Targeting SHP-1,2 and SHIP pathways – a novel strategy for cancer treatment?

Article (Accepted Version)

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/76287/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

http://sro.sussex.ac.uk
Targeting SHP-1,2 and SHIP pathways – a novel strategy for cancer treatment?

Wolfram C. M. Dempke¹,²*, Peter Uciechowski³, Klaus Fenchel⁴, Timothy Chevassut⁵*

¹Department of Haematology and Oncology, University Clinic Grosshadern, University of Munich, Munich, Germany; ²SaWo Oncology Ltd, Cambridge, UK; ³Institute of Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany; ⁴Medical School Hamburg (MSH), Hamburg, Germany; and ⁵Brighton and Sussex Medical School, University of Sussex, Brighton, UK.

*Professor Dempke and Professor Chevassut contributed equally to this paper.

Corresponding Author:
Professor Wolfram Dempke, MD, PhD, MBA
SaWo Oncology Ltd
27 The Steel Building
Kingfisher Way
Cambridge CB2 8BT
United Kingdom
Tel: +44-1223-357077
Email: w.dempke@sawo-oncology.co.uk

Acknowledgement:
The authors are indebted to Alwin Hierl (Munich, Germany) for preparing the artwork.
Abstract

Well balanced levels of tyrosine phosphorylation, maintained by the reversible and coordinated actions of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTP), are critical for a wide range of cellular processes including growth, differentiation, metabolism, migration, and survival. Aberrant tyrosine phosphorylation, as a result of a perturbed balance between the activities of PTKs and PTPs, however, is linked to the pathogenesis of numerous human diseases, including cancer, suggesting that PTPs may be innovative molecular targets for cancer treatment. Two PTPs that have an important inhibitory role in lymphocytes and other haematopoietic cells are SHP-1 and SHP-2 (SH2 domain-containing phosphatases 1 and 2), SHP-1,2 have been shown to promote cell growth and act by both upregulating positive signaling pathways and by downregulating negative signaling pathways. SHIP (SH2 domain-containing inositol phosphatase) is another inhibitory phosphatase that is rather specific for the inositol phospholipid phosphatidylinositol-3,4,5-trisphosphate (PIP3). SHIP acts as a negative regulator of immune response by hydrolysing PIP3, and, as a result, a SHIP deficiency results in myeloproliferation and B cell lymphoma in mice. This strong validation of SHP-1,2 and SHIP as oncology targets has generated considerable interest in the development of small molecule inhibitors as potential therapeutic agents for haematologic malignancies and solid tumours, however, SHP-1,2 and SHIP have proven to be an extremely difficult target for drug discovery, due primarily to the highly conserved and positively charged nature of its PTP active site. The majority of reported PTP inhibitors lack either appropriate selectivity or membrane permeability, limiting their utility in modulating the activity of the intracellular PTPs. In order to overcome these caveats novel techniques have been employed to synthesise new inhibitors that specifically attenuate the PTP-dependent signaling inside the cell and amongst them some are already in clinical development (e.g., SHP-1 inhibitor sodium stibogluconate; SHP-2 inhibitor TNO155; SHIP-1 activator AQX-1125). In this review the mechanisms of action and the clinical development of newly available SHP-1,2 and SHIP inhibitors and activators are described and the major issues facing this rapidly evolving field are discussed.

Keywords

Protein tyrosine phosphatases – SHP-1,2 – SHIP – immunomodulation – cancer treatment
Introduction

Well balanced levels of tyrosine phosphorylation, maintained by the reversible and coordinated actions of protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs), are critical for a wide range of cellular processes including growth, differentiation, metabolism, migration, and survival (Tonks 2006, Hunter 2009). Aberrant tyrosine phosphorylation, as a result of a perturbed balance between the activities of PTKs and PTPs, however, is linked to the pathogenesis of numerous human diseases, including cancer (Zhang et al. 2001, Julien et al. 2011). Consequently, signaling events driven by tyrosine phosphorylation may offer innovative molecular targets for therapeutic interventions (Krause et al. 2005, Ventura et al. 2006).

Inhibitory phosphatases are typically recruited to ITIMs (immunoreceptor tyrosine-based inhibitory motif) in the cytoplasmatic tails of inhibitory receptors that are themselves phosphorylated by tyrosine kinases induced during lymphocyte activation. These PTPs inhibit signal transduction by removing phosphate moieties from residues from key signaling molecules and thereby antagonise tyrosine kinases (Cahir McFarland et al. 1994).

Two PTPs that have an important inhibitory role in lymphocytes and other haematopoietic cells are SHP-1 and SHP-2 (SH2 domain-containing phosphatases 1 and 2). Although a PTP is traditionally thought to inactivate kinases and to serve as a negative regulator of cell functions, SHP-1,2 have been shown to promote cell growth and act by both upregulating positive signaling pathways (Neel et al. 2003) and by downregulating negative signaling pathways (Xu and Qu 2008). SHP-1 is expressed widely throughout the haematopoietic system and has been shown to impact a multitude of cell signaling pathways (Abram and Lowell 2017). In addition, SHP-2 contributes to the progression of a number of cancer types including leukaemias, gastric, and breast cancers. It also regulates T cell activation by interacting with inhibitory checkpoint inhibitors such as programmed cell death-1 (PD-1) and the B and T lymphocyte attenuator (BTLA) (Xie et al. 2017).

Another inhibitory phosphatase that is rather specific for an inositol phospholipid is SHIP (SH2 domain-containing inositol phosphatase). Like SHP-1,2, SHIP binds to phosphorylated ITIM sequences on specific inhibitory receptors and removes a phosphate group from phosphotidylinositol (3,4,5)-triphosphate (PIP3), a phospholipid in the inner leaflet of the plasma membrane which then leads to inhibition of PI3K (phosphoinositol-3 kinase) signaling in lymphocytes (Kerr 2011). SHIP acts as a negative regulator of immune response by hydrolysing PIP3, and, as a result, a SHIP deficiency leads to myeloproliferation and B cell lymphoma in mice (Charlier et al. 2010).

