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ABSTRACT
A new method has been developed for sensitivity cal-

culations of modal characteristics of bladed disks made of
anisotropic materials. The method allows the determination of
the sensitivity of the natural frequencies and mode shapes of mis-
tuned bladed disks with respect to anisotropy angles that de�ne
the crystal orientation of the monocrystalline blades using full-
scale �nite element models. An enhanced method is proposed to
provide high accuracy for the sensitivity analysis of mode shapes.
An approach has also been developed for transforming the modal
sensitivities to coordinate systems used in industry for descrip-
tion of the blade anisotropy orientations.

The capabilities of the developed methods are demonstrated
on examples of a single blade and a mistuned realistic bladed
disk �nite element models. The modal sensitivity of mistuned
bladed disks to anisotropic material orientation is thoroughly
studied.

INTRODUCTION
In the turbine stages of jet engines and gas turbines single

crystal and directionally solidi�ed materials have been applied
in order to withstand the high pressure, extreme temperature
regimes and large centrifugal forces. By a carefully controlled
casting process, it can be achieved that the single crystal materi-
als only consist of one type of columnar grain. This leads to the
disappearance of the grain boundaries between the crystals and to
all crystals facing in the same direction. Because of this, the sin-

gle crystal materials have anisotropic elastic constants, however,
the face-centered cubic structure of the nickel based superalloys
introduces additional symmetry. The application of the single
crystal and directionally solidi�ed materials provides superior
creep resistance and fatigue life extension mainly due to the dis-
appearance of the grain boundaries. The analysis of this fea-
ture has been studied extensively in the literature (see Refs. [1]
and [2]).

The main growing direction of the single crystals is carefully
controlled during the casting process, however, the secondary
crystal orientations are not. Therefore, the angles describing the
orientations can take random values within certain limits and in
most cases statistical distributions can also be derived. The pub-
lications on this topic have been investigating the static and dy-
namic response of single blades and bladed disks with different
anisotropy orientations.

The static behavior of a tuned bladed disk has been investi-
gated in Ref. [3], with special emphasis on the stress state on the
contact interfaces between the single crystal blade and isotropic
disk. The simulations in that paper have been carried out with 81
different crystal orientations, and showed a deviation of +9.7%
and -19% in normalized maximum principle stress compared
with the orientation when the material coordinate system coin-
cides with the blade coordinate system.

The in�uence of the crystal orientation on the natural fre-
quencies of the turbine buckets has been analyzed in Ref. [4] by
experimental and computational means. By using the surface re-
sponse method a natural frequency variation of less than 4% has
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been concluded for the �rst ten free-free modes.
Kaneko, [5] working with simple plate models, showed the

effect of angle deviation on the natural frequencies for the �rst
ten modes in the case of single crystal and directionally solidi�ed
materials.

In the more recent publication of Kaneko [6], the variation of
the resonant and random response due to changes of anisotropy
orientation and material constants, in case of a realistic mistuned
bladed disk model with directionally solidi�ed blades was ana-
lyzed. The simulations utilized sensitivities and the Monte Carlo
method for calculating the forced response with the help of a
fundamental mistuning model (see Ref. [7]).

A comprehensive review of the methodology for calculat-
ing the derivative of the eigenvalues and eigenvectors has been
published by Adelman and Haftka in Ref. [8].

In the current work a semi-analytical method is proposed
for the sensitivity analysis of the natural frequencies and mode
shapes of a bladed disk with respect to the anisotropy angles de-
scribing the crystal orientations. An enhanced method is pro-
posed for the calculation of the sensitivity of mode shapes in
order to achieve fast convergence and highly accurate results.

The sensitivities calculated with respect to the rotation vec-
tor components de�ned in the global coordinate system must be
transformed with respect to the manufacturers anisotropy angles
de�ned in the local coordinate system of the blade. For this, an
analytically derived facility is proposed.

The variation of the natural frequencies and mode shapes
due to different realistic crystal orientations have been calcu-
lated for single blade and mistuned bladed disks. The sensitivity
method has been validated using single blade and full model of
bladed disk.

The effect of the anisotropy orientation on a realistic bladed
disk is presented with a thorough study of the sensitivity of modal
characteristics.

MODELING AND METHOD
Linear Elastic Stress and Strain of Single Crystal Ma-
terials

The single crystal materials used in modern blades have di-
rectionally dependent elastic constants. The crystals of modern
nickel-base superalloys are organized in a face centered cubic
crystal structure, which introduces additional symmetry in the
material, therefore there are only three independent elasticity
constants. The cubic materials are a subset of orthotropic ma-
terials because the shear modulusG0 is independent of Young's
modulusE0 and Poisson's ration0.

The compliance matrix in the stress-strain relationeee = SSSsss ,
using the Voigt notation, for a nickel base superalloy is de�ned
as Eq. (1). Where the constants are:S33 = 1=E0, S13 = � n0=E0

andS44 = 1=G0.

