[Letter to the Editor] 17q21 variant increases the risk of exacerbations in asthmatic children despite inhaled corticosteroids use

Article (Published Version)
17q21 variant increases the risk of exacerbations in asthmatic children despite inhaled corticosteroids use

To the Editor,

Approximately 25% of the asthmatic children suffer from uncontrolled asthma despite regular use of inhaled corticosteroids (ICS). Variation within the 17q21 locus is the strongest genetic determinant for childhood-onset asthma. Recently, the influence of this locus on treatment outcomes has been shown in several studies. The Pharmacogenomics in Childhood Asthma (PiCA) consortium is a multiethnic consortium that brings together data from >14,000 asthmatic children/young adults from 12 different countries to study the pharmacogenomics of uncontrolled asthma despite treatment. In 14 PiCA populations (with over 4000 asthmatic patients), we studied the association between variation in the 17q21 locus, and asthma exacerbations despite ICS use. We specifically focused on rs7216389, a single nucleotide polymorphism (SNP) in the 17q21 locus strongly associated with childhood asthma and initially identified by Moffatt et al.

Ten PiCA studies included patients with non-Hispanic European origins, two included Hispanic patients, one African American, and one included East Asian patients. Additional details of the study populations can be found in the Data S1. Two outcomes were assessed: (i) asthma-related hospitalizations/emergency department visit (ED) visits and (ii) short courses of oral corticosteroid (OCS) use reported by the parent/child at the study visit or based on completed study questionnaires. Age, gender, genotype data, and exacerbation data were available for 4529 steroid-treated children and young adults (Table 1). Logistic regression analysis was used to assess the risk of exacerbations when carrying rs7216389. Due to potential heterogeneity between cohorts, the odds ratios (ORs) were meta-analyzed with the inverse variance weighting method assuming random effects. See Data S1 for more detail.

The risk allele (T) frequency was highest in East Asians (T = 0.81), followed with African Americans (T = 0.79, n = 468) and Hispanics (T = 0.66, total n = 916), and it was less frequent in patients with European ancestry (ranged between 0.54 and 0.62, total n = 2963). The genotype distribution of the SNP was in Hardy-Weinberg equilibrium in all cohorts. There was a low to moderate heterogeneity between studies (Figure 1). Exacerbation rates ranged between 6.5% (PACMAN) and 77.2% (HPR) for OCS use and 6% (PACMAN) and 58% (GALA II and HPR) for hospitalizations/ED visits.

Thirty percent (1378 out of 4454) of the patients reported hospitalizations/ED visits. In the meta-analysis of 13 studies, rs7216389 was statistically significantly associated with asthma-related ED visits/hospitalizations, (summary OR per increase in risk allele: 1.32, 95% CI: 1.17-1.49, P < .0001, I² = 3.9%) (Figure 1A). In a subgroup analysis, the effect estimates for hospitalizations/ED visits were approximately the same for both non-Hispanic whites (n = 2888, OR: 1.33, 95% CI: 1.10-1.61, P = .004, I² = 30.2%) and Hispanics (n = 916, OR: 1.31, 95% CI: 1.06-1.63, P = .01, I² = 0.00%). Thirty-one percent (1269 out of 4050) of the patients reported OCS use/high-dose ICS. In the meta-analysis of the nine studies, the rs7216389-T was statistically significantly associated with an increased risk of OCS use/high-dose ICS (summary OR per increase in variant allele: 1.19, 95% CI: 1.04-1.36, P = .01, I² = 22.8%) (Figure 1B). Rs7216389 was associated with OCS use in the meta-analysis of seven European studies (n = 2492, OR: 1.26, 95% CI: 1.09-1.45, P = .002, I² = 6.2%) but not in Hispanics (n = 916, OR: 0.96, 95% CI: 0.76-1.22, P = .7, I² = 0.00%). Differences in the minor allele frequencies and LD structures among different ethnicities can influence results of the association studies. This could be one of the potential explanations why we did not find a significant association in African Americans and patients from Singapore.

A sensitivity analysis was performed to investigate this association in children ≥5 years of age. When excluding children <5 years of age in the meta-analysis, the results remained significant. In the meta-analysis of 13 studies, the SNP was associated with asthma-related hospitalization/ED visits (n = 4254, OR: 1.32, 95% CI: 1.18-1.49, P < .0001, I² = 0.0%) (Figure S1). Regarding OCS use, 10 studies collected data on patients ≥5 years of age (n = 3771). In the meta-analysis of 10 studies, rs7216389 was associated with the OCS use (summary OR: 1.20, 95% CI: 1.05-1.38, P = .01, I² = 21.7%) (Figure S2).