Although the success of such targeted approaches has been well demonstrated by over forty PTK inhibitors that are already approved for treatment, the therapeutic potential of modulating the PTPs is still
underexplored despite the fact that several PTPs have also been identified as high-value targets (Cohen and Alessi 2013).

Excessive tyrosine phosphorylation is a hallmark of cancer, usually caused by abnormal expression and/or activation of receptor PTKs. By catalysing the dephosphorylation of phosphotyrosine residues, PTPs are usually viewed as negative regulators of signal transduction and therefore perceived as products of tumour suppressor genes. Several PTPs, including phosphatase and tensin homolog deleted on chromosome ten (PTEN), have been identified as tumour suppressors (Wang et al. 2004), whereas others (e.g., SHP-1,2, SHIP) have been shown to promote the malignant phenotype.

This strong validation of SHP-1,2 and SHIP as oncology targets has generated considerable interest in the development of small molecule inhibitors as potential therapeutic agents for haematologic malignancies and solid tumours (Kerr 2011, Russo et al. 2015, Ran et al. 2016, Watson et al. 2016). Unfortunately, SHP-1,2 and SHIP have proven to be an extremely difficult target for drug discovery, due primarily to the highly conserved and positively charged nature of its PTP active site (Zeng et al. 2014), and PTP inhibitor development has sent many pharmaceutical companies to the graveyard in the last decade.

The majority of reported PTP inhibitors lack either appropriate selectivity or membrane permeability, limiting their capacity in modulating the activity of the intracellular PTPs (Watson et al. 2016). In order to overcome these caveats novel techniques have been employed to synthesise new inhibitors that specifically attenuate the PTP-dependent signaling inside the cell and amongst them some are already in clinical phase I development (Zeng et al. 2014, Russo et al. 2015, Chen et al. 2016, Xie et al. 2017).

In this paper we will review the mechanisms of action and the clinical development of newly available SHP-1,2 and SHIP inhibitors and activators, and discuss the major issues facing this rapidly evolving field.

SHP-1,2 Pathways: Molecular Biology

SHP-1

SHP-1 (encoded by the PTPN6 gene) is a widely expressed inhibitory PTP and is a negative regulator of antigen-dependent activation and proliferation. It is a cytosolic protein, and therefore not amenable to antibody-mediated therapies, but its role in activation and proliferation could make it an attractive target for genetic manipulation in adoptive transfer strategies, such as chimeric antigen receptor (CAR) T cells (Watson et al. 2016).

SHP-1 is expressed by all mature haematopoietic lineages and at low levels (different isoforms) by endothelial cells (Lorenz et al. 2009, Abram and Lowell 2017). SHP-1 consists of three domains; the N-terminal Src homology-2 (SH2) domain, the C-terminal SH2 domain, and the C-terminal catalytic PTP domain (Yang et
and maximal phosphatase activity is achieved only when both SH2 domains are engaged. It has been shown that SHP-1 constitutively interacts with ITIM containing leucocyte-associated Ig-like receptor 1 (LAIR-1, ligand: collagen XVII) (Sathish et al. 2001). LAIR-1 is a member of the Ig superfamily, which is expressed on the majority of PBMCs and thymocytes. Antibody-induced cross-linking of the receptor in vitro provides a potent inhibitory signal that is capable of inhibiting cellular functions of NK cells, effector T cells, B cells, and dendritic cell precursors (Maasho et al. 2005). This inhibitory signal is dependent on phosphorylation of tyrosine residues located in ITIMs present in the cytoplasmic tail of LAIR-1 (Verbrugge et al. 2003). Recently, Lebbink et al. (2006) have demonstrated that collagens (e.g., collagen XVII) are ligands for LAIR-1 which appears to be a novel mechanism of peripheral immune regulation by extracellular matrix proteins. Little is known about other SHP-1 binding partners in human cells, however, there is some evidence that zeta-chain associated protein kinase 70 (ZAP-70) (Plas et al. 1996), lymphocyte-specific protein tyrosine kinase (LCK) (Chiang et al. 2001), phosphoinositol-3 kinase (PI3K) (Cuevas et al. 1999), Vav (Stebbins et al. 2003) and TCR-zeta (Sozio et al. 2004) are also strongly implicated (Figure 1 and 2).

Mechanistically, SHP-1 and PD-1 were found to act independently to inhibit T cell activation; with PD-1 preferentially inhibiting T cells with the highest affinity TCRs, while SHP-1-mediated inhibition increased incrementally as TCR affinity increased (Hebeisen et al. 2013). Of particular interest, however, is, that SHP-1 was found to be inhibitory to T regulatory cells (Tregs) (Iype et al. 2010) suggesting that inhibition of SHP-1 in Tregs may lead to increased suppressor function. As a result, this effect might be attributed to increases in TCR–APC conjugate formation and duration. Moreover, inhibition/deletion of SHP-1 in all CD4-positive T cells in mice demonstrated a key role for SHP-1 in negatively regulating the responsiveness of CD4-positive T cells to interleukin-4 signaling, and thus might be of importance for the maintenance of a Th1 phenotype (Johnson et al. 2013).

Several SHP-1 inhibitors have been developed (e.g., NSC-87877, sodium stibogluconate [SSG], tyrosine phosphatase inhibitor 1 [TPI-1], suramine and others), however, only a few of them have shown activity in experimental tumour models (Watson et al. 2016). Among them, SSG (approved treatment for leishmaniasis) has been studied in phase I trials in patients with malignant melanoma, however, results were disappointing (see below for details).