SSS=

2

6
6
6
6
6
6
4

S33 S13 S13 0 0 0
S13 S33 S13 0 0 0
S13 S13 S33 0 0 0
0 0 0 S44 0 0
0 0 0 0 S44 0
0 0 0 0 0 S44

3

7
7
7
7
7
7
5

(1)

The compliance matrix has the form shown in Eq. (1) only if the
material and the blade coordinate systems (CS) are coinciding
however, the blade and material coordinate systems usually dif-
fer. After the blades are manufactured, the crystal orientation of
each blade is usually measured by the Laue method [9] and the
anisotropy angles describing the crystal orientation of each blade
of the mistuned bladed disk are provided in the local CS of the
blades.

In Fig. 1 the material coordinate system axes are denoted
as [100], [010] and [001], the blade CS axes asx0, y0andz0, and
the global CS axes asX, Y andZ. The imperfect crystal growth
during the manufacturing process leads to the deviation of the
material CS with respect to the blade CS and causes anisotropy
mistuning in a bladed disk. In this case, the compliance matrix
described in the blade CS can be calculated with the multiplica-
tion of the initial compliance matrix with the stress transforma-
tion matrixQQQ from the right and with its transposeQQQT from the
left as shown in Eq. (2).

SSS� (RRRM) = QQQT (RRRM) SSSQQQ(RRRM) (2)

The de�nition of the stress transformation matrixQQQ is based on
the rotation matrixRRRM that describes the transformation from the
material CS to the blade CS. The rotation of the coordinate sys-
tem from the initial single-crystal material CS to the CS of the
blade is carried out with rotation matrices. Because this rotation
is executed in 3D space, it can be described with three indepen-
dent variables.

Anisotropy Description in Global Coordinate System
For the calculations of the modal properties and their sensi-

tivities the �nite element matrices are obtained in the global CS.
The material CS describing the crystal orientation of each

blade in the global CS is de�ned by the rotation vector:

vvv =

2

4
vx
vy
vz

3

5 (3)

The rotation matrix can be then expressed as:

RRR(vvv) = III +
sin(kvvvk)

kvvvk
ewwwvvv +

1� cos(kvvvk)
kvvvk2

ewwwvvv ewwwvvv (4)
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(a) De�nition of the material and
blade CS

(b) Blade CS in the global CS

FIGURE 1: De�nition of the material and blade coordinate sys-
tem

Where, ewwwvvv is the skew-symmetric matrix de�ned in the global
coordinate system by the rotation vector components as:

ewwwvvv =

2

4
0 � vz vy
vz 0 � vx

� vy vx 0

3

5 (5)

andIII is the identity matrix.

Manufacturer Anisotropy Angles Description
The anisotropy angles de�ned in the CS of each blade,

GGG= f a ;b ;zg (6)

are shown in Fig. 1a. The primary angle, the deviation of[001]
axis with respect to isz0axis, is represented bya . The secondary
angleb is de�ned as the smaller angle betweenx0axis and [100]
or x0axis and [010]. The third anglez de�nes the position of the
[001] axis on a circle de�ned parallel to thex0� y0 plane. The
anglez can take any value between� 180� and 180� , however if
a = 0, the value of the circular angle is unde�ned.

In the current practice, this description is provided by the
blade manufacturer and it is based on the Euler rotations, there-
fore all angles are de�ned as a rotation about coordinate axes
in a certain order. First, the secondary rotation with the angle
b � = b � z about the axisz0 is performed. Second, the primary
rotation abouty0 axis is executed with the value ofa . Third,
the rotation with anglez about axisz0 is realized. By carrying
out the three rotations with anglesa ;b andz the transformation
between the material CS and blade CS is de�ned:

RRRM(GGG) = RRRz RRRa RRRb � (7)

The rotation matrixRRRG(GGG), describing the blade material
orientation in the global CS depends on the location of the blade
in the bladed disk assembly (see Fig. 1b), which is character-
ized by the blade orientation rotation matrixRRRB describing blade
stacking position, and a rotation matrix describing material ori-
entation with respect to blade stacking position,RRRM(GGG). There-
fore,RRRG(GGG) takes the form:

RRRG(GGG) = RRRBRRRM(GGG) (8)

Sensitivity of Eigenvalues of Multi-Degree-of-Freedom
Dynamic Systems

In order to calculate the sensitivities with respect to the crys-
tal orientation variation, the derivatives of the modal characteris-
tics have to be calculated with respect to the variables describing
the coordinate system rotation.

The eigenvalue problem of the multi-degree-of-freedom
(MDOF) dynamic system can be written as:

KKKfff j = l jMMMfff j (9)

Where, the stiffness matrixKKK, the eigenvaluesl j and the
mode shapes,fff j , are dependent on the anisotropy angles, but
the mass matrixMMM is not, and the subscriptj is the mode num-
ber. The geometric stiffening effects of the centrifugal forces of
a rotating bladed disk assembly can be considered in the stiffness
matrixKKK.

