Design of engineered elastomeric substrate for stretchable active devices and sensors

Cantarella, Giuseppe, Costanza, Vincenzo, Ferrero, Alberto, Hopf, Raoul, Vogt, Christian, Varga, Matija, Petti, Luisa, Munzenrieder, Niko, Büthe, Lars, Salvatore, Giovanni, Claville, Alex, Bonanomi, Luca, Daus, Alwin, Knobelspies, Stefan, Daraio, Chiara and Tröster, Gerhard (2018) Design of engineered elastomeric substrate for stretchable active devices and sensors. Advanced Functional Materials, 28 (30). 1705132 1-9. ISSN 1616301X

[img] PDF - Accepted Version
Download (1MB)

Abstract

In the field of flexible electronics, emerging applications require biocompatible and unobtrusive devices, which can withstand different modes of mechanical deformation and achieve low complexity in the fabrication process. Here, the fabrication of a mesa‐shaped elastomeric substrate, supporting thin‐film transistors (TFTs) and logic circuits (inverters), is reported. High‐relief structures are designed to minimize the strain experienced by the electronics, which are fabricated directly on the pillars' surface. In this design configuration, devices based on amorphous indium‐gallium‐zinc‐oxide can withstand different modes of deformation. Bending, stretching, and twisting experiments up to 6 mm radius, 20% uniaxial strain, and 180° global twisting, respectively, are performed to show stable electrical performance of the TFTs. Similarly, a fully integrated digital inverter is tested while stretched up to 20% elongation. As a proof of the versatility of mesa‐shaped geometry, a biocompatible and stretchable sensor for temperature mapping is also realized. Using pectin, which is a temperature‐sensitive material present in plant cells, the response of the sensor shows current modulation from 13 to 28 °C and functionality up to 15% strain. These results demonstrate the performance of highly flexible electronics for a broad variety of applications, including smart skin and health monitoring.

Item Type: Article
Schools and Departments: School of Engineering and Informatics > Engineering and Design
Research Centres and Groups: Sensor Technology Research Centre
Depositing User: Niko Munzenrieder
Date Deposited: 31 May 2018 09:04
Last Modified: 12 Jul 2019 16:00
URI: http://sro.sussex.ac.uk/id/eprint/76256

View download statistics for this item

📧 Request an update