The determination of which cell types contribute to the different aspects of the phenotype caused by SHP-1 loss or mutation and which pathways within these cells are regulated by SHP-1 is therefore important to enhance our understanding of the immune system regulation which then could form the basis for the development of novel SHP-1 inhibitors for cancer treatment.
SHP-2

SHP-2 (encoded by the PTPN11 gene) provides essential physiological functions in organism development and homeostasis maintenance by regulating fundamental intracellular signaling pathways in response to a wide range of growth factors and hormones. SHP-2 participates in myriad signaling cascades including the pleiotropic Ras/Mitogen-activated protein kinase (MAPK), the JAK-STAT, and the PI3K/AKT cascades, and positively contributes to multiple cellular functions including proliferation, differentiation, cell cycle maintenance, and migration (Nabinger and Chan 2012, Tajan et al. 2015, Zhang et al. 2015).

Moreover, somatic activating mutations in SHP-2 are associated with juvenile myelomonocytic leukemia, acute myeloid leukaemia (AML), myelodysplastic syndrome (MDS), and acute lymphoid leukaemia (ALL) (Nabinger and Chan 2012). Given the critical role of SHP-2 in haematopoietic stem cell function and in human haematopoiesis, it is not surprising that dysregulated SHP-2 is commonly found in human myeloid leukaemias (Nabinger and Chan 2012). Although SHP-2 mutations are rare in adult acute leukaemias, SHP-2 has been shown to be overexpressed at both the protein and RNA levels in several human AML cell lines and primary samples (Xu et al. 2005).

Several types of solid tumours including lung adenocarcinoma, colon cancer, neuroblastoma, glioblastoma, melanoma, hepatocellular carcinoma, prostate cancer, and triple-negative and HER-2 positive breast cancer have also been shown to harbour SHP-2 mutations (Bentires-Alji et al. 2004, Miyamoto et al. 2008).

SHP-2 contains two SH2 domains (N-SH2/CSH2), a catalytic (PTP) domain, and a C-terminal tail with two tyrosine phosphorylation sites (Ran et al. 2016). SHP-2 binding sites are found in RTKs and scaffolding adapter proteins, thus this “molecular switch” ensures that SHP-2 is activated only at specific cellular compartments. In growth factor and cytokine signaling, SHP-2 acts upstream of Ras to dephosphorylate and to enable full activation of the ERK/MAP kinase pathway (Figures 2 and 3). In addition, the C-terminal tyrosines of SHP-2 undergo phosphorylation in response to most agonists. Tyrosyl phosphorylated SHP-2 recruits Grb2/SOS, contributing to Ras activation (Barford and Neel 1998). Furthermore, SHP-2 binds immune-inhibitory receptors, including PD-1 (Pardoll 2012), and, often in concert with SHP-1, inhibits signaling from activating immunoreceptors (e.g., TCR). A summary of SHP-1 modulated functions is given in Table 1.

Due to its pronounced role in tumours, various SHP-2 inhibitors have been discovered to target SHP-2 for cancer treatments. Inhibitors of SHP-2 have been widely studied because of its broad role in a bundle of different cancers. For instance, cryptotanshinone has been developed to treat PTPN11-associated malignancies (Yu et al. 2013). Moreover, mouse myeloid progenitors and leukaemic cells caused by E76K mutation are sensitive
to this inhibitor (Liu et al. 2014). Another molecule, II-B08, can inhibit SHP-2 and strongly bind to the receptor (Sharma et al. 2014) and thereby enhances the effects of dasatinib on human and mouse mastocytoma cells.

Although these SHP-2 inhibitors have been reported to have substantial in vitro potency, PTP selectivity, and beneficial effects in animal models, collectively these molecules have poor bioavailability and/or troublesome pharmacophores for further drug development. In addition, none of them have been profiled extensively for off-target effects against other enzyme families. Furthermore, where in vivo efficacy has been reported, on-target activity has not been demonstrated convincingly (Ran et al. 2016).

Most recently the development of allosteric SHP-2 inhibitors has been employed to circumvent these problems using computer-aided drug designs to discover SHP-2 inhibitors (Zeng et al. 2014, Chen et al. 2016, Xie et al. 2017, Fodor et al. 2018). Recently, the medical chemistry of the SHP-2 inhibitor SHP099 has been reported (Chen et al. 2016). SHP099 is a very potent inhibitor (IC\textsubscript{50} = 71 nM) and has no significant activity against a panel of other PTPs (including SHP-1) and kinases. In addition, SHP099 has almost minimal activity against other enzyme systems typically associated with toxicity. Chen et al. (2016) also screened 250 well-annotated cancer cell lines with a deep-coverage shRNA library. Cell lines with activated RTKs/PTK-fusions were found to be preferentially sensitive to SHP-2 depletion, while cells bearing Ras or B-Raf mutations were resistant. Most importantly, SHP099, administered orally, showed efficacy against an EGFR-driven cancer cell line xenograft and a FLT3-ITD positive AML patient-derived xenograft. Remarkably, treated mice also had no evidence of toxicity.

Further evidence has been provided earlier by Zeng et al. (2014) who identified the SHP-2 inhibitor 11a-1 with an IC\textsubscript{50} value of 200 nM and more than 5-fold selectivity against 20 mammalian PTPs. The compound was found to block growth factor mediated extracellular-signal related kinases 1 and 2 (ERK1,2) and protein kinase B (AKT) activation and exhibited excellent antiproliferative activity in lung cancer and breast cancer as well as leukaemia cell lines (Chen et al. 2016). In addition, SHP-2 inhibition also abrogated/prevented emergence of resistance to B-Raf and MEK inhibitors, which is often caused by RTK activation (Prahallad et al. 2015) and may therefore provide a path to the clinic.