In order to calculate the sensitivities of the eigenvalues, dif-
ferentiating the governing equation Eq. (9) is necessary. For this
derivation, the parameterg is introduced as a general parameter
that can be any parameter describing the orientation of the single
crystal material. Assuming mass-normalized eigenvectors,fff j ,
the equation describing the sensitivity of the eigenvalues for a
MDOF dynamic system takes the form [8] :

¶ l j

¶g
= fff T

j

�
¶KKK
¶g

� l j
¶MMM
¶g

�
fff j (10)

Since the mass matrix is not dependent ong, this expression be-
comes:

¶ l j

¶g
= fff T

j
¶KKK
¶g

fff j (11)

The sensitivities of the natural frequencyf j in Hz can be ex-
pressed as:

¶ f j

¶g
=

¶ l j

¶g
�

1

4� p �
p

l j
(12)

The derivative of the stiffness matrix in Eq. (11), with respect to
the anisotropy angle for linear calculations can be calculated us-
ing an analytical method. The sensitivity of the stiffness matrix
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on the element level can be expressed with the modi�ed equa-
tion of the element stiffness formulation of a three dimensional
isoparametric �nite element as:

¶kkke

¶g
=

Z

Ve

BBBT ¶CCC�

¶g
BBBdV (13)

Wherekkke is the �nite element stiffness matrix,CCC� is the elasticity
matrix de�ned in the global coordinate system,BBB is the strain-
displacement matrix andVe is the volume of the element. In
order to carry out the calculation described in Eq.(13) the deriva-
tive of the elasticity matrix is calculated.

The transformation of the elasticity matrix from the single
crystal coordinate system to the global coordinate system can be
described as Eq. (14), whereQQQ is the stress transformation ma-
trix, dependent on(RRRG), andCCC is the inverse of the compliance
matrixSSSde�ned in Eq. (1).

CCC� = QQQCCCQQQT (14)

Taking the derivative of the elasticity matrix in the global CS
results in:

¶CCC�

¶g
=

¶QQQ
¶g

CCCQQQT + QQQCCC
¶QQQT

¶g
: (15)

In the open-source �nite element package of CalculiX [10], a
forward-difference formula is implemented for this purpose. The
application of this formula requires two evaluations of the stiff-
ness matrix. One with the unperturbed anisotropy parameters and
one when one of the parameters is increased with a suf�ciently
smallDg �nite difference step.

¶kkke(g)
¶g

�
kkke(g+ Dg) � kkke(g)

Dg
(16)

For ef�ciency, the right hand side term in Eq. (11) is calculated
on the element level, leading to:

fff T
j

¶KKK
¶g

fff j = fff T
j

 
[

e

¶kkke

¶g
fff j

e

!

: (17)

The governing equation of the mechanical problem has been de-
rived analytically until Eq. (11). The sensitivity of the stiffness
matrix, however, is calculated by numerical means. Therefore,
the method is semi-analytic.

Enhanced Method for the Sensitivity of Mode Shape
Calculation

In order to express the sensitivity of mode shapes, a series
expansion formulation is traditionally used e.g. see Ref. [8]

¶ fff j

¶g
=

m

å
k= 1

c jkfff k = FFF ccc j (18)

The formulation in Eq. (18) considers only a subset of mode
shapesm in the expansion of the derivative of the mode shapes.
In order to increase the precision and the speed of convergence
an enhanced method is proposed. This approach accounts for the
mode shapes that are not included in the expansion, in the form
of a residual vectorrrr j .

¶ fff j

¶g
= FFF ccc j + rrr j (19)

The coef�cients of the �rst term on the right hand side of Eq.
(19), ccc j , can be derived by �rst substituting Eq. (18) into the
total derivative of Eq. (9) with respect to the general anisotropy
parameterg:

(KKK � l jMMM) FFF ccc j = fff j (20)

where the right hand side for a general case is:

fff j = �
�

¶KKK
¶g

� l j
¶MMM
¶g

�
¶ l j

¶g
MMM

�
fff j (21)

Then the componentsc jk of the vector of the sensitivity expan-
sion coef�cients for j-th mode shapeccc j are obtained fork 6= j by
multiplying Eq. (20) with thekth mass-normalized mode shape
fff T

k from the left. The coef�cientc j j is calculated by differen-
tiating the normalization condition:fff T

j MMMfff j = 1, which for a
general case gives:

c j j = � 0:5fff T
j

¶MMM
¶g

fff j (22)

For the sensitivity analysis to material anisotropy orientation,
considered in this paper, the dependence of the mass matrix on
the anisotropy orientation can be neglected. Therefore, Eq. (21)
takes the following form:

fff j = �
�

¶KKK
¶g

�
¶ l j

¶g
MMM

�
fff j (23)

The coef�cients of the mode shape sensitivity expansion, consid-
ering that the mass matrix is not dependent ong, result in:

c jk =

8
<

:

fff T
k fff j

l k� l j
if k 6= j

0 if k = j
(24)