We also performed a meta-analysis of the studies that had sufficient data available on preschool children (2-4 years of age). Although the effect estimates in younger children were in the same direction for both outcomes, the results were not statistically significant (Figures S3 & S4). All preschool studies solely included European children.

Altered expression of ORMDL3 and GSDMB by 17q21 locus variants may play a key role in childhood asthma onset. Two 17q21 asthma-risk variants (rs4065275 and rs12936231) in high

Farzan and Vijverberg equally contributed to this study.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2018 The Authors. Allergy Published by John Wiley & Sons Ltd.
<table>
<thead>
<tr>
<th>TABLE 1</th>
<th>Characteristics of the study populations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BAMSE* (n = 122)</td>
</tr>
<tr>
<td>Patient characteristic</td>
<td>Age (y), mean (SD)</td>
</tr>
<tr>
<td>Male gender, % (n)</td>
<td>79 (96)</td>
</tr>
<tr>
<td>Asthma exacerbations in past year</td>
<td>Asthma-related ED visit/hospital admission, % (n)</td>
</tr>
<tr>
<td>Oral corticosteroid use, % (n)</td>
<td>–</td>
</tr>
<tr>
<td>BTS treatment step</td>
<td>2, %</td>
</tr>
<tr>
<td>3, %</td>
<td>–</td>
</tr>
<tr>
<td>4, %</td>
<td>–</td>
</tr>
<tr>
<td>Rs7216389</td>
<td>T-allele frequency</td>
</tr>
</tbody>
</table>

aDNA was extracted from peripheral blood samples in these studies, and in the remaining, DNA was extracted from saliva samples. bPatients with exacerbations were treated with oral corticosteroid or high-dose inhaled corticosteroids. cCAMP is randomized clinical trial of mild to moderate asthmatics, and all children were on 200 μg of budesonide (ICS) plus SABA as needed.
Figure 1. Forest Plots of rs7216389 for (A) asthma-related hospitalizations/ED visits in thirteen studies and (B) OCS/high-dose ICS use in eleven studies. Odds Ratios (OR) and corresponding 95% Confidence Intervals (95% CI) for individuals with rs7216389, controlling for age, gender, and BTS treatment step [Colour figure can be viewed at wileyonlinelibrary.com]
linkage disequilibrium (LD) with rs7216389 were reported to
switch CTCF-binding sites that resulted in increased expression of
ORMDL3 in CD4+ T cells which subsequently reduced interleukin-
2 production.8

Rs7216389 has previously shown to be associated with exacer-
bations3 and poor lung function in Caucasian children using ICS.4
Even though in our study Caucasians were the largest group, this
study is the largest multiethnic population evaluating the association
between 17q21 variant and asthma exacerbations in ICS users.
Rs7216389 seems to increase bronchial responsiveness and therefore
exacerbation rates in children,9 suggesting that carriers of
rs7216389 might have a more severe form of asthma. However, by
adding British Thoracic Society (BTS) treatment steps as a marker of
disease severity to the model, we argue that the association reflects,
at least partly, poor response to ICS.

Limitations of the study include the use of retrospective report-
ing of exacerbations in the observational cohort studies. However,
the effect was also observed in a clinical trial population (CAMP),
where exacerbations were reported prospectively. Hence, we do not
believe that using retrospective data has significantly influenced the
results. As not all studies had data available on both hospitaliza-
tions/ED visits and OCS use, we did not combine the two outcomes
in our analysis. Furthermore, as information on treatment adherence
was not available in all included studies, it was not considered in the
analysis.

We show that 17q21, a widely replicated asthma susceptibility
locus, is also associated with an increased risk of exacerbations in
children/young adults treated with ICS. A better understanding of
the molecular mechanisms underlying exacerbation-prone phenotype
of pediatric asthma could lead to a better classification of different
pediatric asthma phenotypes and the identification of novel treat-
ment targets.