From being considered as an 'undruggable' target (Pandey et al. 2017) recent development of allosteric inhibitors (Xie et al. 2017) has made it possible to specifically target SHP-2 in RTK-driven malignancies. In this regard, SHP-2 has now emerged as an attractive target for therapeutic targeting in haematological malignancies. However, a better understanding of the role of SHP-2 in different haematopoietic lineages and its crosstalk with signaling pathways activated by other genetic lesions is required before the promise is realised in the clinic.
SHIP Pathway: Molecular Biology

The central signaling PI3K pathway regulates cell growth, proliferation, differentiation, cytokine production, and survival (Condé et al. 2011). Its activation by growth factors, cytokines, or chemokines leads to phosphorylation of phosphatidylinositol-4,5-bisphosphate (PI-4,5-P2) to generate phosphatidylinositol-3,4,5-trisphosphate (PI-3,4,5-P3 or PIP3). PIP3 acts as a second messenger resulting to the recruitment of several proteins containing a pleckstrin homology (PH) domain. The best characterised one is the serine/threonine kinase AKT which has a huge range of substrates involved in survival, proliferation, and metabolism. The others are the tyrosine kinase BTK, involved in Ca2+ signaling with effects on MAPK and NFκB via the BTK/PLC\textgamma signalosome, Rac/ERK via Bam32, involved in proliferation and cytoskeleton regulation, and Vav, also involved in regulation of the cytoskeleton (Parry et al. 2010, Pauls and Marshall 2017) (Figure 4).

SHIP is a negative regulator of immune cell activation and stimulation, because it dephosphorylates the PI3K product and lipid second messenger PIP3 to produce phosphatidylinositol-3,4-bisphosphate (PI-3,4-P2). SHIP and the ubiquitously expressed tumor suppressor PTEN which hydrolyses PIP3 to PI-4,5-P2, are the gatekeepers of the PI3K signalling pathway (Condé et al. 2011). SHIP is also able to hydrolyse I-1,3,4,5-P4 (IP4). IP4 as a soluble phosphoinositide is markedly involved in Ca2+ signaling in lymphocytes (Kerr 2011).

Several splice variants of SHIP have also been detected. The two major SHIP isoforms encoded in mammalian genomes are the 145 kD form SHIP-1 (encoded by the INPP5D gene) and the 142 kD form SHIP-2 (encoded by the INPPL1 gene) (Parry et al. 2010). Expression of SHIP-1 is primarily confined to all cells of the haematopoietic lineage such as T, B, NK cells, granulocytes, platelets, dendritic cells (DC), monocytes/macrophages and mast cells, but it is also expressed on progenitor and stem cells (Kerr 2011, Pauls and Marshall 2017). Through its SH2 domain, SHIP binds to the tyrosine phosphorylated forms of Shc, SHP-2, Dok-3, ITIM receptors like Fc\gammaRIIB, CD94, Ly49 and KIR (killer cell immunoglobuline-like receptor), as well as immunoreceptor tyrosine-based activation motif (ITAM) receptors such as Fc\gammaRIIA, Fc\gammaRI-associated zeta-chain, TCR zeta chain, CD28, FceRI, and the BCR (Ig\alpha/\beta) (Hamilton et al. 2011, Pauls and Marshall 2017). SHIP possesses a centrally located phosphatase domain that specifically hydrolyses the 5’-phosphate from PIP3 by generating PI-3,4-P2. C-terminal to the phosphatase domain, a C2 domain has been identified as an allosteric activating site when bound by PI-3,4-P2. The proline-rich C-terminus of SHIP binds proteins with a phosphotyrosine binding (Dok- 1, Dok-2) or an SH2 domain (e.g. SHIP-2), and can also bind SH3-containing proteins such as Grb2, Src, Lyn, Abl, and PLC\gamma-1, when phosphorylated (Hamilton et al., 2011, Pauls and Marshall 2017). SHIP-1 functions as a negative regulator in immunoreceptor signaling and haematopoietic...
progenitor cell proliferation/survival, and as an inducer of cellular apoptosis. SHIP-1 has also been implicated both as a haematopoietic tumour suppressor and activator (Kerr 2011, Viernes et al. 2014).

SHIP-2 is ubiquitously expressed in all cell and tissue types in rodents and humans, with especially high levels of SHIP-2 being found in the heart, liver, brain, skeletal muscle, and the placenta (Condé et al. 2011, Russo et al. 2015). Like SHIP-1, SHIP-2 dephosphorylates PIP3 into PI-3,4-P2. Although SHIP-1 and SHIP-2 share a high rate of amino acid conservation, they differ significantly in their cellular expression and receptor recruitment. It was reported that SHIP-1 binds to the SH3 domains of Grb2 and Src, whereas SHIP-2 binds to the SH3 domain of Abl, but not to Grb2 (Hamilton et al. 2011). SHIP-2 is considered as a negative regulator of glucose homeostasis (Condé et al. 2011), is involved in the maturation and activation of mast cells as well as in phagocytosis directed by Fc receptors for IgG, thus regulating allergic reactions and anti-bacterial defense (Parry et al. 2010).

SHIP as a cytoplasmic protein has to be recruited to the plasma membrane after direct binding of SHIP with ITIM/ITAM receptor chains through its SH2 domain and appears to be associated with adapter proteins (e.g., Shc, Grb2, Dok-3) or scaffold proteins (e.g., Gab1, 2). In B cells, SHIP directly binds phosphorylated FcγRIIB via its SH2 domain. Current data indicate that BCR activates Lyn which phosphorylates the ITIM motif in FcγRIIB, and Grb2 might stabilise SHIP binding to FcγRIIB. Pauls and Marshall (2017) presented a model in which BCR stimulation without involvement of FcγRIIB leads to the recruitment of SHIP to the phosphorylated ITAM of BCR dependent on SYK. The SH2 domain of SHIP as well as a complex of proteins including Grb2, Dok-2 and Shc mediate this ITAM recruitment (Pauls and Marshall 2017).