The residual vector in Eq. (19) should take into account the con-
tribution of the modes which are truncated in Eq. (18)

rrr j =
N

å
k= m+ 1

fff T
k fff j

l k � l j
fff k (25)

where N is the total number of modes in a considered structure
(which is equal to the total number of DOFs in the �nite element

4 Copyright c 2018 by ASME



model). In order to be able to calculate the residual vector, here
some valuel 0 is substituted instead ofl j . This value is chosen
to be very close, but different froml j . Then the expressionrrr j
can be divided into two terms as:

rrr j �
N

å
k= 1

fff T
k fff j

l k � l 0
fff k �

m

å
k= 1

fff T
k fff j

l k � l 0
fff k = rrr0

j �
m

å
k= 1

cr
jkfff k (26)

The former term can be reformulated as a system of linear equa-
tions and therefore solved with a linear equation solver.

(KKK � l 0MMM) rrr0
j = fff j (27)

Substitution of Eq.(26) in Eq.(19) gives us the enhanced expres-
sion for the mode shape sensitivities:

¶ fff j

¶g
= FFF ccc j + rrr0

j � FFF cccr
j = FFF ccc�

j + rrr0
j (28)

The coef�cients of the sensitivity of mode shapes using enhanced
formulation in Eq. (28) can be calculated as:

c�
jk =

8
<

:

l j � l 0

( l k� l j)(l k� l 0)
fff T

k fff j if k 6= j

�
fff T

k fff j
l k� l 0

if k = j
(29)

The value ofl 0 is selected suf�ciently close tol j in order to al-
low accurate calculation, but far enough froml j to avoid singu-
larities when solving the linear system of equations in Eq. (27).
l 0 can be chosen individually for each of the mode shapes of
interest. For the case of calculation of sensitivities for a large
number of mode shapes, in order to reduce the computational
expense,l 0 can be chosen the same for all mode shapes, which
allows the calculation of sensitivities for all mode shapes with
only one factorization of the matrix(KKK � l 0MMM) in Eq. (27). In
this work, a differentl 0 reference frequency value is selected for
each mode:

l 0 =
l j + l j � 1

2
(30)

Calculation of the Sensitivities in Blade Coordinate
System

The sensitivities of the �nite element calculations are ob-
tained with respect to the rotation vector components, de�ned
in the global CS, but for assessment of the anisotropy effect
the sensitivity with respect to measured experimental angles are
needed. In order to calculate the sensitivities with respect to the
anisotropy angles, the sensitivities to the rotation vectors have to
be transformed into the blade coordinate system. The transfor-
mation can be carried out using the chain rule:

¶a
¶GGG

=

2

4
¶vx=¶a ¶vy=¶a ¶vz=¶a
¶vx=¶b ¶vy=¶b ¶vz=¶b
¶vx=¶z ¶vy=¶z ¶vz=¶z

3

5 ¶a
¶vvv

=
¶vvv
¶GGG

�
¶a
¶vvv

(31)

wherea is any parameter of interest, and in this case this is natu-
ral frequency or modal displacement. The derivation of the Jaco-
bian matrix,JJJ = ¶vvv=¶GGG, was not available in the literature and
is derived here by the authors in analytical form.

Calculation of the Transformation Matrix The ex-
pression derived for the Jacobian in Eq. (31) is based on the fact
that the in�nitesimal rotations expressed through rotation matri-
ces of both coordinate systems: global CS and blade CS, should
be identical. The in�nitesimal rotationdwww = f dwx;dwy;dwzg
can be expressed through the rotation matrix in the form (Ref.
[11]):

d ewww = dRRRRRRT (32)

Substituting Eq. (8) in Eq. (32) the expression for in�nitesimal
rotations is obtained in through manufacturer material anisotropy
angles in the form:

d ewww = dRRRGRRRT
G =

�
RRRB

¶RRRM

¶a
RRRT

MRRRT
B

�
da +

�
RRRB

¶RRRM

¶b
RRRT

MRRRT
B

�
db +

�
RRRB

¶RRRM

¶z
RRRT

MRRRT
B

�
dz

(33)

Taking into account that the matrixd ewww obtained from Eq. (33)
is a spin matrix (see Eq. (5)) and that each summand in Eq. (33)
is a spin matrix, this equation can be rewritten in a vector form:

dwww = wwwa da + wwwb db + wwwz dz (34)

On another side, the vector of in�nitesimal rotations can be ex-
pressed through the rotation vector,vvv, describing the material
anisotropy in global CS. Using an available expression (see Refs.
[11] and [12]), we have:

dwww = TTTTdvvv (35)

where the tangent operator matrix,TTT, is expressed as:

TTT (rrr) = III +
cos(kvvvk) � 1

kvvvk2
ewwwvvv +

kvvvk � sin(kvvvk)
kvvvk3

ewwwvvv ewwwvvv (36)