CONFLICTS OF INTEREST

AHM reports an unrestricted research grant from GSK, during the
conduct of the study; she was a member of an advisory board for
AstraZeneca, outside the submitted work. MP-Y reports grants from
Spanish Ministry of Economy and Competitiveness (RICYT-
2015-17205), from Instituto de Salud Carlos III (ISCIII, AC15/
00015), and from ERA Commons 1st Joint Transnational Call
(SysPharmPedia), during the conduct of the study. NHP reports
grants from Instituto de Salud Carlos III (ISCIII) and cofunded by the
European Social Funds from the European Union (ESF) “ESF
invests in your future”, during the conduct of the study. KGT
reports grants from U.S. National Institutes of Health, during the
conduct of the study. SJV reports grants from Stichting Astma
bestrijding, during the conduct of the study; and PACMAN cohort
was funded by a strategic alliance between Utrecht Institute for
Pharmaceutical Sciences and GSK. The other authors have no
other conflict of interests that are directly relevant to the content
of this manuscript.

ORCID
N. Farzan
http://orcid.org/0000-0002-3694-1086
S. J. Vijverberg
http://orcid.org/0000-0002-4579-4081
V. Berce
http://orcid.org/0000-0002-0577-8925
H. Bisgaard
http://orcid.org/0000-0003-4131-7592
E. G. Burchard
http://orcid.org/0000-0001-7475-2035
J. C. Celedón
http://orcid.org/0000-0003-1366-5936
F. T. Chew
http://orcid.org/0000-0003-1337-5146
E. Forno
http://orcid.org/0000-0001-6497-9885
B. Francis
http://orcid.org/0000-0002-2130-5976
D. B. Hawcutt
http://orcid.org/0000-0002-8120-6507
M. Kabesch
http://orcid.org/0000-0003-0697-1871
S. K. Merid
http://orcid.org/0000-0001-5974-7676
M. Pino-Yanes
http://orcid.org/0000-0003-0332-437X
M. Pirmohamed
http://orcid.org/0000-0002-7534-7266
U. Potočnik
http://orcid.org/0000-0001-8688-174X
K. Repnik
http://orcid.org/0000-0003-0801-1911
M. Schieck
http://orcid.org/0000-0001-5878-0546
A. Sevelsted
http://orcid.org/0000-0001-7117-2334
R. L. Smyth
http://orcid.org/0000-0003-1406-6142
P. Soares
http://orcid.org/0000-0001-5033-9115
C. Söderhäll
http://orcid.org/0000-0002-8397-3080
S. M. Tse
http://orcid.org/0000-0002-0295-0064
S. Turner
http://orcid.org/0000-0001-8393-5060
K. M. Verhamme
http://orcid.org/0000-0001-8162-4904
A.-H. Maitland-van der Zee
http://orcid.org/0000-0002-6261-9445

N. Farzan
S. J. Vijverberg
N. Hernandez-Pacheco
E. H. D. Bel
V. Berce
K. Bønnelykke
H. Bisgaard
E. G. Burchard
G. Canino
J. C. Celedón
F. T. Chew
W. C. Chiang
M. M. Cloutier
E. Forno
B. Francis
D. B. Hawcutt
E. Herrera-Luis
M. Kabesch
L. Karimi
E. Melén
S. Mukhopadhyay
C. N. Palmer
R. L. Smyth
S. M. Tse
S. Turner
K. M. Verhamme
A.-H. Maitland-van der Zee

1Department of Respiratory Medicine, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
2Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
3Department of Respiratory Medicine, Department of Pediatrics, Sainte-Justine University Hospital Center and University of Montreal, Montreal, QC, Canada
4Research Unit, Hospital Universitario N.S. de Candelaria, Universidad de La Laguna, La Laguna, Tenerife, Spain
5Centre for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, Maribor, Slovenia
6Department of Pediatrics, University Medical Centre Maribor, Maribor, Slovenia
7COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
8Departments of Medicine, Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
9Behavioral Sciences Institute, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico
10Division of Pulmonary Medicine, Allergy, and Immunology, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
11Department of Biological Sciences, National University of Singapore, Singapore, Singapore
12The Allergy & Immunology Division, Department of Paediatric Medicine, KK Children's Hospital, Singapore, Singapore
13Asthma Center, Connecticut Children's Medical Center, University of Connecticut Health Center, Hartford, CT, USA
14Department of Women's and Children's Health, University of Liverpool, Liverpool, UK
15Alder Hey Children's Hospital, Liverpool, UK
16Department of Pediatric Pneumology and Allergy, University Children's Hospital Regensburg (KUNO), Regensburg, Germany
17Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, The Netherlands
18Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
19Department of Pediatrics, Sachs' Children's Hospital, Stockholm, Sweden
20Academic Department of Paediatrics, Royal Alexandra Children's Hospital, Brighton, UK
21Division of Molecular & Clinical Medicine, School of Medicine, University of Dundee, Dundee, UK
22CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
23Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
24Faculty for Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia
25Department of Human Genetics, Hannover Medical School, Hannover, Germany
26Institute of Child Health, University College London, London, UK
27Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
28Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
29The Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
30Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
31Division of Respiratory Medicine, Department of Pediatrics, Sainte-Justine University Hospital Center and University of Montreal, Montreal, QC, Canada
32Child Health, University of Aberdeen, Aberdeen, UK