SHIP-1 negatively regulates immune cell signaling by phosphatase-dependent activity by effecting inhibitory ITIM receptors, but also by phosphatase-independent functions/activity via protein-protein interactions called “intrinsic brake” (Pauls and Marshall 2017). Dephosphorylation, and therefore reduction of PIP3 by SHIP interrupts the recruitment of PIP3-binding effector proteins, including BTK, AKT and Vav. SHIP is required for FcγRIIB mediated inhibition of intracellular Ca2+ responses by blocking BTK membrane recruitment; the latter regulates PLCγ-2 phosphorylation and Ca2+ fluxes. As a consequence, the activation of Ca2+ signaling-dependent downstream effectors such as MAPK and NFκB is blocked. In phosphatase-independent functions, the SHIP–Shc interaction after BCR ligation is suggested to be involved in Shc binding to Grb2 and prevents the activation of the Ras/MAPK pathway, as shown in murine B cell lines. In addition, binding of Dok-1 to SHIP after interaction with FcγRIIB negatively regulates Ras-ERK signaling, thus dampening migration. In macrophages treated with lipopolysaccharide (LPS), SHIP disrupts the interaction between TLR-4 (toll-like receptor-4) and the adaptor protein MyD88 and also blocks the nucleotide-binding oligomerisation domain-like receptor 2 (NOD2) signaling, resulting in the inhibition of downstream
activation of MAPK/NFκB pathways (summarised in Pauls and Marshall 2017). Therefore, SHIP is also involved in LPS-induced activation of monocytes/macrophages.

There are many studies using SHIP KO mice to investigate the influence of SHIP to different types of immune cells. By investigating the effect of SHIP-1 deficiency on T cells, SHIP-1 is strongly suggested to regulate CD4+ T cells differentiation towards Th1 and Th17 cells, but down regulates Treg cells (Condé et al. 2011, Parry et al. 2010, Pauls and Marshall 2017). However, one has to keep in mind that SHIP-2 may compensate the absence of SHIP-1, but its role in those SHIP-1 deficiency models has to be clarified.

The control of SHIP expression levels seems to be different in haematopoietic cell lineages (myeloid and NK cells), which results in the distinct functions of each of the cell lineages. The regulation of several gene expression levels contributing to differential expression of SHIP protein is caused by SMAD family transcription factors (SMAD: small body size Drosophila), post-transcriptional by microRNA-mediated degradation of transcripts, and post-translational processes through proteasomal degradation and ubiquitination (Kerr 2011, Pauls and Marshall 2017). MiR-155, a micro RNA, is expressed in haematopoietic cells and has been identified as a SHIP-1 repressor. It could be shown that over-expression of miR-155, also found in patients with B cell lymphoma and AML, and SHIP-1 deficiency in SHIP-1 KO mice resulted in the same phenotype. These observations indicate that overexpression of miR-155 and reduced expression of SHIP-1 might induce such types of cancer (Parry et al. 2010, Condé et al. 2011).

The importance of SHIP as negative regulator of the PI3K pathway is emphasised by observations that SHIP is mutated or markedly decreased in many leukaemias and lymphomas (Hamilton et al. 2011). Due to diminished SHIP expression in these cancer types, levels of Th2 and Treg cells may predominantly increase, and SHIP therefore may dampen the immune system to attack cancers, an observation that is in line with the finding that solid tumours grow more rapidly in SHIP KO mice (Hamilton 2011).

Since PI3K is involved in inflammation and autoimmunity, small molecules as agonists for SHIP-1 had been found to mediate an anti-inflammatory effect in blood cells (Ong et al. 2007). SHIP-1 has been reported as a haematopoietic tumour suppressor and activator, and SHIP inhibition has been shown to be effective in killing cancer cells (Kerr 2011, Russo et al. 2015, Viernes et al. 2014). However, although a potential therapeutic benefit of SHIP-1/2 agonists or inhibitors in immunomodulation or with an anti-tumour effect is evident, the complete switching-on/off of several signaling pathway may result in unexpected side-effects, therefore, strategies to select mechanisms for modulating SHIP and the PI3K pathways would be desired (Parry et al. 2010). In addition, small molecules activating (e.g. analogs of pelorol such as AQX-1125) or inhibiting SHIP-1/2 (e.g. quinoline small molecules such as NSC13480 and NSC305787 or 3-α-aminocholestane) had also been described (Kerr 2011,
3-α-Aminocholestane (3AC) is a selective inhibitor of SHIP-1 (EC$_{50}$ = 10 μM) and shows no inhibition of the other isoform, SHIP-2, at concentrations up to 1 mM. 3AC promotes apoptosis of SHIP-1-expressing leukaemia cells (KG-1) and multiple myeloma cells (OPM) suggesting SHIP-1 inhibition is a potential drug target for blood cancers. Mice treated with 3AC showed increased numbers of MIR cells in the spleen and lymph nodes and increased numbers of granulocytes (Brooks et al. 2010). Fuhler et al. (2012) investigated the biochemical consequences of 3AC treatment in multiple myeloma (MM) cells, and demonstrated that SHIP-1 inhibition arrests MM cell lines in either G0/G1 or G2/M stages of the cell cycle, leading to activation of caspases and subsequently to apoptosis. In addition, they have shown that in vivo growth of MM cells is blocked by treatment of mice with 3AC. Furthermore, this group of researchers has also demonstrated that pan-SHIP-1/2 inhibitors are also capable of kill MM cells through G2/M arrest, caspase activation and apoptosis induction. Interestingly, in SHIP-2 expressing breast cancer cells, pan-SHIP-1/2 inhibition also reduced viable cell numbers, which could be rescued by addition of exogenous PI(3,4)P2. These findings add therefore weight to the proposal that inhibition of SHIP-1 and SHIP-2 may have broad clinical application in the treatment of multiple tumours.