Equalizing the terms upon independent variations of the rotation
matrix parameters in Eqs. (34) and (35), we obtain the equations
for the determination of the rows of the Jacobian matrix,JJJ, used
for the transformation between the two coordinate systems: the
global CS and blade CS:

TTTT ¶vvv
¶a

= wwwa ; TTTT ¶vvv
¶b

= wwwb ; TTTT ¶vvv
¶z

= wwwz (37)

NUMERICAL RESULTS
The new capabilities of the sensitivity of the modal charac-

teristics with respect to the anisotropy orientation were applied
to the analyses of a single blade and a full model of a realistic
mistuned bladed disk shown in Fig. 2.
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(a) Single
blade

(b) Quarter of the bladed disk

FIGURE 2: Finite element models

Single Blade
The �nite element model consists of quadratic tetrahedral

elements with approximately 19,000 nodes. The material of the
disk segment is considered to be isotropic, and the blade material
is orthotropic. Fixed boundary conditions have been applied on
the two sides of the disk segment (blue nodes in Fig. 2a) and the
contact interfaces of the shroud are not constrained. A centrifu-
gal load of 8625rpm has been applied and the static calculation
has been carried out with nonlinear geometric effects included.

Effect of anisotropy axis scatter on the single blade
natural frequencies In order to �nd a realistic range of the
natural frequency variation due to crystal orientation scatter a
set of simulations have been performed using the single blade
�nite element model. The total number of blades with different
anisotropy orientation in this set is 10,000. The anisotropy angles
of a ;b andz have been randomly generated using statistical dis-
tributions based on measurements of single crystal orientation.

The �rst six natural frequency values of sample population
have been normalized by the corresponding natural frequency
values of the �nite element model with the crystal orientation
coinciding with the blade coordinate system.

In Fig. 3 the normalized frequency scatter of the sample
population is shown, with the normalized value of 1 correspond-
ing to a green triangle. The calculated mean value of the popula-
tion is represented by �lled blue circles in Fig. 3. One simulation
has also been carried out by choosing the mean value of the sta-
tistical distributions described for the three anisotropy angle and
setting the crystal orientation according to those values. These
values are visualized in the �gure by red circles.

In Fig. 3 it is shown that the �rst (1st �ap - 1F), the second

FIGURE 3: Normalized natural frequency of single blade with
varied crystal orientation

(1st edgewise - 1E), the �fth (2nd edgewise - 2E) and sixth (3rd

edgewise - 3E) natural frequencies are increased by any devia-
tion of the crystal orientation, the natural frequencies 3 (2nd �ap
- 2F) and 4 (1st torsional - 1T) can be increased or decreased.
The largest range is 13.8% in case of mode 4 and the smallest
range is 4.7% in case of mode 5. The mean values of the natural
frequencies are close to the natural frequency of the blade when
the anisotropy axis coincides with the stacking axis. From the
�gure it can be see that in the case of natural frequencies 2, 5 and
6, the value of the mean of the population and the blade with the
crystal orientation based on the mean anisotropy angles is very
close in value, however this is not valid for the other modes.

The examples of the dependency of natural frequencies on
the crystal orientation are shown in Fig. 4 for the 1st, 2nd and
6th modes. The primary anglea and the secondary angleb
were changed, while the anglez was kept constant at 0� . The
natural frequency values are normalized with the natural fre-
quency calculated with the crystal orientation based on the angles
a = b = z = 0� .

For the �rst two modes the lowest values are occurring
when the crystal coordinate system coincides with the stacking
axis. For these modes the increasing primary anglea causes a
monotonous increase in the natural frequencies. The values of
the natural frequencies of mode 6 show a more complex behav-
ior.

Validation of the sensitivity of modal characteris-
tics with respect to the anisotropy angles The sensitiv-
ities of the natural frequencies calculated with the semi-analytic
method are compared with the values obtained by the �nite dif-
ference method. The calculation of the approximation of the
derivatives by the �nite difference method is performed as:

¶ f
¶Gi

�
f (Gi + DGi) � f (Gi)

DGi
(38)

6 Copyright c 2018 by ASME



(a) Normalized natural frequency 1 (1F)

(b) Normalized natural frequency 2 (1E)

(c) Normalized natural frequency 6 (2E)

FIGURE 4: Normalized natural frequency of three modes with
varying crystal orientation

whereDGi = 0:001rad. It should be noted that the �nite differ-
ence approximation allows the veri�cation the implementation of
the new method, however its accuracy is generally lower in com-
parison with the new method. The reason for this is the limited

FIGURE 5: Normalized natural frequency sensitivities with re-
spect to anisotropy angles

FIGURE 6: Validation results of the sensitivity of mode shape 6
(3E) with respect toa

precision of the natural frequency and mode shape values, used
in Eq. (38).

