors cell growth and metastasis and a possible a direct antitumor effect of LMWHs (e.g. a direct interference with components of the coagulation cascade), it is suggested that further studies should be conducted with higher sample size and considering the anti-Xa levels monitoring during the study and pattern of recurrence and metastasis in patients. Also,
regarding that cellular investigations indicate to dose dependent anti-tumoral properties of LMWHs, it is suggested that different dosages of these combinations should be experienced/tested in future researches.

5. Conclusion

Overall, the results of this study showed that the clinical and pathological response of squamous cell carcinoma of esophagus to the neoadjuvant chemoradiation was improved by the addition of enoxaparin to the treatment, although the difference was not significant. Also, there was an insignificant improvement in one year disease free survival of chemoradiotherapy patients receiving enoxaparin. Data from our study indicate that concurrent enoxaparin with radiotherapy and weekly paclitaxel/carboplatin chemotherapy was associated with minimal toxicity. The effects of LMWHs on survival of cancer patients, is probably due to a combination of direct anti-tumoral effects, antiangiogenic and immunomodulatory effects, beside indirect effects on the coagulation system. Most of these direct and indirect effects may have clinical efficacy in the treatment of SCC and gasteroesophageal adenocarcinoma, although the current data on this are contradictory and the observed benefits have been mostly from cellular and in-vitro investigations. Considering that treatment with LMWHs has few side effects, it is recommended that efforts to define the mechanisms of this group of these drugs in affecting tumor growth in the cellular level, and also clinical trials on the benefits of the anticoagulant and anti-tumoral effects, should be continued. However, it must be noted that the new generation of LMWHs lack the oligosaccharide segment and thus part of the antitumoral effects of these drugs may be limited.

Acknowledgment
This study was supported by Mashhad University of Medical Sciences (#MUMS/941703). We thank our colleagues in Cancer Research Center, Omid Hospital, who provided insight and expertise that greatly assisted the research. There is no conflict of interest to be reported.

Source of Funding
The study was funded by Mashhad University of Medical Sciences (#MUMS/941703).

Conflicts of Interest
The authors declare that there were no conflicts of interest.
References

Mousa SA, Mohamed S. 2004. Inhibition of endothelial cell tube formation by the low molecular weight heparin, tinzaparin, is mediated by tissue factor pathway inhibitor. Thrombosis and haemostasis 92(3):627-633.

Table 1. Patient and tumor characteristics per treatment group

<table>
<thead>
<tr>
<th>Variables</th>
<th>CRT+enoxaparin</th>
<th>CRT alone</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables</td>
<td>Frequency (%)</td>
<td>Frequency (%)</td>
<td></td>
</tr>
<tr>
<td>Age (years)†</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60≥</td>
<td>13 (35.1)</td>
<td>8 (25)</td>
<td>$p=0.4$</td>
</tr>
<tr>
<td>61<</td>
<td>24 (64.9)</td>
<td>24 (75)</td>
<td></td>
</tr>
<tr>
<td>Gender†</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>18 (48.7)</td>
<td>15 (46.8)</td>
<td>$p=0.8$</td>
</tr>
<tr>
<td>Male</td>
<td>19 (51.3)</td>
<td>17 (53.2)</td>
<td></td>
</tr>
<tr>
<td>ECOG PR‡</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-I</td>
<td>37 (100)</td>
<td>32 (100)</td>
<td>-</td>
</tr>
<tr>
<td>II</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>Tumor location‡</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upper thoracic</td>
<td>1 (2.7)</td>
<td>2 (6.3)</td>
<td>$p=0.3$</td>
</tr>
<tr>
<td>Middle thoracic</td>
<td>21 (56.8)</td>
<td>13 (40.6)</td>
<td></td>
</tr>
<tr>
<td>Lower thoracic</td>
<td>15 (40.5)</td>
<td>17 (53.1)</td>
<td></td>
</tr>
<tr>
<td>Tumor grade†</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I-II</td>
<td>29 (78.4)</td>
<td>25 (78.1)</td>
<td>$p=0.8$</td>
</tr>
<tr>
<td>III-IV</td>
<td>8 (21.6)</td>
<td>7 (21.9)</td>
<td></td>
</tr>
</tbody>
</table>

CRT: chemoradiation, ECOG PR: Eastern Cooperative Oncology Group (ECOG) performance status score, †Chi-Square test revealed no significant difference, ‡Fisher's exact test revealed no significant difference.
Table 2. The difference of clinical and pathologic responses between two groups

<table>
<thead>
<tr>
<th>Variables</th>
<th>CRT+enoxaparin</th>
<th>CRT alone</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frequency (%)</td>
<td>Frequency (%)</td>
<td></td>
</tr>
<tr>
<td>Clinical response‡</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCR</td>
<td>14 (38.9)</td>
<td>11 (35.5)</td>
<td>p=0.5</td>
</tr>
<tr>
<td>SCR</td>
<td>21 (58.3)</td>
<td>17 (54.8)</td>
<td></td>
</tr>
<tr>
<td>PCR</td>
<td>1 (2.8)</td>
<td>3 (9.7)</td>
<td></td>
</tr>
<tr>
<td>Classification of clinical response†</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCR</td>
<td>14 (38.9)</td>
<td>11 (35.5)</td>
<td>p=0.8</td>
</tr>
<tr>
<td>RM</td>
<td>22 (61.1)</td>
<td>20 (64.5)</td>
<td></td>
</tr>
<tr>
<td>Pathologic response†</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pCR</td>
<td>24 (64.8)</td>
<td>20 (62.5)</td>
<td>-</td>
</tr>
<tr>
<td>PD</td>
<td>13 (35.2)</td>
<td>12 (34.8)</td>
<td></td>
</tr>
<tr>
<td>R staging‡</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R0 res</td>
<td>37 (100)</td>
<td>32 (100)</td>
<td>-</td>
</tr>
<tr>
<td>R1 res</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>R2 res</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2. Kaplan–Meier Plots of Estimated 1-Year Disease Free Survival

157x168mm (150 x 150 DPI)
Figure 3: Anti-tumoral effects of low molecular weight heparin. a) Through the interactions between P selectin of platelet and P selectin ligands on the surface of tumor cell, the tumor cell-platelet complex is formed and causes dissemination. Via their P-selectin, platelets interact with both the endothelium and tumor cells helping their extravasations to the vascular compartment. b) LMWHs block the interaction between cancer cells and platelet and prevent the formation of tumor cell-platelet complex resulting in inhibition of metastasis.