Clinical Development

To date, clinical trials of small-molecule SHP-1 inhibitors such as sodium stibogluconate (SSG) in cancer patients remain restricted to phase I studies, and therefore anti-tumour effects, although measured, were not the primary objective of the studies. No clinically measurable anti-tumour effects were observed in either study (Yi et al. 2002, Naing et al. 2011) which appears to be disappointing and does bring into question the effectiveness of SSG administration as an anticancer strategy. No phase II studies of small-molecule SHP-1 inhibition have been conducted so far. Evaluation of toxicity of SSG was somewhat limited in both studies due to the combination of SSG with interferon and/or chemotherapy, and therefore severe and/or life threatening adverse effects were observed (in up to 68% of patients). Dose-limiting toxicities observed included pancreatitis, bone marrow suppression, fatigue, lipase elevation and gastrointestinal upset (Table 2). Interestingly, especially when considering global SHP-1 inhibition with agents such as SSG, SHP-1 expression is altered in a range of malignancies; up-regulated in breast and ovarian cancers (Mok et al. 1995, Insabato et al. 2009) and gene-silenced in T cell lymphomas, leukaemias and colorectal cancers (Zhang et al. 2005, Xu et al. 2009, Li et al. 2014) which might, at least in part, contribute to the disappointing results observed so far.
In terms of potential for cancer therapy, SHP-2 arguably represents a more attractive molecular target than SHP-1. Activating mutations of SHP-2 are found in 10% of patients with AML (Metzeler et al. 2016) and are frequently present in juvenile myelomonocytic leukemia, particularly in patients with Noonan’s syndrome where missense mutations of SHP-2 are well recognised. SHP-2 mutations have also been reported in numerous other malignancies including neuroblastoma, melanoma, and lung, breast and colorectal cancers confirming its potential as a proto-oncogene (Bentires-Alj et al. 2004). Despite this, only one SHP-2 small molecule inhibitor is currently going through clinical testing. TNO155 is an allosteric inhibitor of SHP-2 that has been developed by Novartis (Basel, Switzerland) from the tool compound SHP099. It is orally bioavailable and is currently being studied in a dose finding study in adult patients with advanced solid tumours. This is a phase I dose escalation and expansion trial involving predominantly EGFR-mutant non-small cell lung cancer and head and neck squamous cell cancers to establish safety and tolerability. No efficacy data is yet available on TNO155 from this study which aims to recruit 105 patients over 3 years. In vitro analysis has established that the compound prevents SHP-2 mediated signaling, inhibits MAPK signals and prevents growth of SHP-2 expressing tumour cells through blockade of the Ras-RAF-ERK pathway. It also appears to modulate immune checkpoints, via regulation of PD-1-mediated signal transduction, suggesting the anti-tumoural action may be generated through immune mechanisms as well as anti-proliferative activity (Chen et al. 2016).

Rosiptor (AQX-1125) is the only SHIP-1 activator currently in clinical trials (Stenton et al. 2013, Nickel et al. 2016). Overall, approximately 395 patients have received rosiptor in eight completed clinical trials. Results have demonstrated that rosiptor has desirable pharmacokinetic, absorption, and excretion properties that make it suitable for once-daily oral administration. It also has has anti-inflammatory and anti-pain properties consistent with those exhibited in preclinical studies; and it is generally well-tolerated, exhibiting mild to moderate adverse events primarily related to gastrointestinal upset that resolve without treatment or long-term effects. In addition, rosiptor has also been shown to inhibit bleomycin-induced pulmonary fibrosis by SHIP-1 activation in mice (Cross et al. 2017). Rosiptor is an activator of SHIP-1, which reduces the activity of the PI3K cellular signaling pathway. Over-activity of the PI3K pathway can cause immune cells to produce an abundance of pro-inflammatory signaling molecules and increase their migration to and concentration in tissues, resulting in excessive or chronic inflammation. By activating SHIP-1, rosiptor is believed to decrease the inflammatory process, thereby reducing inflammation and inflammatory pain (Stenton et al. 2013). Clinical trials with cancer patients are also planned.

Finally, although there are no inhibitors of SHIP-1 in clinical studies, in vitro experiments using SHIP-1 deficient mice have shown profoundly diminished SDF1/CXCL12 expression in the bone marrow suggesting that SHIP-1 promotes the homing of haematopoietic stem cells to the bone marrow niche. Consistent with this finding
is the observation that SHIP-1 inhibitors can markedly increase granulocyte production in vivo in mice and increase neutrophil and platelet recovery in myelosuppressed hosts (Brooks et al. 2010). This suggests that SHIP-1 inhibition might represent an attractive way of promoting bone marrow recovery post-chemotherapy or following allogeneic transplantation, aside from any anti-tumoural activity, that might justify future clinical development.