The sensitivities of the �rst ten natural frequencies of the
single blade were calculated. The sensitivities were obtained
with respect to all three anisotropy angles. An example of the
validation is shown in Fig. 5. The normalized natural fre-
quency results calculated with the new method reveal a good
correspondence when compared with the values obtained by the
�nite difference method. The sensitivities with respect to the
primary anglea are the most signi�cant for almost all modes.
The sensitivity values with respect tob andz are smaller. The
largest value of the normalized sensitivity of natural frequency is
(¶ f2=¶a) = 15:2%=rad = 0:084%=deg.

The convergence characteristics of the mode shape sensitiv-
ities are demonstrated by comparing the sensitivities at the nodes
of the trailing edge of the blade, where the �rst node is the one
closest to the root of the blade and the last node near the tip,
see Fig. 2a. The sensitivity of mode shape 6 is calculated with
respect to the anisotropy anglea and with different number of
mode shapes kept in the expansion basis: 6, 10 and 20 modes.
The mode shape and its sensitivity are shown in Fig. 6.

From Fig. 6 and from extensive studies, which are not pro-
vided here due to the restricted space, it can be seen that to ob-
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FIGURE 7: Natural frequency-nodal diameter diagram of the
cyclic symmetric bladed disk model with full contact on the
shrouds

tain the sensitivity of mode shapes with suf�cient precision, the
number of mode in the expansion basis should be approximately
double the mode number at least for the case of a single blade
analysis.

Mistuned Bladed Disk
For the analysis of a mistuned bladed disk a full model of a

bladed disk with 75 blades has been created. The random mis-
tuning pattern was generated using realistic statistical distribu-
tion provided by the blade manufacturer for all the anisotropy
angles. The details of these distributions are not provided here
due to con�dentiality restrictions. The �nite element model con-
sists of approximately 0:5 million nodes. The nodes shown in
blue in Fig. 2b have �xed boundary conditions applied in axial
and tangential directions. At the contact interfaces on the �r-tree
full contact and on the shrouds different contact conditions are
applied: (i) full contact, (ii) sliding contact and (iii) no contact.
The static analysis is performed with nonlinear geometric effects
included and the static stress distribution are used as a pertur-
bation for the subsequent modal analysis step. For the analysis,
low and high nodal diameter, and localized modes are selected,
see (A)-(D) in Fig. 7. The sensitivities of the mode shapes are
calculated with 200 modes included in the basis of expansion,
therefore the sensitivity of the mode shapes (A)-(D) can be cap-
tured with suf�cient precision.

Effect of anisotropy axis scatter on the bladed disk
mode shapes In the previous section it has been discussed
how the crystal orientation can in�uence the natural frequencies
of the stand-alone blade. In this section the effect of the varying
crystal orientations is demonstrated with a set of modal analyses
calculations with 50 different anisotropy mistuning patterns. In

Fig. 8 the axial displacement of the mode shape is shown at
the node on the mid-span of the trailing edge on each blade, see
Fig. 2b. From the 50 different simulation, ten is shown in Fig.
8. Additionally, the tuned mode shapes with anisotropy angles
a = b = z = 0� are plotted on these graphs with black circles.

It has been found that the higher nodal diameter mode
shapes and the localized mode shapes are more sensitive to crys-
tal orientation variations. The effect of different anisotropy angle
mistuning is shown in Fig. 8.

In case of mode A, see Fig. 8a, selected from the �rst family
of modes with two nodal diameters, the mode shape is shifted
around the circumference of the bladed disk.

The results show similar behavior for mode (C) in Fig. 8b,
that is a mode from the �rst family with nine nodal diameters.
The mode shapes are shifted around the circumference of the
bladed disk and the nodal diameter pattern is distorted.

Fig.8c shows how the mode number 76 (one of the modes
from range (D) in Fig.7) changes with changing the anisotropy
mistuning pattern. The nodal diameter pattern is very distorted
and results in a localized mode shape. Due to the high distortion
of the mode shape caused by the anisotropy mistuning, no tuned
mode shape is plotted in Fig. 8c. For each mistuning pattern the
localization of the mode shape occurs at different blades and the
largest values of the mode shape displacements vary.

Validation of the Sensitivity of Natural Frequencies
for a Bladed Disk The sensitivities of the natural frequencies
have been validated by the comparison with the �nite difference
method. The natural frequency sensitivities have been normal-
ized by the natural frequencies.

The results of the validation for the �rst 200 modes in Fig.
9a and for selected higher natural frequency sensitivities in Fig.
9b, show a good correspondence with the �nite difference ref-
erence approximation values. The sensitivities are shown here
with respect to anisotropy anglesa ;b andz of blade 5. This �g-
ure, as well as other calculations that have been performed, show
that the in�uence of the primary and the secondary angles are the
most signi�cant. In comparison, the sensitivity to thez angle is
negligible.

Validation of the Sensitivity of Mode Shapes for a
Bladed Disk The validation of the sensitivity of mode shapes
are represented here with two examples.

The sensitivity of a localized mode shape from the �rst fam-
ily, group (D) in Fig. 7, is shown with respect to the three
anisotropy angles of the blade with the highest modal displace-
ment of the blades in the bladed disk assembly. The nodal values
are determined at the mid-span of the trailing edge of each blade,
see nodes shown by red circles in Fig. 2b. The sensitivity results
are compared with the �nite difference values. The mode shape,
considered in this example, is mode number 70.
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(a) Mode shape A

(b) Mode shape C

(c) Mode shape D

FIGURE 8: Mode shape variation for different anisotropy mis-
tuning patterns

The results of Fig. 10 show that the new method provides
the same numerical values for the sensitivities of the mode shape
as the �nite difference method.

The sensitivities of the mode shapes have been validated for
higher mode shapes arbitrarily selected from the �rst 12 family
of modes. The sensitivities are calculated with respect to various
rotation vector components of blade number 42 de�ned in the
global CS. In Fig. 11 normalized mode shape sensitivity errors
are shown as a function of number of mode shapes used in the
basis. The relative error has been calculated as:

e =
(¶ fff =¶r i)New method� (¶ fff =¶r i)Finite di f f erence

(¶ fff =¶r i)Finite di f f erence
(39)

(a) First 200 modes

(b) Selected modes from the �rst 12 families

FIGURE 9: Validation of sensitivity of natural frequencies with
respect to the anisotropy angles of blade 5

FIGURE 10: Validation of the sensitivity of mode shape D (70)
with respect to the anisotropy angles of blade 5

The sensitivities have been calculated with an increasing
number of mode shapes included in the basis of the series ex-
pansion. From Fig. 11 it can be concluded that a very fast
convergence can be achieved with the enhanced method imple-
mented. The error reduces below 3% in the examples selected
here, which is satisfactory considering that the reference value
calculated with the �nite difference is less accurate than the re-
sults obtained with the new method.

The sensitivities with respect to an anisotropy angle of any
of the blade orientations can be illustrated also on all the nodes
of the bladed disk. Fig. 12 shows mode shape 70 (D) and its
sensitivity with respect to primary anglea of blade 25, where the
mode localization occurs. The sensitivity of this localized mode
shape, see Fig. 12b, has high values along the circumference of
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FIGURE 11: Error of the sensitivity of mode shapes for higher
modes with respect to rotation vector components of blade 42

(a) Mode shape

(b) Mode shape sensitivity

FIGURE 12: Mode shape D (70) and its sensitivity with respect
to anisotropy anglea of blade 25

the bladed disk and not only at the blades where the localization
occurs.

(a) Mode shape B

(b) Sensitivity of natural frequency toa angles

(c) Sensitivity of axial mode shape to selecteda angles

FIGURE 13: Mode shape B: sensitivity of modal characteristics

Investigation of the Sensitivity of the Modal Char-
acteristics The phenomena of the sensitivities of the modal
characteristics with respect to the anisotropy angles is presented
with three typical examples. In order to gain a comprehensive
overview of the behavior of the sensitivities of the modal charac-
teristics, the sensitivity of the natural frequencies and the mode
shapes are analyzed together with the mode shapes. The sensi-
tivities are shown with respect to the primary anglea .

In Fig. 13, a mode shape with 3 nodal diameters, (B) in
Fig. 7, is investigated. The mistuning pattern does not visibly
distort the sinusoidal nodal diameter mode shape. In Fig. 13b
the normalized sensitivities of the natural frequency are plotted
with respect to thea angle of the blade number shown on the
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horizontal axis. The sensitivities of the mode shapes are shown
with respect to selected primary angles. Two angles are chosen
that have a high in�uence on the natural frequency (a angle of
blade number 41 and 47) and two angles that have high effect on
the mode shapes (a angle of blade number 7 and 13). The sen-
sitivity of the mode shape with respect to the primary angles has
extreme value where the mode shapes are zero and the sensitivi-
ties are zero where the mode shape has its maximum or minimum
value.

The sensitivity of the modal properties of the localized mode
shape of number 70, (D) in Fig. 7, from the �rst family of modes,
see Fig. 14, is investigated. It can be seen that the highest sen-
sitivities of the natural frequency are with respect to the primary
angles of the blades where the mode localization occurs. The
sensitivities with respect toa angles of blade 25, 26 and 28 has
the highest sensitivity of natural frequencies and mode shapes
values. Moreover, if a sensitivity of natural frequency has a small
value, the mode shapes sensitivity values are also small with re-
spect to the samea angle, see for example the primary angle
of blade 50. It is worth mentioning that the mode shape sen-
sitivities to the anisotropy angles have the highest values at the
localization, however the whole mode shape is in�uenced by the
change in crystal orientation. The numerical values of the sensi-
tivities are at least one magnitude higher than the sensitivities in
the case of mode (B).

A mode shape with high nodal diameter mode shape from
the second family of modes (E) is shown in Fig. 15a. A distorted
nodal diameter pattern can be identi�ed, which means that this
can be considered as a transition mode between the tuned mode
shape and the localized modes. The sensitivities with respect to
the primary angles of blade 72 and 75 are high for both natural
frequencies and mode shapes, and blade 72 has both the maxi-
mum natural frequency and mode shape sensitivity values. In the
transition modes, the angles with small natural frequency sensi-
tivities can have signi�cant in�uence on the mode shapes. For
example, the primary angle of blade number 35 has a small in-
�uence on the natural frequency, however the sensitivity of the
mode shape with respect to this angle cannot be neglected. The
values of the sensitivities of the modal characteristics are in this
case lower than what can be seen for the localized mode shape
(D), but higher than the mode shape with a low number of nodal
diameter (B).

In order to investigate which natural frequencies are the most
sensitive to the orientation change of a single blade, the highest
sensitivity of the natural frequency with respect to a single an-
gle has been identi�ed for each blade. The maximum and mini-
mum numerical values of each normalized sensitivity of natural
frequency with respect to all three anisotropy angles have been
plotted in Fig. 16. The mode shapes of the �rst ten modes of
the bladed disk are very close to the tuned mode shapes,and low
sensitivity values can be observed. The modes from 25 to 69
are transition modes, where distorted nodal diameter patterns can

(a) Mode shape 70 (D)

(b) Sensitivity of natural frequency toa angles

(c) Sensitivity of tangential mode shape to selecteda angles

FIGURE 14: Mode shape 70 (D): sensitivity of modal character-
istics

be identi�ed. The modes from 70 to 80 have strongly localized
mode shapes, with a high sensitivity of the natural frequencies to
a small number of anisotropy angles. Results of the calculation
show the highest positive values with respect to the anisotropy
anglea . The secondary angleb can both increase and decrease
the natural frequencies. The third anisotropy anglez has the
smallest in�uence on most modes.

The bladed disk natural frequency sensitivities are investi-
gated with different contact conditions: (ii) sliding contact and
(iii) no contact between shrouds. In Fig. 17 the maximum and
minimum values of sensitivities of the �rst 80 natural frequen-
cies are shown with sliding condition on the shrouds. It is shown
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(a) Mode shape E

(b) Sensitivity of natural frequency toa angles

(c) Sensitivity of tangential mode shape to selecteda angles

FIGURE 15: Mode shape E: sensitivity of modal characteristics

that the mode shape localization occurs for lower modes, which
increases the sensitivity of the natural frequencies with respect
to the primary angles with one order of magnitude. It can be
observed that the effect of the circular anglez increases as the
sensitivities with respect toa increase. In Fig. 17 it is visible
that the sensitivity values with respect toz can be higher than
the sensitivities tob.

In Fig. 18 the maximum and minimum values of the sensi-
tivities of the natural frequencies are investigated without contact
on the shrouds. The maximum sensitivity with respect to the pri-
mary anglea increases compared those observed with sliding
contact conditions. The in�uence of the secondary angleb is not
negligible compared to the sensitivities with respect toz .

A set of simulations has been carried out with the bladed

FIGURE 16: Highest value of the normalized natural frequencies
with stick contact on the shroud

FIGURE 17: Highest value of the normalized natural frequencies
with sliding contact on the shroud

FIGURE 18: Highest value of the normalized natural frequencies
with no contact on the shroud

disk model with stuck contact conditions on the shroud inter-
faces using ten different anisotropy mistuning patterns. In Fig.
19 the maximum and minimum values are shown for each mode
with respect to the primary anglea . The highest values of the
natural frequency sensitivities calculated with the different mis-
tuning patterns are very close in numerical values for the lower
modes. For the modes higher than 70, that are strongly localized,
the maximum and minimum values of the natural frequency sen-
sitivity strongly vary for different mistuning patterns.
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FIGURE 19: Highest value of the normalized natural frequency
sensitivities toa for ten different mistuning pattern and with
stuck contact on the shroud

CONCLUSIONS
A method has been developed for the evaluation of the local

sensitivities of the modal properties with respect to the parame-
ters describing the material anisotropy in the blades of a bladed
disk assembly. The method enables a fast and reliable calculation
of the sensitivities of bladed disks.

The enhanced method developed for the calculation of the
sensitivities of the mode shapes shows good convergence char-
acteristics for lower and higher modes.

A method for transforming the sensitivities to the manufac-
turer coordinate system using an analytic derivation has been de-
veloped.

The method has been validated with the examples of a sin-
gle blade and a bladed disk. The analysis of the sensitivity of
the mode shapes showed that the localized mode shapes of the
mistuned bladed disk are the most sensitive to the change in the
crystal orientation. In case of the localized mode shapes the sen-
sitivities with respect to the anisotropy angles of the blades where
localization occurs can highly in�uence both natural frequencies
and mode shapes.

The qualitative characteristics of the effect of the anisotropy
orientation have been obtained for realistic single blade and mis-
tuned bladed disk assemblies. The study of the effect of the dif-
ferent boundary conditions of the shrouded blade disk on the nat-
ural frequency sensitivities has been performed.
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