Email: a.h.maitland@amc.uva.nl

REFERENCES

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

DOI: 10.1111/all.13530

Association of mast cells with clinical, endoscopic, and histologic findings in adults with eosinophilic esophagitis

To the Editor,

Eosinophilic esophagitis (EoE) presents with diverse features which can differ between children and adults, as well as among adults, but eosinophils alone do not account for this heterogeneity.1,2 Mast cells are involved in EoE pathogenesis, are highly increased in EoE compared to non-EoE controls, and mast cell-associated genes are upregulated in EoE.2,3 Mast cells also produce the profibrotic factor TGF-β1 and promote smooth muscle contraction.4 However, the extent to which mast cell presence correlates with clinical features of EoE is unknown. We aimed to determine whether esophageal mast cell levels correlated with clinical symptoms, endoscopic findings, and histologic features in newly diagnosed adults with EoE.

We performed a secondary analysis of data and biospecimens collected during a prospective cohort study of EoE cases, details of which have been previously described.7 The parent study included adults (>18) undergoing outpatient endoscopy for symptoms of esophageal dysfunction. EoE was diagnosed by consensus guidelines.8

| TABLE 1 Patient characteristic, and characteristics stratified by the highest and lowest mast cell quartile, and by mast cell to eosinophil ratios ≤1 and >1 |
|-----------------|-------------------|-------------------|-----------------|-------------------|-------------------|-------------------|-------------------|
| Characteristic | Overall EoE population (n = 96) | Lowest mast cell quartile (n = 24) | Highest mast cell quartile (n = 24) | P | Mast cell to eos ratio ≤ 1 (n = 72) | Mast cell to eos ratio > 1 (n = 24) | P |
| Mast cell density (mean cells/mm²; SD) | 266.8 ± 180.0 | 88.7 ± 32.6 | 515.3 ± 157.4 | - | 235.1 ± 142.2 | 361.6 ± 242.6 | 0.002 |
| Eosinophil density (eos/mm²; mean ± SD) | 555.9 ± 478.1 | 304.2 ± 212.0 | 717.5 ± 501.1 | <0.001 | 664.6 ± 498.8 | 229.8 ± 168.8 | <0.001 |
| Age at diagnosis (mean ± SD) | 37.2 ± 12.7 | 38.0 ± 14.2 | 38.4 ± 13.6 | 0.91 | 37.1 ± 12.6 | 37.6 ± 13.2 | 0.88 |
| Male (n, %) | 54 (56) | 10 (42) | 15 (63) | 0.15 | 38 (53) | 16 (67) | 0.24 |
| White (n, %) | 91 (95) | 23 (96) | 24 (100) | 0.31 | 68 (94) | 23 (96) | 0.79 |
| Symptoms | Dysphagia (n, %) | 94 (98) | 24 (100) | 23 (96) | 0.31 | 71 (99) | 23 (96) | 0.41 |
| >5 y of dysphagia (n, %) | 53 (60) | 13 (56) | 12 (55) | 0.51 | 37 (57) | 16 (70) | 0.67 |
| VAS score (mean ± SD) | 3.5 ± 2.7 | 2.4 ± 1.9 | 3.6 ± 2.8 | 0.12 | 3.5 ± 2.6 | 3.5 ± 3.0 | 0.97 |
| Heartburn (n, %) | 8 (8) | 1 (4) | 2 (8) | 0.55 | 7 (10) | 1 (4) | 0.39 |

Guarantor of the article: Evan Dellon