Conclusion

The recent elucidation of the roles of SHP-1, 2 and SHIP pathways in cancer biology gives considerable justification to the further development of small molecule inhibitors and activators of these phosphatase proteins. The SHP-1 inhibitor SSG is furthest through clinical development although arguably it is the SHP-2 inhibitor TNO155 that looks more promising as a potential anti-tumoral agent given the frequency of activating mutations of SHP-2 in many cancers, notably AML. Targeted studies have revealed that a combination of inhibitors may be required to effectively block a given function in cancer research. Studies that broaden our understanding of the functions of SHP-2 could lead to a re-evaluation of the role in determining clinical outcome. However, future studies of the clinical importance should be carefully designed to explain conflicting viewpoints. Drugs should be used with caution as a result of the different functions of SHP-2 in various signaling pathways and cancer types. Ultimately, future studies should focus on confirming the effects of SHP-2 on tumours in different tumour micro-environments, as well as the signaling pathway, including the substrate of SHP-2 phosphatase activity. In the case of the bone marrow microenvironment, SHIP-1 appears to be a major determinant of the haematopoietic niche and stem cell homing. The next few years are likely to see further exploration of inhibitors and activators of all these phosphatases with the promise of clinical development in the field of cancer treatment and other disorders.

Conflict of Interest:
The authors declare that they have no conflict of interest.
References

64. Xu D, Qu CK (2008) Protein tyrosine phosphatases in the JAK/STAT pathway. Front Biosci 13:4925-4932

Table 1: Functions of SHP-2 in cancer. IFN: interferon; EGFR: epidermal growth factor receptor; HSCs, haematopoietic stem cells.

<table>
<thead>
<tr>
<th>Function</th>
<th>Role of SHP-2</th>
<th>Relevant References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumour invasion and metastasis</td>
<td>• increased epithelial mesenchymal transition
• metastasis is promoted via angio genesis
• association with advanced tumour stage</td>
<td>Zhou and Agazie 2008
Tang et al. 2013
Xie et al. 2014</td>
</tr>
<tr>
<td>Tumour apoptosis</td>
<td>• prevents apoptosis and blocks apoptosis in cancer stem cells
• enhanced leukaemic cell clonogenic growth
• controls survival of HSCs</td>
<td>Yang et al. 2006
Xu et al. 2005
Nabinger and Chan 2012</td>
</tr>
<tr>
<td>Tumour cell proliferation and cell cycle</td>
<td>• regulates various signaling pathways to control proliferation
• involved in radioresistance by controlling cell cycle distribution
• controlling of cell cycle checkpoints</td>
<td>Furcht et al. 2014
Peng et al. 2014
Tsang et al. 2012</td>
</tr>
<tr>
<td>DNA damage and replication</td>
<td>• depletion impairs checkpoint kinase 1 activation
• involved in checkpoint-mediated DNA repair</td>
<td>Tsang et al. 2012
Kathpalia et al. 2006</td>
</tr>
<tr>
<td>Tumour drug resistance</td>
<td>• resistance to EGFR inhibitors
• mediates IFN-γ resistance</td>
<td>Xu et al. 2013
Tseng et al. 2012</td>
</tr>
</tbody>
</table>
Table 2: Selected clinical trials with SHP-1,2 and SHIP inhibitors. DLT: dose-limiting toxicity.

<table>
<thead>
<tr>
<th>Trial Number</th>
<th>Compound</th>
<th>Target</th>
<th>Disease</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCT00629200</td>
<td>Sodium stibogluconate SHP-1 antagonist</td>
<td>Malignant melanoma</td>
<td>Phase I completed, no objective response, life-threatening events in up to 68% of patients.</td>
<td></td>
</tr>
<tr>
<td>NCT00498979</td>
<td>Sodium stibogluconate SHP-1 antagonist</td>
<td>Malignant melanoma</td>
<td>Phase I completed, no objective response, DLTs include pancreatitis, bone marrow suppresson, nausea.</td>
<td></td>
</tr>
<tr>
<td>NCT03114319</td>
<td>TNO155 SHP-2 antagonist</td>
<td>Solid tumours (NSCLC, H&N etc.)</td>
<td>Phase I ongoing</td>
<td></td>
</tr>
<tr>
<td>NCT02858453</td>
<td>AQX-1125 (rosiptor) SHP-1 agonist</td>
<td>Inflammatory diseases</td>
<td>Phase III ongoing</td>
<td></td>
</tr>
</tbody>
</table>
Figure 1: PD-1 and CTLA-4 target different molecules to inhibit T cell activation. Upon T cell conjugates with an antigen-presenting cell, PD-1 is located in the immune synapse interface and recruits SHP-2 to inhibit TCR-induced activation of the PI3K-Akt and Ras-MEK/ERK pathways. PD-1 also suppresses transcription of S-phase kinase-associated protein 2 (SKP2) to result in accumulation of p27kip1, which is an inhibitor of cyclin-dependent kinases to block cell cycle and proliferation. Ligation of CTLA-4 dephosphorylates signaling molecules including ZAP-70 and src kinase FYN. CTLA-4 inhibits AKT phosphorylation and activation by recruiting PP2A to its cytoplasmic tail. Ligation of CTLA-4 phosphorylates the pro-apoptotic factor BAD and enhances bcl-xL activity to prevent T cell apoptosis. SHP-1 is constitutively associated with the inhibitory receptor LAIR-1, which is phosphorylated by LCK, although SHP-1 may also be activated by other ITIM-containing inhibitory receptors. Activation of SHP-1 leads to the inhibition of antigen-induced TCR signaling either through direct dephosphorylation of the TCR-ζ chain, or by dephosphorylation of downstream proteins such as LCK and ZAP-70.

