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Abstract

Let G be anN×N real matrix whose entries are independent identically distributed standard
normal random variables Gij ∼ N (0, 1). The eigenvalues of such matrices are known to form a
two-component system consisting of purely real and complex conjugated points. The purpose of
this note is to show that by appropriately adapting the methods of [19], we can prove a central
limit theorem of the following form: if λ1, . . . , λNR

are the real eigenvalues of G, then for any
even polynomial function P (x) and even N = 2n, we have the convergence in distribution to a
normal random variable

1
√

E(NR)





NR
∑

j=1

P (λj/
√
2n)− E

NR
∑

j=1

P (λj/
√
2n)



→ N (0, σ2(P )) (0.1)

as n → ∞, where σ2(P ) = 2−
√
2

2

∫ 1

−1 P (x)2 dx.

1 Introduction

How many eigenvalues of a random matrix are real? This very natural and fundamental question
was asked in 1994 by Edelman, Kostlan and Shub [7] who proved that if G is an N ×N matrix
of independent identically distributed standard normal variables, and NR is the number of real
eigenvalues of G, then

E(NR) =
√

2N/π +O(1), N → ∞. (1.1)

Note that we are not assuming G is symmetric, in the usual parlance we say that G belongs
to the so-called Ginibre ensemble of real non-Hermitian random matrices, first considered by
Ginibre in 1965 [16].

In addition to being of instrinsic mathematical interest, the statistics of non-Hermitian ma-
trices also have important applications. The earliest such application is probably due to May
[26] who showed that real random matrices describe the stability properties of large biological
systems. Very recently it was shown [13] that the counting of the average number of equilibria
in a non-linear analogue of May’s model can be mapped to the problem of NR and to the density
of real eigenvalues in the Ginibre type ensembles. See also [15, 27] for further applications of
NR to the enumeration of equilibria in complex systems. The question of fluctuations in such
contexts is usually extremely difficult and has only recently begun to receive attention [36].
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The purpose of this article is to describe the asymptotic central limit theorem fluctuations
around Edelman and company’s estimate (1.1). In other words, thinking of (1.1) as a law of
large numbers, what happens when one recenters NR with respect to its expectation and studies
the convergence in law of the fluctuating remainder?

Our approach to this problem is based on a formalism recently developed in [19], which
allowed the authors to characterize the large deviation behaviour for the probability of an
anomalously small number of real eigenvalues of G. We will show how it is possible to adapt
their methods to prove a central limit theorem for the number of real eigenvalues, in addition to
the following generalization. From now on let N = 2n be even and denote the real eigenvalues
of G by λ1, λ2, . . . , λNR

. The quantity,

XR

n (P ) =

NR
∑

j=1

P (λj/
√
N), (1.2)

is known as a linear statistic (but crucially, note that we only sum the real eigenvalues). The
count of real eigenvalues is the special case XR

n (1) = NR.

Theorem 1.1. The variance of the total number of real eigenvalues of the standard 2n × 2n
Ginibre real random matrix is given by

Var(NR) =
2
√
2√
π

n
∑

k=1

Γ(2k − 3/2)

Γ(2k − 1)
− 2

π

n
∑

k1=1

n
∑

k2=1

Γ(k1 + k2 − 3/2)2

Γ(2k1 − 1)Γ(2k2 − 1)
(1.3)

and has n → ∞ asymptotics given by

Var(NR) = (2 −
√
2)E(NR) +O(1), n → ∞ (1.4)

Let us note that the asymptotics (1.4) also appear in [9] and weaker variance estimates
(without the constant 2 −

√
2) were obtained in [38] for non-Gaussian matrices. The same

asymptotics (including the constant) apply to the generalized eigenvalue problem of real Ginibre
matrices [11]. Formulae (1.3) and (1.4) are proved in Section 2.2, including a generalization to
the variance of (1.2) for P an even polynomial, see Proposition 2.5. We also have a central limit
theorem for linear statistics:

Theorem 1.2. Let P (x) be any even polynomial with real coefficients and let N = 2n be even.
Then in the limit n → ∞, we have the convergence in distribution

1
√

E(NR)
(XR

n (P )− E(XR

n (P )) → N (0, σ2(P )) (1.5)

where N (0, σ2(P )) denotes the normal distribution with mean 0 and variance

σ2(P ) :=
2−

√
2

2

∫ 1

−1

P (x)2 dx (1.6)

For Hermitian random matrices, results of this type continue to occupy a major industry in
the field, since at least the 1980s [18] with work continuing unabated to the present day. A quite
comprehensive treatment was given by Johansson [17], who proved that for a general class of
Hermitian ensembles, the linear statistic (1.2) converges as N → ∞, without normalization, to a
normal random variable with finite variance. The lack of any normalization is usually interpreted
as a consequence of strong correlations between the eigenvalues; indeed, for Hermitian matrices,
the variance of (1.2) remains bounded in N . In the non-Hermitian case, including all complex
eigenvalues in the sum (1.2) leads again to a bounded variance central limit theorem which is
closely related to the Gaussian free field (GFF) [8, 31, 32, 2, 29], a log-correlated field of great
importance in mathematical physics and probability, see [33] for a survey. See also [14, 23, 43]
for further relations between linear statistics of random matrices and log-correlated fields. An

2



important question for future work could be to determine if there is a process interpolating
between the Poisson fluctuations of Theorem 1.2 and the GFF obtained in [32].

The N → ∞ fate of the sum (1.2) is therefore quite different to that typically encountered
in random matrix theory, requiring a normalization of order N−1/4 to ensure distributional
convergence. Furthermore, linear statistics of random matrix eigenvalues involving a random
number of terms have not been studied so widely. However, the Poissonian structure of the
limiting Gaussian process can be guessed at in the following way. Viewed as a point process, it
is known [41, 40, 42] that the unscaled law of the real Ginibre eigenvalues converges as N → ∞
to a system of annihilating Brownian motions taken at time t = 1. Due to the relatively weak
correlations in the bulk between blocks of particles of macroscopic size, combined with Edelman’s
law (1.1) we may expect that (1.2) is close to a sum of O(

√
N) independent random variables,

for which the classical central limit theorem is applicable. These heuristics are enough to guess
(1.5), but do not seem to explain the constant1 2−

√
2 in (1.6).

For finite N , the real spectrum of a Ginibre matrix is not completely independent and
therefore (1.5) requires its own proof. The results of [10] and [3] indicate that the real eigenvalues
have quite interesting statistics, with linear repulsion at close range and Poisson behaviour at
large spacings. Specifically, it is shown in [10] that if pGinOE(s) is the probability density of real
eigenvalue spacings, then

pGinOE(s) ∼ c0s, s → 0

pGinOE(s) ∼ c21e
−c1s, s → ∞

(1.7)

where c0 = 1/(2
√
2π) and c1 = ζ(3/2)/c0. This should be contrasted with the case of random

symmetric matrices which have the Wigner-Dyson form (see [28])

pGOE(s) ∼ (π2/6)s, s → 0

pGOE(s) ∼ e−(πs)2/16, s → ∞
(1.8)

In [3], the real eigenvalues of non-Hermitian matrices are shown to characterize level crossings
in a superconducting quantum dot. Although not of the Ginibre type, the ensembles considered
in [3] seem to share the same ‘mermaid statistics’ as (1.7).

Finally, as noted in [9], the real eigenvalues of Ginibre matrices bare a close analogy to the
study of real roots of random polynomials of high degree. For a quite general class of random
polynomials, variance estimates and central limit theorems for the number of real roots were
obtained by Maslova [25, 24]. See [37] for further references and recent progress in the field of
random polynomials. An ensemble of random polynomials closely related to the present study
are the SO(2) polynomials defined by p(x) =

∑N
j=0 cjx

j where cj are i.i.d. Gaussian variables

with mean zero and variance
(

N
j

)

. As for the Ginibre ensemble, the mean and variance of the

number of real roots scale as
√
N [4]

Var(N
SO(2)
R

) ∼ c
√
N (1.9)

where the constant c = 0.57173 . . . is close to the Ginibre constant 2−
√
2 = 0.5857 . . . in (1.5).

We do not yet have a good explanation for this closeness.
To prove Theorem 1.2, we rely on the fact that the Ginibre ensemble is a Pfaffian point

process. This means that all real and complex correlation functions of the eigenvalues can be
written as a Pfaffian [5, 9, 12, 35], in addition to the class of ensemble averages described in [34].
These results rely on the explicit knowledge of the joint probability density function of real and
complex eigenvalues [22, 6]. In fact, for f even, the moment generating function of the random
variable (1.2) is actually a determinant of size n× n. In general, if f is not even it is a Pfaffian
of size 2n × 2n that seems more difficult to analyze. From the determinantal formulae, the

1Interestingly, in the parlance of log-gases, the 2−
√

2 prefactor has the physical interpretation as the compressibility

of the particle system [10].
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cumulants of (1.2) can easily be extracted, and further analysis of their asymptotic behaviour
is made possible by appropriately modifying the method used in [19].

Note: During the preparation of this article, the arXiv submission [21] appeared, which proves
Theorem 1.2 under the (different) condition that P is compactly supported inside (−1, 1) (so
does not cover the case of NR or the polynomial statistics of Theorem 1.2). It is likely that com-
bining the methods of [21] and the present article would yield an improved regularity condition
on P .

2 Proof of the main result

In the first section we compute the joint cumulant generating function of linear statistics of real
and complex eigenvalues. In the second section we calculate the variance and prove Theorem
1.1. In the final section we bound the higher order cumulants and establish our main result,
Theorem 1.2.

2.1 Pfaffian and determinantal structures

The first step towards proving (1.5) is to calculate the moment generating function of the
statistic (1.2). A key role (see [20] and [34]) is played by the real and complex integrals

A[h(x)h(y)]jk =
1

2

∫

R

dx

∫

R

dy h(x)h(y)e−x2/2−y2/2Pj−1(x)Pk−1(y)sign(y − x) (2.1)

B[g(z)g(z)]jk = −2i

∫

C

g(z)g(z)Pj−1(z)Pk−1(z)sign(ℑ(z))e−z2/2−z2/2erfc(
√
2|ℑ(z)|) d2z (2.2)

where {Pj(x)}j≥0 are a family of degree j monic polynomials. We will choose them to be
skew-orthogonal with respect to (2.1) and (2.2), as in [9] where they were calculated to be

P2j(x) = x2j , P2j+1(x) = x2j+1 − 2jx2j−1 (2.3)

With these polynomials specified, the following skew-orthogonality relation is satisfied:

A[1] +B[1] = diag

{(

0 rj−1

−rj−1 0

)}n

j=1

(2.4)

where rj−1 =
√
2πΓ(2j − 1).

Proposition 2.1. Let f ∈ L2(R) and g ∈ L2(C) be integrable functions and consider the linear
statistics

XR

N(f) =

NR
∑

j=1

f(λj), XC

N (g) =

NC
∑

j=1

g(zj) (2.5)

Then the joint cumulant generating function of (2.5) is given by:

logE
(

exp
(

sXR

N (f) + tXC

N (g)
))

=
1

2
log det

(

I2n +MR[esf(x)+sf(y) − 1] +MC[etg(z)+tg(z) − 1]
)

(2.6)
where I2n is the 2n × 2n identity matrix and MR/C[h(x, y)] are 2n × 2n block matrices, where
block (j, k) is given by

MR[h(x, y)]jk :=
1√

2πΓ(2j − 1)

(

−A[h(x, y)]2j,2k−1 −A[h(x, y)]2j,2k
A[h(x, y)]2j−1,2k−1 A[h(x, y)]2j−1,2k.

)

MC[g(z, z)]jk :=
1√

2πΓ(2j − 1)

(

−B[g(z, z)]2j,2k−1 −B[g(z, z)]2j,2k
B[g(z, z)]2j−1,2k−1 B[g(z, z)]2j−1,2k

) (2.7)
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Remark 2.2. The resulting structure of Proposition 2.1 is reminiscent of formula (3.1) in Tracy
and Widom [39], which proved to be extremely useful for the β = 2 Hermitian ensembles.

Proof. This follows from a result of Sinclair [34] combined with an important observation of
Forrester and Nagao [9]. Namely, we apply Theorem 2.1 of [34] but as was observed in [9] the
proof continues to hold separately for the real and complex eigenvalues. Namely, if we define

XC

N (g) =

NC
∑

j=1

g(zj) (2.8)

where zj are the purely complex eigenvalues, then one has a slightly more general statement

E(exp(sXR

N (f) + tXC

N (g))) =
Pf(A[esf(x)+sf(y)] +B[etg(z)+tg(z)])

2N(N+1)/4
∏N

j=1(Γ(j/2))
. (2.9)

By normalization of the generating function and linearity of the scalar products A and B, we
have

E(exp(sXR

N (f)+ tXC

N (g))) =
Pf(A[1] +B[1] +A[esf(x)+sf(y) − 1] +B[etg(z)+tg(z) − 1])

Pf(A[1] +B[1])
(2.10)

Due to the skew-orthogonality of the P ′
js, the matrix A[1] + B[1] is block diagonal and skew-

symmetric:

A[1] +B[1] = r⊗ J, r = diag(r0, . . . , rn−1), J =

(

0 1
−1 0

)

(2.11)

with rj =
√
2πΓ(2j + 1). Taking logarithms and writing the Pfaffians as square roots of deter-

minants gives (2.6) after elementary algebra.

Remark 2.3. A further simplification occurs whenever the functions f and g are both even.
In this case the Pfaffian has a checkerboard structure of zeros and the Pfaffians reduce to
determinants of half the size. We then have a bona fide determinant

E(exp(sXR

N (f) + tXC

N (g))) = det

{

δjk +
(A[esf(x)+sf(y)−1] +B[etg(z)+tg(z) − 1])2j−1,2k

√

2πΓ(2j − 1)Γ(2k − 1)

}n

j,k=1

(2.12)
which is a generalization of formula (6) in [19] (setting g = 0 and f = 1). See also [12] for
similar calculations.

To proceed, we will focus our attention on the real eigenvalues and set g ≡ 0 from now on.
To prove the central limit theorem we will calculate the cumulants of XR

N(f), for which the
determinantal formula (2.6) is quite well-suited.

Lemma 2.4. The lth order cumulant κl of any even linear statistic XR

N (f) is given by

κl(f) = l!

l
∑

m=1

(−1)m+1

m

∑

ν1+...+νm=l
νi≥1

TrM (ν1)[f ] . . .M (νm)[f ]

ν1! . . . νm!
(2.13)

where

M (ν)[f ]jk :=
A[(f(x) + f(y))ν ]2j−1,2k
√

2πΓ(2j − 1)Γ(2k − 1)
(2.14)

and A[f(x, y)] is given by (2.1).
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Proof. From formula (2.12) with g = 0, we get

[sl] logE(exp(sXR

N (f))) = [sl] log det

{

δjk +
(A[esf(x)+sf(y) − 1]2j−1,2k
√

2πΓ(2j − 1)Γ(2k − 1)

}n

j,k=1

(2.15)

= [sl]Tr log

{

δjk +
(A[esf(x)+sf(y) − 1]2j−1,2k
√

2πΓ(2j − 1)Γ(2k − 1)

}n

j,k=1

(2.16)

= [sl]

∞
∑

m=1

(−1)m+1

m
Tr

(

{

A[esf(x)+sf(y) − 1]2j−1,2k
√

2πΓ(2j − 1)Γ(2k − 1)

}n

j,k=1

)m

(2.17)

Expanding the term es(f(x)+f(y))− 1 in a Taylor series and re-ordering the sum gives (2.13).

2.2 The covariance

The main purpose of this section is to prove the following

Proposition 2.5. Let P (x) and Q(x) be any even polynomials with real coefficients. Then the
covariance of the linear statistics XR

n [P ] and XR
n [Q] satisfies the asymptotic formula

lim
n→∞

Cov

{

n−1/4XR

n [P ], n−1/4XR

n [Q]

}

=
(2 −

√
2)√

π

∫ 1

−1

P (x)Q(x) dx (2.18)

To compute the covariance of a general polynomial linear statistic, it suffices to just consider
the case of monomials

Cp,q := Cov(XR

n (λ
p), XR

n (λ
q)) (2.19)

Our goal in what follows will be to first find an exact formula for Cp,q in Lemmas 2.6 and 2.7,
and then compute the large-n asymptotics, which is done in Proposition 2.10. Throughout the
paper we will make use of the notation

f
(r,s)
j,k := A[xrys]jk. (2.20)

Lemma 2.6. The covariance of two even monomial linear statistics is given for any even matrix
dimension N = 2n by the formula:

Cp,q = n−(p+q)/2)
n
∑

k1=1

f
(p,q)
2k1−2,2k1−1 + f

(q,p)
2k1−2,2k1−1 + f

(0,p+q)
2k1−2,2k1−1 + f

(p+q,0)
2k1−2,2k1−1√

2πΓ(2k1 − 1)

− n−(p+q)/2
n
∑

k1,k2=1

f
(0,p)
2k1−2,2k2−1f

(0,q)
2k2−2,2k1−1 + f

(p,0)
2k1−2,2k2−1f

(q,0)
2k2−2,2k1−1

2πΓ(2k1 − 1)Γ(2k2 − 1)

(2.21)

Proof. This follows from expressing Cp,q in terms of variances using the identity

2Cp,q = κ2(λ
p + λq)− κ2(λ

p)− κ2(λ
q) (2.22)

The variance terms are then calculated from Lemma 2.4 with l = 2.

The coefficients in (2.20) appearing in (2.21) can be evaluated in the following convenient
form.

Lemma 2.7. For any even p and q, the following exact formula holds:

f
(p,q)
2k1−2,2k2−1 = Γ(k1 + k2 + (p+ q)/2− 3/2) + qE(k1 + p/2, k2 + q/2− 1) (2.23)

where

E(j, k) := (k − 1)!2k−1
k−1
∑

i=0

Γ(i+ j − 1/2)

2ii!
. (2.24)
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The second term is an error term that satisfies the inequality

E(k1 + p/2, k2 + q/2− 1) ≤ c(k2 + q/2− 2)!2k2

∞
∑

i=0

Γ(i+ k1 + p/2− 1/2)

2ii!

≤ c
√
n2k1+k2Γ(k2 + q/2− 3/2)Γ(k1 + p/2− 1/2)

(2.25)

where c is a constant independent of k1, k2 and n.

Remark 2.8. The first term in Γ(k1+k2+(p+ q)/2− 3/2) in (2.23) is a natural generalization
of the case p = q = 0 found in [19] and will play just as important a role here in determining
the n → ∞ asymptotics.

Proof. From the identities P2k1−2(x)x
p = Pr+2k1−2(x) and P2k2−1(y)y

q = Pq+2k2−1+qyq+2k2−3

we have
f
(p,q)
2k1−2,2k2−1 = f

(0,0)
2k1+p−2,2k2+q−1 + qf

(2k1+p−2,2k2+q−3)
0,0 (2.26)

The proof is completed by verifying the following identities which are a simple integration
exercise:

f
(0,0)
2k1+p−2,2k2+q−1 = Γ(k1 + k2 + (p+ q)/2− 3/2)

f
(2k1+p−2,2k2+q−3)
0,0 = E(k1 + p/2, k2 + q/2− 1)

(2.27)

Remark 2.9. The key point is that to prove Theorem 1.2, it will suffice to only consider the
contribution from the first term in (2.23). This is proved more generally for all cumulants in
Proposition 2.12.

To extract the asymptotics based on just the first term in (2.23), we have the following

Proposition 2.10. Consider the sum

Sp,q := N−(p+q+1)/2
N
∑

k1,k2=1

Γ(k1 + k2 +
q
2 − 3/2)Γ(k1 + k2 +

p
2 − 3/2)

Γ(2k1 − 1)Γ(2k2 − 1)
(2.28)

Then the following limit holds:

lim
n→∞

Sp,q =
√
π
2(p+q+1)/2

p+ q + 1
(2.29)

Proof. Our strategy will be to bound the sum from above and below. An upper bound can be
obtained by extending the k2 range of summation to ∞:

Sp,q ≤ n−(p+q+1)/2
n
∑

k1=1

Γ(k1 + (p− 1)/2)Γ(k1 + (q − 1)/2)

Γ(2k1 − 1)

× 2F1([k1 + (p− 1)/2, k1 + (q − 1)/2], [1/2], 1/4)

(2.30)

where 2F1 is the classical Gauss hypergeometric function. Since the summand is independent of
n, it suffices to substitute the k1 → ∞ asymptotics in (2.30). Hence we need the asymptotics of
the hypergeometric function with fixed argument and large parameters. These were calculated
by several authors using the method of steepest descent, see e.g. [30]. Indeed, the main result
in Section 4 of [30] and Stirling’s formula imply that

Γ(k1 + (p− 1)/2)Γ(k1 + (q − 1)/2)

Γ(2k1 − 1)
2F1([k1 + (p− 1)/2, k1 + (q − 1)/2], [1/2], 1/4)

∼ √
π(2k1)

(p+q−1)/2 =
√
π(2k1)

(p+q−1)/2, k1 → ∞
(2.31)
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Inserting this into the summand of (2.30) shows that

lim
n→∞

Sp,q ≤ lim
n→∞

n−(p+q+1)/2√π

n
∑

k1=1

(2k1)
(p+q−1)/2

=
√
π
2(p+q+1)/2

p+ q + 1

(2.32)

To obtain a lower bound, we will use the techniques of [19]. The main idea is to write the
Gamma functions in the numerator of (2.28) as Gaussian integrals. For a ≥ 0 even, we have

Γ(k1 + k2 + a/2− 3/2) = 2

∫

R+

xa x2k1−2 x2k2−2 e−x2

dx (2.33)

Substituting this expression for the numerator in (2.28) and summing over k1 and k2 leads to
an integral representation

Sp,q = n−(p+q+1)/24

∫

R2
+

dx1 dx2 x
p
1x

q
2 coshn−1(x1x2)

2e−x2
1−x2

2 (2.34)

where we have employed the hyperbolic cosine series coshn−1(x) =
∑n−1

k=0
x2k

(2k)! . By Lemma 4 of

[19], we have the lower bound

coshn−1(x1x2n) ≥ hne
x1x2n1(x1x2 < Tn) (2.35)

where limn→∞ Tn = 2 and limn→∞ hn = 1/2. Changing variables xi → √
nxi for i = 1, 2 in

(2.28) and inserting (2.35), we get

Sp,q ≥ 4
√
nh2

n

∫

R2
+

dx1 dx2 x
p
1x

q
21(x1x2 < Sn)e

−n(x1−x2)
2

≥ 4
√
nh2

n

∫

√
Tn

0

∫

√
Tn

0

dx1 dx2 x
p
1x

q
2e

−n(x1−x2)
2

= 4
√
nh2

n

1

2

∫

√
Tn

0

dR

∫ R

−R

dz

((

R+ z

2

)p(
R − z

2

)q

+

(

2
√
2−R − z

2

)p(

2
√
2−R+ z

2

)q)

e−nz2

∼ 4
√
nh2

n

1

2

∫

√
Tn

0

dR
(

(R/2)p+q + ((2
√
2−R)/2)p+q

)

∫ R

−R

dz e−nz2

∼ √
π
2(p+q+1)/2

(p+ q + 1)

(2.36)

where we used that the domain {x1x2 < Tn}∩R2
+ contains the square [0,

√
Tn]

2. The subsequent
estimates follow from integration by parts.

To complete the proof of Proposition 2.5, it is enough to observe that the first line of (2.21)
is asymptotic to

4
n
∑

k1=1

Γ(2k1 +
p+q
2 − 3/2)

Γ(2k1 − 1)
√
2π

∼ 2
√
2(2n)(p+q+1)/2

p+ q + 1
(2.37)

By Proposition 2.10, the second line is asymptotic to (2n)(p+q+1)/22√
π(p+q+1)

. The difference of these

two terms divided by the normalizing factor (2n)(p+q+1)/2 is equal to (
√
2−1)√
π

∫ 1

−1 x
p+q dx. The

fact that nothing contributes from the second term in (2.23) is proved for all cumulants in
Proposition 2.12.
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2.3 Higher cumulants and Gaussian fluctuations

Specialising now to the case f ≡ P of an even polynomial, we will prove in this section that
the cumulants of (1.2) with any order l ≥ 3 are O(

√
n) as n → ∞. Due to the normalization

of order n−1/4 in (1.5), this bound will be sufficient to conclude the central limit theorem and
completes the proof of our main result, Theorem 1.2.

By Lemma 2.4 it will suffice to prove that the trace in (2.13) satisfies the bound

TrM (ν1)[P ] . . .M (νm)[P ] = O(
√
n), n → ∞ (2.38)

If P is an even polynomial, the above trace is a finite linear combination of terms of the form

Zn,m := n−Mm

∑

k1,...,km

f
(2r1,2s1)
2k1−2,2k2−1 . . . f

(2rm−1,2sm−1)
2km−1−2,2km−1f

(2rm,2sm)
2km−2,2k1−1 (2.39)

where Mm =
∑m

i=1(ri + si) and as before we have f
(2ri,2si)
2k−2,2j−1 = A[x2riy2si ]2k−1,2j which are

explicitly evaluated in (2.23). This follows by definition of the trace and expanding P in a basis
of monomials. We will prove (2.38) with two Propositions. First we estimate the leading term

in (2.39) by substituting just the first factor from (2.23), denoted Γ
(2ri,2si)
2ki−2,2ki+1−1. Then in the

second Proposition we deal with the error term in (2.23) using the bound (2.25).

Proposition 2.11. Define

Γ
(2ri,2si)
2ki−2,2ki+1−1 = Γ(ki + ki+1 + ri + si − 3/2) (2.40)

for i = 1, . . . ,m, where km+1 ≡ k1 and define exponents

Mm =

m
∑

i=1

(ri + si) (2.41)

Then the sum

Z(0)
n,m :=

∑

k1,...,km

Γ
(2r1,2s1)
2k1−2,2k2−1 . . .Γ

(2rm−1,2sm−1)
2km−1−2,2km−1Γ

(2rm,2sm)
2km−2,2k1−1 (2.42)

is O(n1/2+Mm ) as n → ∞.

Proof. As for the covariance calculation, we write the Gamma factors as Gaussian integrals:

Γ
(ri,si)
2ki−2,2ki+1−1 =

∫

R

dxx2ri+2si x2ki−2 x2ki+1−2 e−x2

(2.43)

which shows that

Z(0)
n,m = n−Mm

∫

Rm

m
∏

j=1

dxj x
2rj+2sj
j coshn−1(xjxj+1)e

−x2
j . (2.44)

We now use the obvious bound coshn−1(x) ≤ cosh(x) on every factor (2.44) except one, which
we write as a contour integral:

coshn−1(xjx1) =

∮

C

dz

2πi

z−2n+1

1− z2
ezxjx1 (2.45)

where C is a small loop around z = 0. Writing the other cosh factors as exponentials leads to a
finite linear combination of terms of the form

Z(0)
n,m ≤ cm

∮

C

dz

2πi

z−2n+1

1− z2

∫

Rm





m
∏

j=1

dxj x
2rj+2sj
j



 exp
(

−xTA(z)x
)

(2.46)
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where x = (x1, . . . , xm) and

A(z) =























1 −α1/2 0 0 . . . 0 −z/2
−α1/2 1 −α2/2 0 0 . . . 0

0 −α2/2 1 −α3/2 0 . . . 0
...

...
... . . .

...
...

...
0 . . . 0 −αm−3/2 1 −αm−2/2 0
0 . . . 0 0 −αm−2/2 1 −αm−1/2

−z/2 0 . . . 0 0 −αm−1/2 1























(2.47)

where αi ∈ {1,−1}. According to Wick’s formula, the integral (2.46), which is essentially the
moments of a multivariate Gaussian, can be evaluated explicitly in terms of the determinant
and inverse of A(z). We have

det(A(z)) = −2−m(z −Am)((m− 1)z + (m+ 1)Am) (2.48)

and

σjk(z) := (A−1(z))jk =
ajkz

2 + bjkz + cjk
det(A(z))

(2.49)

where Am = ±1 and ajk, bjk and cjk are constants. The calculation of σjk is given in Lemma
A.1. As follows from (2.48), all principal minors of ℜ{A(0)} have positive determinant, implying
by Sylvester’s criterion that ℜ{A(0)} is positive definite. By continuity the same is true for
ℜ{A(z)} for sufficiently small |z| ≤ ǫ. Hence we take the integration contour to be a sufficiently
small circle centered at 0 of radius ǫ > 0, denoted Cǫ.

Now let P2 be the set of all pairings of elements of the set {1, 2, . . . , 2Mm}. Then Wick’s
formula tells us that

∫

Rm





m
∏

j=1

dxj x
2rj+2sj
j



 exp
(

−xTA(z)x
)

= det−1/2{A(z)}
∑

π∈P2

∏

(r,s)∈π

σχ(r),χ(s)(z) (2.50)

where χ(r), χ(s) are some indices which will not be important for our considerations and we use
the principal branch of the square root throughout. Inserting (2.50) into (2.46), it is apparent
that one can set Am = 1 in (2.48), as can be seen by changing variables z → zAm. Of key
importance for estimating the asymptotics is the fact that the number of terms in the product
in (2.50) is precisely Mm, so that the integral (2.46) can be bounded by

Z(0)
n,m ≤ cm

∣

∣

∣

∣

∮

Cǫ

dz

2πi

z−2n+1

1 + z

K(z)

(1− z)Mm+3/2((m− 1)z + (m+ 1))Mm+1/2

∣

∣

∣

∣

(2.51)

for some other constant cm > 0. Here K(z) is a polynomial of degree 2Mm with no dependence
on n. As in [19], we deform Cǫ to a large circle of radius R centered at zero (say CR) and notice
that the integral on CR is exponentially small for large n due to the factor z−2n+1 in (2.51).
Standard methods of contour integration show that the integral on CR can be decomposed as
four separate integrals Ij , j = 1, . . . , 4 according to the singularities of the integrand in (2.51).
The first integral I1 is on a small circle around z = 0 which is precisely the desired integral
in (2.51). Secondly I2 is an integral along a small circle centered at the simple pole z = −1,
giving a contribution K(−1)2−(2(Mm+1)) so that I2 = O(1) as n → ∞. Thirdly I3 is an integral
encircling the branch cut [1, R] (but avoiding 0) and finally I4 is an integral encircling the branch
cut [−R,−(m+1)/(m− 1)] (but avoiding −1). Hence I1 = −I2 − I3− I4+O(e−cRn) as n → ∞
for some constant c > 0.

To evaluate I3 we employ a standard technique for complex integrals involving a branch cut,
which is to introduce a ‘keyhole contour’ (see [1] for several examples) of outer radius R > 0
(not intersecting ℜ{z} = 0) with a small semi-circle of radius ǫ > 0 around z = 1. Along this
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contour, we integrate by parts p := Mm+1 times and take the limit ǫ → 0 followed by R → ∞.
This shows that

lim
R→∞

I3,R = c

∫ ∞

1

dy√
y − 1

dp

dyp

[

y−2n+1K(y)

(1 + y)((m− 1)y + (m+ 1))Mm+1/2

]

(2.52)

for some constant c. To evaluate this integral one can expand out the derivatives and, ignoring
the term (1+y)−1((m−1)y+(m+1))−Mm−1/2 and its derivatives (which are uniformly bounded
on [1,∞)) we obtain integrals of the generic form

np1

∫ ∞

1

dy
y−2n+p2

√
y − 1

= np1
Γ(2n− p2 − 1/2)Γ(1/2)

Γ(2n− p2)
(2.53)

where p2 is fixed. The exponent p1 ≤ p comes from taking derivatives of y−2n+1 and gives the
biggest contribution when p1 = p = Mm + 1. Inserting this into (2.53) and applying Stirling’s
formula gives a bound of order O(np−1/2) = O(nMm+1/2). The treatment of the integral I4
is completely analogous and gives rise to a smaller contribution of order O(nMm−1/2). This
ultimately shows that (2.51) is O(nMm+1/2) and completes the proof of the Proposition.

It remains to show that the error terms in (2.25) only give rise to sub-leading contributions
in the summation (2.39).

Proposition 2.12. Consider the sum Zn,m in (2.39), the summands of which consist of a
product of m factors. Suppose that 1 ≤ c ≤ m factors are replaced with the error bound in
(2.25), while the remaining factors are replaced with the leading Γ-factor in (2.23). Denoting

the resulting sum by Z
(c)
n,m, we have

Z(c)
n,m = O(nMm), n → ∞. (2.54)

Proof. Due to the factorized form of (2.25), the sum (2.39) is a product of c terms of the form

Ev,σ :=
∑

k1,...,kv

b
(2sσ(1))

2k1−1 Γ
(2sσ(2),2rσ(2))

2k1−2,2k2−1 . . .Γ
(2sσ(v) ,2rσ(v))

2kv−1−2,2kv−1a
(2rσ(v+1))

2kv−2

Γ(2k1 − 1)Γ(2k2 − 1) . . .Γ(2kv+1 − 1)
(2.55)

for some permutation σ (corresponding to a re-labelling of the k′is) and 1 ≤ v ≤ m. The
boundary terms a and b come directly from the error term (2.25) and are given by

a
(2rσ(v+1))

2kv+1−2 =
√
n2kv+1Γ

(

kv+1 + rσ(v+1) − 3/2
)

(2.56)

b
(2sσ(1))

2k1−1 = 2k1Γ
(

k1 + sσ(1) − 1/2
)

(2.57)

The asymptotic behaviour of Ev,σ as n → ∞ can be estimated according to the programme
already outlined for the leading term. We get

|Ev,σ| ≤ c
√
n

∣

∣

∣

∣

∮

dz

2πi

z−2n+1

1− z2

∫

Rv+1

x
2sσ(1)

1 x
2rσ(v+1)−2
v+1

×
v
∏

i=2

x
2sσ(i)+2rσ(i)

i exp
(

−xTÃ(z)x
)

dx1 . . . dxv+1

∣

∣

∣

∣

(2.58)

This time Ã(z) is symmetric and tridiagonal:

Ã(z) =























1 −
√
2z/2 0 0 . . . 0 0

−
√
2z/2 1 −α1/2 0 0 . . . 0
0 −α1/2 1 −α2/2 0 . . . 0
...

...
... . . .

...
...

...
0 . . . 0 −αv−3/2 1 −αv−2/2 0

0 . . . 0 0 −αv−2/2 1 −
√
2αv−1/2

0 0 . . . 0 0 −
√
2αv−1/2 1























(2.59)
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The Gaussian integral (2.58) is again evaluated by Wick’s theorem. It’s easy to show that

det(Ã(z)) = (1 − z2)21−v

Ã−1(z)jk =
ajk + bjkz + cjkz

2

1− z2

(2.60)

where ajk, bjk and cjk are constants independent of n and z. Therefore (2.58) gives a finite
linear combination of terms of the form

√
n

∮

C

dz

2πi

z−2n+1P (αz)

(1− z2)3/2+Ev
(2.61)

where Ev = sσ(1) +
∑v

i=2(sσ(i) + rσ(i))+ rσ(v+1) − 1 and P (αz) is an n-independent polynomial.
The asymptotics are now dominated by the two branch cuts along (±1,∞) and one easily sees
that the integrals along these cuts are both O(nEv+1) as n → ∞ (this includes the

√
n factor

in (2.61)). Taking the product over all such factors gives a bound of order O(nMm), which is
what we wanted to show.

A Miscellaneous Lemmas

In [19] the determinant of the matrix A(z) in (2.47) was evaluated explicitly. Due to the
application of Wick’s theorem, we need the inverse too.

Lemma A.1. The inverse of the cyclic tridiagonal matrix A(z) in (2.47) is given by

(A(z)−1)rs := σrs(z) = σ(0)rs −
prs(z)

Dm(z)
(A.1)

where Dm(z) = det(A(z)), As =
∏s

j=1 αj and

σ(0)rs = (−1)r+sAs

Ar
2r

j − s+ 1

j + 1
, r ≤ s (A.2)

and
prs(z) = 2z2σ(0)mmσ(0)1sσ(0)r1 − 2z(zσ(0)m1 − 2)σ(0)rmσ(0)1s (A.3)

Proof. The matrix A(z) in (2.47) is called a cyclic tri-diagonal matrix. Its inverse can be
calculated by noting that it is a rank 2 perturbation of the tridiagonal matrix A(0):

A(z) = A(0) +R(z)ST (A.4)

where R(z) is a j × 2 matrix of zeros except the corners R(z)12 = R(z)j2 = −z/2. Similarly S
is a j × 2 matrix of zeros except the corners S11 = 1 and Sj2 = 1. The inverse now follows from
the algebraic identity

A(z)−1 = A(0)−1 − A(0)−1R(z)(I2 + STA(0)−1R(z))−1STA(0)−1 (A.5)

The important part for us is the 2× 2 matrix

F := (I2 + STA(0)−1R(z))−1

=
1

Dj(z)

(

z(A(0)−1)j1 − 2 −z(A(0)−1)11
−z(A(0)−1)jj z(A(0)−1)j1 − 2

)

(A.6)

where Dj(z) = z2((A(0)−1)11(A(0)
−1)jj − (A(0)−1)2j,1) + 4z(A(0)−1)j,1 − 4. The inverse of the

tridiagonal matrix A(0) can be calculated via classical recurrence relations which can be solved
explicitly in this case:

(A(0))−1
rs =: σ(0)rs = (−1)r+sAs

Ar
2r

j − s+ 1

j + 1
, r ≤ s (A.7)

This completes the proof of the Lemma.
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