Abbreviations: PD-1, programmed cell death-1; PD-L1, programmed cell death ligand-1; TCR, T cell receptor; CTLA-4, cytotoxic T lymphocyte antigen-4; SHP, SH2 domain-containing phosphatase; LCK, lymphocyte-specific protein tyrosine kinase; ZAP-70, zeta-chain associated protein 70; PP2A, protein phosphatase 2A; PI3K, phosphoinosititol-3 kinase; PIP3, phosphatidylinositol triphosphat; AKT, proteinkinase B; NFAT, nuclear factor of activated T cells; Bcl-xL, B cell lymphoma extra large; MHC, major histocompatibility complex; p27kip, protein 27 kinase inhibitory portein; LAIR-1, leucocyte-associated Ig-like receptor-1; ITIM, immunreceptor tyrosine-based inhibitory motif.
Figure 2: Oligomeric activating receptors, which include ITAM-bearing molecules as well as inhibitory MHC class I–specific receptors, are depicted. KIR-S are activating killer cell Ig-like receptors with a short intracytoplasmic domain and no intrinsic signaling properties, whereas KIR-L are inhibitory receptors with an intracytoplasmic ITIM. In the mouse, but not in humans, two alternative spliced forms of NKG2D coexist: The link between SHP-2 and SLP-76 is not fully characterized but could occur by way of Grb2. The signaling pathways leading to cytokine secretion appear to be strictly dependent on ITAM-bearing receptors, but their precise delineation remains to be completed. The substrates for SHP-1 and SHP-2 tyrosine phosphatases downstream of ITIM-bearing molecules include Vav1.

Abbreviations: SHP, SH2 domain-containing phosphatase; AKT, protein kinase B; SYK, spleen tyrosine kinase; PI(n)P, phosphoinositol(n)phosphate; Grb2, growth factor receptor bound-2; SLP-76, SH2 domain-containing linker of 76 kD; 3BP2, c-abl src homology 3 domain-binding protein-2 (adaptor protein); PLC-γ, phospholipase-C gamma; Vav, GDP exchange protein (95 kD) (Vav = named after the 6th letter of the Hebrew alphabet); PI3K, phosphoinositol-3 kinase; Rac, ras-related C3 botulinum toxin substrate; PAK1, p21 protein-activated kinase 1; MEK, mitogen-activated protein kinase kinase; ERK, extracellular-signal regulated kinase; Raf, rapidly accelerated fibrosarcoma kinase; Ras, rat sarcoma; SOS, son of sevenless; Shc, Src homology 2 domain-containing; LAT, linker for activated T cells; DAG, diacylglycerol; IP3, inositol (1,4,5)-triphosphate; SHIP, SH2 domain-containing inositol phosphatase.
Figure 3: The major signaling pathway activated by SHP-2 downstream of RTKs and GFs is the ras/ERK MAP kinase cascade. SHP-2 activates ras/ERK through different mechanisms: these include dephosphorylation of rasGAP binding sites on specific receptors and adaptor proteins or dephosphorylation of the negative ras/ERK regulator, Sprouty. Alternatively, regulation of src kinase activity by SHP-2 through either direct dephosphorylation of src or by indirect regulation of the src inhibitor CSK can enhance activation of the ERK pathway. SHP-2 also regulates PI3K, FAK, and RhoA, as well as Ca²⁺/calcineurin/NFAT signaling. In addition to RTK signaling, SHP-2 has been implicated downstream of cytokine signaling in the regulation of STAT signaling pathways and in the activation of NF-κB. Dashed lines: indirect interactions; solid lines: direct interactions.

Abbreviations: GF; growth factor; RTK, receptor tyrosine kinase; RhoA, Ras homolog gene family, member A; SHP, SH2 domain-containing phosphatase; PI3K, phosphoinositol-3 kinase; CN, calcineurin; NFAT, nuclear factor of activated T cells (transcription factor for IL-2 and IL-4); RAS GAP, Ras GTPase activating protein; SRC, Rous sarcoma virus; CSK, c-terminal src kinase; FAK, focal adhesion kinase; ERK, extracellular-signal regulated kinase; IKK, IκB kinase; NF-κB, nuclear factor kappaB; STAT; signal transducer and activator of transcription; pY, phosphorylated Y-720.
Figure 4: In haematolymphoid cells, SHIP can be recruited to a wide variety of receptor complexes including growth factor receptors and immune receptors. SHIP is recruited to receptor-associated signaling complexes via adaptors (e.g., Shc, Grb2), scaffold proteins like Gab1 (GrB-associated binding protein 1) or directly via its SH2 domain. After recruitment to the plasma membrane, SHIP can then hydrolyse PIP3. Hydrolysis of PIP3 inhibits recruitment of PH domain containing kinases like AKT, BTK, and PLC-γ to the plasma membrane and thus limits the activity of several different PI3K effectors that promote cell survival, migration, differentiation or proliferation. These include distal kinases like MAP/ERK, and key transcription factors such as NF-κB and NFAT. Ras proteins have been shown to associate with the plasma membrane by binding to negatively charged PIP3 and PI(4,5)P₂. SHIP could also potentially inhibit this process.

Abbreviations: SHIP, SH2 domain-containing inositol phosphatase; Shc, Src homology 2 domain-containing; Grb2, growth factor receptor-bound 2; SOS, son of sevenless; Ras, rat sarcoma; MAPK/ERK, mitogen-activated protein kinase/extracellular signal–regulated kinases; PI3K, phosphoinositol-3 kinase; BTK, Burton tyrosine kinase; PLC-γ, phospholipase-Cgamma; AKT, protein kinase B; PDK1, pyruvate dehydrogenase lipoamide kinase isozyme 1; IKK-P, IκB kinase phosphoprotein; FasL, first apoptosis signal receptor ligand (CD95); NF-κB, nuclear factor kappaB; GSK3, glycogen synthase kinase-3; BAD-P, bcl-2-associated death promoter; Bcl-2; B cell lymphoma 2; PKCs, protein kinases C; Vav, GDP exchange protein (95 kD) (Vav = named after the 6th letter of the Hebrew alphabet); PI(n)P, phosphatidylinositol-(n)-phosphate; Inositol-(n)-phosphate; A/S, adaptor/scaffold protein.
Figure 1:
Figure 2:
Figure 3:
Figure 4: